1 /* $OpenBSD: kern_synch.c,v 1.194 2023/07/11 07:02:43 claudio Exp $ */ 2 /* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1990, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94 38 */ 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/kernel.h> 44 #include <sys/signalvar.h> 45 #include <sys/sched.h> 46 #include <sys/timeout.h> 47 #include <sys/mount.h> 48 #include <sys/syscallargs.h> 49 #include <sys/refcnt.h> 50 #include <sys/atomic.h> 51 #include <sys/tracepoint.h> 52 53 #include <ddb/db_output.h> 54 55 #include <machine/spinlock.h> 56 57 #ifdef DIAGNOSTIC 58 #include <sys/syslog.h> 59 #endif 60 61 #ifdef KTRACE 62 #include <sys/ktrace.h> 63 #endif 64 65 int sleep_signal_check(void); 66 int thrsleep(struct proc *, struct sys___thrsleep_args *); 67 int thrsleep_unlock(void *); 68 69 /* 70 * We're only looking at 7 bits of the address; everything is 71 * aligned to 4, lots of things are aligned to greater powers 72 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 73 */ 74 #define TABLESIZE 128 75 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1)) 76 TAILQ_HEAD(slpque,proc) slpque[TABLESIZE]; 77 78 void 79 sleep_queue_init(void) 80 { 81 int i; 82 83 for (i = 0; i < TABLESIZE; i++) 84 TAILQ_INIT(&slpque[i]); 85 } 86 87 /* 88 * Global sleep channel for threads that do not want to 89 * receive wakeup(9) broadcasts. 90 */ 91 int nowake; 92 93 /* 94 * During autoconfiguration or after a panic, a sleep will simply 95 * lower the priority briefly to allow interrupts, then return. 96 * The priority to be used (safepri) is machine-dependent, thus this 97 * value is initialized and maintained in the machine-dependent layers. 98 * This priority will typically be 0, or the lowest priority 99 * that is safe for use on the interrupt stack; it can be made 100 * higher to block network software interrupts after panics. 101 */ 102 extern int safepri; 103 104 /* 105 * General sleep call. Suspends the current process until a wakeup is 106 * performed on the specified identifier. The process will then be made 107 * runnable with the specified priority. Sleeps at most timo/hz seconds 108 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 109 * before and after sleeping, else signals are not checked. Returns 0 if 110 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 111 * signal needs to be delivered, ERESTART is returned if the current system 112 * call should be restarted if possible, and EINTR is returned if the system 113 * call should be interrupted by the signal (return EINTR). 114 */ 115 int 116 tsleep(const volatile void *ident, int priority, const char *wmesg, int timo) 117 { 118 struct sleep_state sls; 119 #ifdef MULTIPROCESSOR 120 int hold_count; 121 #endif 122 123 KASSERT((priority & ~(PRIMASK | PCATCH)) == 0); 124 KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0); 125 126 #ifdef MULTIPROCESSOR 127 KASSERT(ident == &nowake || timo || _kernel_lock_held()); 128 #endif 129 130 #ifdef DDB 131 if (cold == 2) 132 db_stack_dump(); 133 #endif 134 if (cold || panicstr) { 135 int s; 136 /* 137 * After a panic, or during autoconfiguration, 138 * just give interrupts a chance, then just return; 139 * don't run any other procs or panic below, 140 * in case this is the idle process and already asleep. 141 */ 142 s = splhigh(); 143 splx(safepri); 144 #ifdef MULTIPROCESSOR 145 if (_kernel_lock_held()) { 146 hold_count = __mp_release_all(&kernel_lock); 147 __mp_acquire_count(&kernel_lock, hold_count); 148 } 149 #endif 150 splx(s); 151 return (0); 152 } 153 154 sleep_setup(&sls, ident, priority, wmesg); 155 return sleep_finish(&sls, priority, timo, 1); 156 } 157 158 int 159 tsleep_nsec(const volatile void *ident, int priority, const char *wmesg, 160 uint64_t nsecs) 161 { 162 uint64_t to_ticks; 163 164 if (nsecs == INFSLP) 165 return tsleep(ident, priority, wmesg, 0); 166 #ifdef DIAGNOSTIC 167 if (nsecs == 0) { 168 log(LOG_WARNING, 169 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n", 170 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid, 171 wmesg); 172 } 173 #endif 174 /* 175 * We want to sleep at least nsecs nanoseconds worth of ticks. 176 * 177 * - Clamp nsecs to prevent arithmetic overflow. 178 * 179 * - Round nsecs up to account for any nanoseconds that do not 180 * divide evenly into tick_nsec, otherwise we'll lose them to 181 * integer division in the next step. We add (tick_nsec - 1) 182 * to keep from introducing a spurious tick if there are no 183 * such nanoseconds, i.e. nsecs % tick_nsec == 0. 184 * 185 * - Divide the rounded value to a count of ticks. We divide 186 * by (tick_nsec + 1) to discard the extra tick introduced if, 187 * before rounding, nsecs % tick_nsec == 1. 188 * 189 * - Finally, add a tick to the result. We need to wait out 190 * the current tick before we can begin counting our interval, 191 * as we do not know how much time has elapsed since the 192 * current tick began. 193 */ 194 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec); 195 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 196 if (to_ticks > INT_MAX) 197 to_ticks = INT_MAX; 198 return tsleep(ident, priority, wmesg, (int)to_ticks); 199 } 200 201 /* 202 * Same as tsleep, but if we have a mutex provided, then once we've 203 * entered the sleep queue we drop the mutex. After sleeping we re-lock. 204 */ 205 int 206 msleep(const volatile void *ident, struct mutex *mtx, int priority, 207 const char *wmesg, int timo) 208 { 209 struct sleep_state sls; 210 int error, spl; 211 #ifdef MULTIPROCESSOR 212 int hold_count; 213 #endif 214 215 KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0); 216 KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0); 217 KASSERT(mtx != NULL); 218 219 #ifdef DDB 220 if (cold == 2) 221 db_stack_dump(); 222 #endif 223 if (cold || panicstr) { 224 /* 225 * After a panic, or during autoconfiguration, 226 * just give interrupts a chance, then just return; 227 * don't run any other procs or panic below, 228 * in case this is the idle process and already asleep. 229 */ 230 spl = MUTEX_OLDIPL(mtx); 231 MUTEX_OLDIPL(mtx) = safepri; 232 mtx_leave(mtx); 233 #ifdef MULTIPROCESSOR 234 if (_kernel_lock_held()) { 235 hold_count = __mp_release_all(&kernel_lock); 236 __mp_acquire_count(&kernel_lock, hold_count); 237 } 238 #endif 239 if ((priority & PNORELOCK) == 0) { 240 mtx_enter(mtx); 241 MUTEX_OLDIPL(mtx) = spl; 242 } else 243 splx(spl); 244 return (0); 245 } 246 247 sleep_setup(&sls, ident, priority, wmesg); 248 249 mtx_leave(mtx); 250 /* signal may stop the process, release mutex before that */ 251 error = sleep_finish(&sls, priority, timo, 1); 252 253 if ((priority & PNORELOCK) == 0) 254 mtx_enter(mtx); 255 256 return error; 257 } 258 259 int 260 msleep_nsec(const volatile void *ident, struct mutex *mtx, int priority, 261 const char *wmesg, uint64_t nsecs) 262 { 263 uint64_t to_ticks; 264 265 if (nsecs == INFSLP) 266 return msleep(ident, mtx, priority, wmesg, 0); 267 #ifdef DIAGNOSTIC 268 if (nsecs == 0) { 269 log(LOG_WARNING, 270 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n", 271 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid, 272 wmesg); 273 } 274 #endif 275 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec); 276 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 277 if (to_ticks > INT_MAX) 278 to_ticks = INT_MAX; 279 return msleep(ident, mtx, priority, wmesg, (int)to_ticks); 280 } 281 282 /* 283 * Same as tsleep, but if we have a rwlock provided, then once we've 284 * entered the sleep queue we drop the it. After sleeping we re-lock. 285 */ 286 int 287 rwsleep(const volatile void *ident, struct rwlock *rwl, int priority, 288 const char *wmesg, int timo) 289 { 290 struct sleep_state sls; 291 int error, status; 292 293 KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0); 294 KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0); 295 KASSERT(ident != rwl); 296 rw_assert_anylock(rwl); 297 status = rw_status(rwl); 298 299 sleep_setup(&sls, ident, priority, wmesg); 300 301 rw_exit(rwl); 302 /* signal may stop the process, release rwlock before that */ 303 error = sleep_finish(&sls, priority, timo, 1); 304 305 if ((priority & PNORELOCK) == 0) 306 rw_enter(rwl, status); 307 308 return error; 309 } 310 311 int 312 rwsleep_nsec(const volatile void *ident, struct rwlock *rwl, int priority, 313 const char *wmesg, uint64_t nsecs) 314 { 315 uint64_t to_ticks; 316 317 if (nsecs == INFSLP) 318 return rwsleep(ident, rwl, priority, wmesg, 0); 319 #ifdef DIAGNOSTIC 320 if (nsecs == 0) { 321 log(LOG_WARNING, 322 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n", 323 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid, 324 wmesg); 325 } 326 #endif 327 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec); 328 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 329 if (to_ticks > INT_MAX) 330 to_ticks = INT_MAX; 331 return rwsleep(ident, rwl, priority, wmesg, (int)to_ticks); 332 } 333 334 void 335 sleep_setup(struct sleep_state *sls, const volatile void *ident, int prio, 336 const char *wmesg) 337 { 338 struct proc *p = curproc; 339 int s; 340 341 #ifdef DIAGNOSTIC 342 if (p->p_flag & P_CANTSLEEP) 343 panic("sleep: %s failed insomnia", p->p_p->ps_comm); 344 if (ident == NULL) 345 panic("tsleep: no ident"); 346 if (p->p_stat != SONPROC) 347 panic("tsleep: not SONPROC"); 348 #endif 349 350 SCHED_LOCK(s); 351 352 TRACEPOINT(sched, sleep, NULL); 353 354 p->p_wchan = ident; 355 p->p_wmesg = wmesg; 356 p->p_slptime = 0; 357 p->p_slppri = prio & PRIMASK; 358 atomic_setbits_int(&p->p_flag, P_WSLEEP); 359 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq); 360 if (prio & PCATCH) 361 atomic_setbits_int(&p->p_flag, P_SINTR); 362 p->p_stat = SSLEEP; 363 364 SCHED_UNLOCK(s); 365 } 366 367 int 368 sleep_finish(struct sleep_state *sls, int prio, int timo, int do_sleep) 369 { 370 struct proc *p = curproc; 371 int s, catch, error = 0, error1 = 0; 372 373 catch = prio & PCATCH; 374 375 if (timo != 0) { 376 KASSERT((p->p_flag & P_TIMEOUT) == 0); 377 timeout_add(&p->p_sleep_to, timo); 378 } 379 380 SCHED_LOCK(s); 381 if (catch != 0) { 382 /* 383 * We put ourselves on the sleep queue and start our 384 * timeout before calling sleep_signal_check(), as we could 385 * stop there, and a wakeup or a SIGCONT (or both) could 386 * occur while we were stopped. A SIGCONT would cause 387 * us to be marked as SSLEEP without resuming us, thus 388 * we must be ready for sleep when sleep_signal_check() is 389 * called. 390 */ 391 if ((error = sleep_signal_check()) != 0) { 392 catch = 0; 393 do_sleep = 0; 394 } 395 } 396 397 /* 398 * If the wakeup happens while going to sleep, p->p_wchan 399 * will be NULL. In that case unwind immediately but still 400 * check for possible signals and timeouts. 401 */ 402 if (p->p_wchan == NULL) 403 do_sleep = 0; 404 405 atomic_clearbits_int(&p->p_flag, P_WSLEEP); 406 if (do_sleep) { 407 p->p_ru.ru_nvcsw++; 408 mi_switch(); 409 } else { 410 unsleep(p); 411 p->p_stat = SONPROC; 412 } 413 414 #ifdef DIAGNOSTIC 415 if (p->p_stat != SONPROC) 416 panic("sleep_finish !SONPROC"); 417 #endif 418 419 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri; 420 SCHED_UNLOCK(s); 421 422 /* 423 * Even though this belongs to the signal handling part of sleep, 424 * we need to clear it before the ktrace. 425 */ 426 atomic_clearbits_int(&p->p_flag, P_SINTR); 427 428 if (timo != 0) { 429 if (p->p_flag & P_TIMEOUT) { 430 error1 = EWOULDBLOCK; 431 } else { 432 /* This can sleep. It must not use timeouts. */ 433 timeout_del_barrier(&p->p_sleep_to); 434 } 435 atomic_clearbits_int(&p->p_flag, P_TIMEOUT); 436 } 437 438 /* Check if thread was woken up because of a unwind or signal */ 439 if (catch != 0) 440 error = sleep_signal_check(); 441 442 /* Signal errors are higher priority than timeouts. */ 443 if (error == 0 && error1 != 0) 444 error = error1; 445 446 return error; 447 } 448 449 /* 450 * Check and handle signals and suspensions around a sleep cycle. 451 */ 452 int 453 sleep_signal_check(void) 454 { 455 struct proc *p = curproc; 456 struct sigctx ctx; 457 int err, sig; 458 459 if ((err = single_thread_check(p, 1)) != 0) 460 return err; 461 if ((sig = cursig(p, &ctx)) != 0) { 462 if (ctx.sig_intr) 463 return EINTR; 464 else 465 return ERESTART; 466 } 467 return 0; 468 } 469 470 int 471 wakeup_proc(struct proc *p, const volatile void *chan, int flags) 472 { 473 int awakened = 0; 474 475 SCHED_ASSERT_LOCKED(); 476 477 if (p->p_wchan != NULL && 478 ((chan == NULL) || (p->p_wchan == chan))) { 479 awakened = 1; 480 if (flags) 481 atomic_setbits_int(&p->p_flag, flags); 482 if (p->p_stat == SSLEEP) 483 setrunnable(p); 484 else if (p->p_stat == SSTOP) 485 unsleep(p); 486 #ifdef DIAGNOSTIC 487 else 488 panic("wakeup: p_stat is %d", (int)p->p_stat); 489 #endif 490 } 491 492 return awakened; 493 } 494 495 496 /* 497 * Implement timeout for tsleep. 498 * If process hasn't been awakened (wchan non-zero), 499 * set timeout flag and undo the sleep. If proc 500 * is stopped, just unsleep so it will remain stopped. 501 */ 502 void 503 endtsleep(void *arg) 504 { 505 struct proc *p = arg; 506 int s; 507 508 SCHED_LOCK(s); 509 wakeup_proc(p, NULL, P_TIMEOUT); 510 SCHED_UNLOCK(s); 511 } 512 513 /* 514 * Remove a process from its wait queue 515 */ 516 void 517 unsleep(struct proc *p) 518 { 519 SCHED_ASSERT_LOCKED(); 520 521 if (p->p_wchan != NULL) { 522 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq); 523 p->p_wchan = NULL; 524 TRACEPOINT(sched, wakeup, p->p_tid + THREAD_PID_OFFSET, 525 p->p_p->ps_pid); 526 } 527 } 528 529 /* 530 * Make a number of processes sleeping on the specified identifier runnable. 531 */ 532 void 533 wakeup_n(const volatile void *ident, int n) 534 { 535 struct slpque *qp; 536 struct proc *p; 537 struct proc *pnext; 538 int s; 539 540 SCHED_LOCK(s); 541 qp = &slpque[LOOKUP(ident)]; 542 for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) { 543 pnext = TAILQ_NEXT(p, p_runq); 544 #ifdef DIAGNOSTIC 545 if (p->p_stat != SSLEEP && p->p_stat != SSTOP) 546 panic("wakeup: p_stat is %d", (int)p->p_stat); 547 #endif 548 if (wakeup_proc(p, ident, 0)) 549 --n; 550 } 551 SCHED_UNLOCK(s); 552 } 553 554 /* 555 * Make all processes sleeping on the specified identifier runnable. 556 */ 557 void 558 wakeup(const volatile void *chan) 559 { 560 wakeup_n(chan, -1); 561 } 562 563 int 564 sys_sched_yield(struct proc *p, void *v, register_t *retval) 565 { 566 struct proc *q; 567 uint8_t newprio; 568 int s; 569 570 SCHED_LOCK(s); 571 /* 572 * If one of the threads of a multi-threaded process called 573 * sched_yield(2), drop its priority to ensure its siblings 574 * can make some progress. 575 */ 576 newprio = p->p_usrpri; 577 TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link) 578 newprio = max(newprio, q->p_runpri); 579 setrunqueue(p->p_cpu, p, newprio); 580 p->p_ru.ru_nvcsw++; 581 mi_switch(); 582 SCHED_UNLOCK(s); 583 584 return (0); 585 } 586 587 int 588 thrsleep_unlock(void *lock) 589 { 590 static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED; 591 _atomic_lock_t *atomiclock = lock; 592 593 if (!lock) 594 return 0; 595 596 return copyout(&unlocked, atomiclock, sizeof(unlocked)); 597 } 598 599 struct tslpentry { 600 TAILQ_ENTRY(tslpentry) tslp_link; 601 long tslp_ident; 602 }; 603 604 /* thrsleep queue shared between processes */ 605 static struct tslpqueue thrsleep_queue = TAILQ_HEAD_INITIALIZER(thrsleep_queue); 606 static struct rwlock thrsleep_lock = RWLOCK_INITIALIZER("thrsleeplk"); 607 608 int 609 thrsleep(struct proc *p, struct sys___thrsleep_args *v) 610 { 611 struct sys___thrsleep_args /* { 612 syscallarg(const volatile void *) ident; 613 syscallarg(clockid_t) clock_id; 614 syscallarg(const struct timespec *) tp; 615 syscallarg(void *) lock; 616 syscallarg(const int *) abort; 617 } */ *uap = v; 618 long ident = (long)SCARG(uap, ident); 619 struct tslpentry entry; 620 struct tslpqueue *queue; 621 struct rwlock *qlock; 622 struct timespec *tsp = (struct timespec *)SCARG(uap, tp); 623 void *lock = SCARG(uap, lock); 624 uint64_t nsecs = INFSLP; 625 int abort = 0, error; 626 clockid_t clock_id = SCARG(uap, clock_id); 627 628 if (ident == 0) 629 return (EINVAL); 630 if (tsp != NULL) { 631 struct timespec now; 632 633 if ((error = clock_gettime(p, clock_id, &now))) 634 return (error); 635 #ifdef KTRACE 636 if (KTRPOINT(p, KTR_STRUCT)) 637 ktrabstimespec(p, tsp); 638 #endif 639 640 if (timespeccmp(tsp, &now, <=)) { 641 /* already passed: still do the unlock */ 642 if ((error = thrsleep_unlock(lock))) 643 return (error); 644 return (EWOULDBLOCK); 645 } 646 647 timespecsub(tsp, &now, tsp); 648 nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP); 649 } 650 651 if (ident == -1) { 652 queue = &thrsleep_queue; 653 qlock = &thrsleep_lock; 654 } else { 655 queue = &p->p_p->ps_tslpqueue; 656 qlock = &p->p_p->ps_lock; 657 } 658 659 /* Interlock with wakeup. */ 660 entry.tslp_ident = ident; 661 rw_enter_write(qlock); 662 TAILQ_INSERT_TAIL(queue, &entry, tslp_link); 663 rw_exit_write(qlock); 664 665 error = thrsleep_unlock(lock); 666 667 if (error == 0 && SCARG(uap, abort) != NULL) 668 error = copyin(SCARG(uap, abort), &abort, sizeof(abort)); 669 670 rw_enter_write(qlock); 671 if (error != 0) 672 goto out; 673 if (abort != 0) { 674 error = EINTR; 675 goto out; 676 } 677 if (entry.tslp_ident != 0) { 678 error = rwsleep_nsec(&entry, qlock, PWAIT|PCATCH, "thrsleep", 679 nsecs); 680 } 681 682 out: 683 if (entry.tslp_ident != 0) 684 TAILQ_REMOVE(queue, &entry, tslp_link); 685 rw_exit_write(qlock); 686 687 if (error == ERESTART) 688 error = ECANCELED; 689 690 return (error); 691 692 } 693 694 int 695 sys___thrsleep(struct proc *p, void *v, register_t *retval) 696 { 697 struct sys___thrsleep_args /* { 698 syscallarg(const volatile void *) ident; 699 syscallarg(clockid_t) clock_id; 700 syscallarg(struct timespec *) tp; 701 syscallarg(void *) lock; 702 syscallarg(const int *) abort; 703 } */ *uap = v; 704 struct timespec ts; 705 int error; 706 707 if (SCARG(uap, tp) != NULL) { 708 if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) { 709 *retval = error; 710 return 0; 711 } 712 if (!timespecisvalid(&ts)) { 713 *retval = EINVAL; 714 return 0; 715 } 716 SCARG(uap, tp) = &ts; 717 } 718 719 *retval = thrsleep(p, uap); 720 return 0; 721 } 722 723 int 724 sys___thrwakeup(struct proc *p, void *v, register_t *retval) 725 { 726 struct sys___thrwakeup_args /* { 727 syscallarg(const volatile void *) ident; 728 syscallarg(int) n; 729 } */ *uap = v; 730 struct tslpentry *entry, *tmp; 731 struct tslpqueue *queue; 732 struct rwlock *qlock; 733 long ident = (long)SCARG(uap, ident); 734 int n = SCARG(uap, n); 735 int found = 0; 736 737 if (ident == 0) 738 *retval = EINVAL; 739 else { 740 if (ident == -1) { 741 queue = &thrsleep_queue; 742 qlock = &thrsleep_lock; 743 /* 744 * Wake up all waiters with ident -1. This is needed 745 * because ident -1 can be shared by multiple userspace 746 * lock state machines concurrently. The implementation 747 * has no way to direct the wakeup to a particular 748 * state machine. 749 */ 750 n = 0; 751 } else { 752 queue = &p->p_p->ps_tslpqueue; 753 qlock = &p->p_p->ps_lock; 754 } 755 756 rw_enter_write(qlock); 757 TAILQ_FOREACH_SAFE(entry, queue, tslp_link, tmp) { 758 if (entry->tslp_ident == ident) { 759 TAILQ_REMOVE(queue, entry, tslp_link); 760 entry->tslp_ident = 0; 761 wakeup_one(entry); 762 if (++found == n) 763 break; 764 } 765 } 766 rw_exit_write(qlock); 767 768 if (ident == -1) 769 *retval = 0; 770 else 771 *retval = found ? 0 : ESRCH; 772 } 773 774 return (0); 775 } 776 777 void 778 refcnt_init(struct refcnt *r) 779 { 780 refcnt_init_trace(r, 0); 781 } 782 783 void 784 refcnt_init_trace(struct refcnt *r, int idx) 785 { 786 r->r_traceidx = idx; 787 atomic_store_int(&r->r_refs, 1); 788 TRACEINDEX(refcnt, r->r_traceidx, r, 0, +1); 789 } 790 791 void 792 refcnt_take(struct refcnt *r) 793 { 794 u_int refs; 795 796 refs = atomic_inc_int_nv(&r->r_refs); 797 KASSERT(refs != 0); 798 TRACEINDEX(refcnt, r->r_traceidx, r, refs - 1, +1); 799 (void)refs; 800 } 801 802 int 803 refcnt_rele(struct refcnt *r) 804 { 805 u_int refs; 806 807 membar_exit_before_atomic(); 808 refs = atomic_dec_int_nv(&r->r_refs); 809 KASSERT(refs != ~0); 810 TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1); 811 if (refs == 0) { 812 membar_enter_after_atomic(); 813 return (1); 814 } 815 return (0); 816 } 817 818 void 819 refcnt_rele_wake(struct refcnt *r) 820 { 821 if (refcnt_rele(r)) 822 wakeup_one(r); 823 } 824 825 void 826 refcnt_finalize(struct refcnt *r, const char *wmesg) 827 { 828 struct sleep_state sls; 829 u_int refs; 830 831 membar_exit_before_atomic(); 832 refs = atomic_dec_int_nv(&r->r_refs); 833 KASSERT(refs != ~0); 834 TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1); 835 while (refs) { 836 sleep_setup(&sls, r, PWAIT, wmesg); 837 refs = atomic_load_int(&r->r_refs); 838 sleep_finish(&sls, PWAIT, 0, refs); 839 } 840 TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0); 841 /* Order subsequent loads and stores after refs == 0 load. */ 842 membar_sync(); 843 } 844 845 int 846 refcnt_shared(struct refcnt *r) 847 { 848 u_int refs; 849 850 refs = atomic_load_int(&r->r_refs); 851 TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0); 852 return (refs > 1); 853 } 854 855 unsigned int 856 refcnt_read(struct refcnt *r) 857 { 858 u_int refs; 859 860 refs = atomic_load_int(&r->r_refs); 861 TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0); 862 return (refs); 863 } 864 865 void 866 cond_init(struct cond *c) 867 { 868 atomic_store_int(&c->c_wait, 1); 869 } 870 871 void 872 cond_signal(struct cond *c) 873 { 874 atomic_store_int(&c->c_wait, 0); 875 876 wakeup_one(c); 877 } 878 879 void 880 cond_wait(struct cond *c, const char *wmesg) 881 { 882 struct sleep_state sls; 883 unsigned int wait; 884 885 wait = atomic_load_int(&c->c_wait); 886 while (wait) { 887 sleep_setup(&sls, c, PWAIT, wmesg); 888 wait = atomic_load_int(&c->c_wait); 889 sleep_finish(&sls, PWAIT, 0, wait); 890 } 891 } 892