xref: /openbsd-src/sys/kern/kern_synch.c (revision a4afd6dad3fba28f80e70208181c06c482259988)
1 /*	$OpenBSD: kern_synch.c,v 1.5 1996/11/23 23:19:51 kstailey Exp $	*/
2 /*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1990, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/buf.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <vm/vm.h>
52 #ifdef KTRACE
53 #include <sys/ktrace.h>
54 #endif
55 
56 #include <machine/cpu.h>
57 
58 u_char	curpriority;		/* usrpri of curproc */
59 int	lbolt;			/* once a second sleep address */
60 
61 void roundrobin __P((void *));
62 void schedcpu __P((void *));
63 void updatepri __P((struct proc *));
64 void endtsleep __P((void *));
65 
66 /*
67  * Force switch among equal priority processes every 100ms.
68  */
69 /* ARGSUSED */
70 void
71 roundrobin(arg)
72 	void *arg;
73 {
74 
75 	need_resched();
76 	timeout(roundrobin, NULL, hz / 10);
77 }
78 
79 /*
80  * Constants for digital decay and forget:
81  *	90% of (p_estcpu) usage in 5 * loadav time
82  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
83  *          Note that, as ps(1) mentions, this can let percentages
84  *          total over 100% (I've seen 137.9% for 3 processes).
85  *
86  * Note that hardclock updates p_estcpu and p_cpticks independently.
87  *
88  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
89  * That is, the system wants to compute a value of decay such
90  * that the following for loop:
91  * 	for (i = 0; i < (5 * loadavg); i++)
92  * 		p_estcpu *= decay;
93  * will compute
94  * 	p_estcpu *= 0.1;
95  * for all values of loadavg:
96  *
97  * Mathematically this loop can be expressed by saying:
98  * 	decay ** (5 * loadavg) ~= .1
99  *
100  * The system computes decay as:
101  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
102  *
103  * We wish to prove that the system's computation of decay
104  * will always fulfill the equation:
105  * 	decay ** (5 * loadavg) ~= .1
106  *
107  * If we compute b as:
108  * 	b = 2 * loadavg
109  * then
110  * 	decay = b / (b + 1)
111  *
112  * We now need to prove two things:
113  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
114  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
115  *
116  * Facts:
117  *         For x close to zero, exp(x) =~ 1 + x, since
118  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
119  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
120  *         For x close to zero, ln(1+x) =~ x, since
121  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
122  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
123  *         ln(.1) =~ -2.30
124  *
125  * Proof of (1):
126  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
127  *	solving for factor,
128  *      ln(factor) =~ (-2.30/5*loadav), or
129  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
130  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
131  *
132  * Proof of (2):
133  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
134  *	solving for power,
135  *      power*ln(b/(b+1)) =~ -2.30, or
136  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
137  *
138  * Actual power values for the implemented algorithm are as follows:
139  *      loadav: 1       2       3       4
140  *      power:  5.68    10.32   14.94   19.55
141  */
142 
143 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
144 #define	loadfactor(loadav)	(2 * (loadav))
145 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
146 
147 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
148 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
149 
150 /*
151  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
152  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
153  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
154  *
155  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
156  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
157  *
158  * If you dont want to bother with the faster/more-accurate formula, you
159  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
160  * (more general) method of calculating the %age of CPU used by a process.
161  */
162 #define	CCPU_SHIFT	11
163 
164 /*
165  * Recompute process priorities, every hz ticks.
166  */
167 /* ARGSUSED */
168 void
169 schedcpu(arg)
170 	void *arg;
171 {
172 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
173 	register struct proc *p;
174 	register int s;
175 	register unsigned int newcpu;
176 
177 	wakeup((caddr_t)&lbolt);
178 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
179 		/*
180 		 * Increment time in/out of memory and sleep time
181 		 * (if sleeping).  We ignore overflow; with 16-bit int's
182 		 * (remember them?) overflow takes 45 days.
183 		 */
184 		p->p_swtime++;
185 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
186 			p->p_slptime++;
187 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
188 		/*
189 		 * If the process has slept the entire second,
190 		 * stop recalculating its priority until it wakes up.
191 		 */
192 		if (p->p_slptime > 1)
193 			continue;
194 		s = splstatclock();	/* prevent state changes */
195 		/*
196 		 * p_pctcpu is only for ps.
197 		 */
198 #if	(FSHIFT >= CCPU_SHIFT)
199 		p->p_pctcpu += (hz == 100)?
200 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
201                 	100 * (((fixpt_t) p->p_cpticks)
202 				<< (FSHIFT - CCPU_SHIFT)) / hz;
203 #else
204 		p->p_pctcpu += ((FSCALE - ccpu) *
205 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
206 #endif
207 		p->p_cpticks = 0;
208 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
209 		p->p_estcpu = min(newcpu, UCHAR_MAX);
210 		resetpriority(p);
211 		if (p->p_priority >= PUSER) {
212 #define	PPQ	(128 / NQS)		/* priorities per queue */
213 			if ((p != curproc) &&
214 			    p->p_stat == SRUN &&
215 			    (p->p_flag & P_INMEM) &&
216 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
217 				remrunqueue(p);
218 				p->p_priority = p->p_usrpri;
219 				setrunqueue(p);
220 			} else
221 				p->p_priority = p->p_usrpri;
222 		}
223 		splx(s);
224 	}
225 	vmmeter();
226 	if (bclnlist != NULL)
227 		wakeup((caddr_t)pageproc);
228 	timeout(schedcpu, (void *)0, hz);
229 }
230 
231 /*
232  * Recalculate the priority of a process after it has slept for a while.
233  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
234  * least six times the loadfactor will decay p_estcpu to zero.
235  */
236 void
237 updatepri(p)
238 	register struct proc *p;
239 {
240 	register unsigned int newcpu = p->p_estcpu;
241 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
242 
243 	if (p->p_slptime > 5 * loadfac)
244 		p->p_estcpu = 0;
245 	else {
246 		p->p_slptime--;	/* the first time was done in schedcpu */
247 		while (newcpu && --p->p_slptime)
248 			newcpu = (int) decay_cpu(loadfac, newcpu);
249 		p->p_estcpu = min(newcpu, UCHAR_MAX);
250 	}
251 	resetpriority(p);
252 }
253 
254 /*
255  * We're only looking at 7 bits of the address; everything is
256  * aligned to 4, lots of things are aligned to greater powers
257  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
258  */
259 #define TABLESIZE	128
260 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
261 struct slpque {
262 	struct proc *sq_head;
263 	struct proc **sq_tailp;
264 } slpque[TABLESIZE];
265 
266 /*
267  * During autoconfiguration or after a panic, a sleep will simply
268  * lower the priority briefly to allow interrupts, then return.
269  * The priority to be used (safepri) is machine-dependent, thus this
270  * value is initialized and maintained in the machine-dependent layers.
271  * This priority will typically be 0, or the lowest priority
272  * that is safe for use on the interrupt stack; it can be made
273  * higher to block network software interrupts after panics.
274  */
275 int safepri;
276 
277 /*
278  * General sleep call.  Suspends the current process until a wakeup is
279  * performed on the specified identifier.  The process will then be made
280  * runnable with the specified priority.  Sleeps at most timo/hz seconds
281  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
282  * before and after sleeping, else signals are not checked.  Returns 0 if
283  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
284  * signal needs to be delivered, ERESTART is returned if the current system
285  * call should be restarted if possible, and EINTR is returned if the system
286  * call should be interrupted by the signal (return EINTR).
287  */
288 int
289 tsleep(ident, priority, wmesg, timo)
290 	void *ident;
291 	int priority, timo;
292 	char *wmesg;
293 {
294 	register struct proc *p = curproc;
295 	register struct slpque *qp;
296 	register s;
297 	int sig, catch = priority & PCATCH;
298 	extern int cold;
299 	void endtsleep __P((void *));
300 
301 #ifdef KTRACE
302 	if (KTRPOINT(p, KTR_CSW))
303 		ktrcsw(p->p_tracep, 1, 0);
304 #endif
305 	s = splhigh();
306 	if (cold || panicstr) {
307 		/*
308 		 * After a panic, or during autoconfiguration,
309 		 * just give interrupts a chance, then just return;
310 		 * don't run any other procs or panic below,
311 		 * in case this is the idle process and already asleep.
312 		 */
313 		splx(safepri);
314 		splx(s);
315 		return (0);
316 	}
317 #ifdef DIAGNOSTIC
318 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
319 		panic("tsleep");
320 #endif
321 	p->p_wchan = ident;
322 	p->p_wmesg = wmesg;
323 	p->p_slptime = 0;
324 	p->p_priority = priority & PRIMASK;
325 	qp = &slpque[LOOKUP(ident)];
326 	if (qp->sq_head == 0)
327 		qp->sq_head = p;
328 	else
329 		*qp->sq_tailp = p;
330 	*(qp->sq_tailp = &p->p_forw) = 0;
331 	if (timo)
332 		timeout(endtsleep, (void *)p, timo);
333 	/*
334 	 * We put ourselves on the sleep queue and start our timeout
335 	 * before calling CURSIG, as we could stop there, and a wakeup
336 	 * or a SIGCONT (or both) could occur while we were stopped.
337 	 * A SIGCONT would cause us to be marked as SSLEEP
338 	 * without resuming us, thus we must be ready for sleep
339 	 * when CURSIG is called.  If the wakeup happens while we're
340 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
341 	 */
342 	if (catch) {
343 		p->p_flag |= P_SINTR;
344 		if ((sig = CURSIG(p)) != 0) {
345 			if (p->p_wchan)
346 				unsleep(p);
347 			p->p_stat = SRUN;
348 			goto resume;
349 		}
350 		if (p->p_wchan == 0) {
351 			catch = 0;
352 			goto resume;
353 		}
354 	} else
355 		sig = 0;
356 	p->p_stat = SSLEEP;
357 	p->p_stats->p_ru.ru_nvcsw++;
358 	mi_switch();
359 #ifdef	DDB
360 	/* handy breakpoint location after process "wakes" */
361 	asm(".globl bpendtsleep ; bpendtsleep:");
362 #endif
363 resume:
364 	curpriority = p->p_usrpri;
365 	splx(s);
366 	p->p_flag &= ~P_SINTR;
367 	if (p->p_flag & P_TIMEOUT) {
368 		p->p_flag &= ~P_TIMEOUT;
369 		if (sig == 0) {
370 #ifdef KTRACE
371 			if (KTRPOINT(p, KTR_CSW))
372 				ktrcsw(p->p_tracep, 0, 0);
373 #endif
374 			return (EWOULDBLOCK);
375 		}
376 	} else if (timo)
377 		untimeout(endtsleep, (void *)p);
378 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
379 #ifdef KTRACE
380 		if (KTRPOINT(p, KTR_CSW))
381 			ktrcsw(p->p_tracep, 0, 0);
382 #endif
383 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
384 			return (EINTR);
385 		return (ERESTART);
386 	}
387 #ifdef KTRACE
388 	if (KTRPOINT(p, KTR_CSW))
389 		ktrcsw(p->p_tracep, 0, 0);
390 #endif
391 	return (0);
392 }
393 
394 /*
395  * Implement timeout for tsleep.
396  * If process hasn't been awakened (wchan non-zero),
397  * set timeout flag and undo the sleep.  If proc
398  * is stopped, just unsleep so it will remain stopped.
399  */
400 void
401 endtsleep(arg)
402 	void *arg;
403 {
404 	register struct proc *p;
405 	int s;
406 
407 	p = (struct proc *)arg;
408 	s = splhigh();
409 	if (p->p_wchan) {
410 		if (p->p_stat == SSLEEP)
411 			setrunnable(p);
412 		else
413 			unsleep(p);
414 		p->p_flag |= P_TIMEOUT;
415 	}
416 	splx(s);
417 }
418 
419 /*
420  * Short-term, non-interruptable sleep.
421  */
422 void
423 sleep(ident, priority)
424 	void *ident;
425 	int priority;
426 {
427 	register struct proc *p = curproc;
428 	register struct slpque *qp;
429 	register s;
430 	extern int cold;
431 
432 #ifdef DIAGNOSTIC
433 	if (priority > PZERO) {
434 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
435 		    priority, ident);
436 		panic("old sleep");
437 	}
438 #endif
439 	s = splhigh();
440 	if (cold || panicstr) {
441 		/*
442 		 * After a panic, or during autoconfiguration,
443 		 * just give interrupts a chance, then just return;
444 		 * don't run any other procs or panic below,
445 		 * in case this is the idle process and already asleep.
446 		 */
447 		splx(safepri);
448 		splx(s);
449 		return;
450 	}
451 #ifdef DIAGNOSTIC
452 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
453 		panic("sleep");
454 #endif
455 	p->p_wchan = ident;
456 	p->p_wmesg = NULL;
457 	p->p_slptime = 0;
458 	p->p_priority = priority;
459 	qp = &slpque[LOOKUP(ident)];
460 	if (qp->sq_head == 0)
461 		qp->sq_head = p;
462 	else
463 		*qp->sq_tailp = p;
464 	*(qp->sq_tailp = &p->p_forw) = 0;
465 	p->p_stat = SSLEEP;
466 	p->p_stats->p_ru.ru_nvcsw++;
467 #ifdef KTRACE
468 	if (KTRPOINT(p, KTR_CSW))
469 		ktrcsw(p->p_tracep, 1, 0);
470 #endif
471 	mi_switch();
472 #ifdef	DDB
473 	/* handy breakpoint location after process "wakes" */
474 	asm(".globl bpendsleep ; bpendsleep:");
475 #endif
476 #ifdef KTRACE
477 	if (KTRPOINT(p, KTR_CSW))
478 		ktrcsw(p->p_tracep, 0, 0);
479 #endif
480 	curpriority = p->p_usrpri;
481 	splx(s);
482 }
483 
484 /*
485  * Remove a process from its wait queue
486  */
487 void
488 unsleep(p)
489 	register struct proc *p;
490 {
491 	register struct slpque *qp;
492 	register struct proc **hp;
493 	int s;
494 
495 	s = splhigh();
496 	if (p->p_wchan) {
497 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
498 		while (*hp != p)
499 			hp = &(*hp)->p_forw;
500 		*hp = p->p_forw;
501 		if (qp->sq_tailp == &p->p_forw)
502 			qp->sq_tailp = hp;
503 		p->p_wchan = 0;
504 	}
505 	splx(s);
506 }
507 
508 /*
509  * Make all processes sleeping on the specified identifier runnable.
510  */
511 void
512 wakeup(ident)
513 	register void *ident;
514 {
515 	register struct slpque *qp;
516 	register struct proc *p, **q;
517 	int s;
518 
519 	s = splhigh();
520 	qp = &slpque[LOOKUP(ident)];
521 restart:
522 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
523 #ifdef DIAGNOSTIC
524 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
525 			panic("wakeup");
526 #endif
527 		if (p->p_wchan == ident) {
528 			p->p_wchan = 0;
529 			*q = p->p_forw;
530 			if (qp->sq_tailp == &p->p_forw)
531 				qp->sq_tailp = q;
532 			if (p->p_stat == SSLEEP) {
533 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
534 				if (p->p_slptime > 1)
535 					updatepri(p);
536 				p->p_slptime = 0;
537 				p->p_stat = SRUN;
538 				if (p->p_flag & P_INMEM)
539 					setrunqueue(p);
540 				/*
541 				 * Since curpriority is a user priority,
542 				 * p->p_priority is always better than
543 				 * curpriority.
544 				 */
545 				if ((p->p_flag & P_INMEM) == 0)
546 					wakeup((caddr_t)&proc0);
547 				else
548 					need_resched();
549 				/* END INLINE EXPANSION */
550 				goto restart;
551 			}
552 		} else
553 			q = &p->p_forw;
554 	}
555 	splx(s);
556 }
557 
558 /*
559  * The machine independent parts of mi_switch().
560  * Must be called at splstatclock() or higher.
561  */
562 void
563 mi_switch()
564 {
565 	register struct proc *p = curproc;	/* XXX */
566 	register struct rlimit *rlim;
567 	register long s, u;
568 	struct timeval tv;
569 
570 	/*
571 	 * Compute the amount of time during which the current
572 	 * process was running, and add that to its total so far.
573 	 */
574 	microtime(&tv);
575 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
576 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
577 	if (u < 0) {
578 		u += 1000000;
579 		s--;
580 	} else if (u >= 1000000) {
581 		u -= 1000000;
582 		s++;
583 	}
584 	p->p_rtime.tv_usec = u;
585 	p->p_rtime.tv_sec = s;
586 
587 	/*
588 	 * Check if the process exceeds its cpu resource allocation.
589 	 * If over max, kill it.  In any case, if it has run for more
590 	 * than 10 minutes, reduce priority to give others a chance.
591 	 */
592 	rlim = &p->p_rlimit[RLIMIT_CPU];
593 	if (s >= rlim->rlim_cur) {
594 		if (s >= rlim->rlim_max)
595 			psignal(p, SIGKILL);
596 		else {
597 			psignal(p, SIGXCPU);
598 			if (rlim->rlim_cur < rlim->rlim_max)
599 				rlim->rlim_cur += 5;
600 		}
601 	}
602 	if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
603 		p->p_nice = NZERO + 4;
604 		resetpriority(p);
605 	}
606 
607 	/*
608 	 * Pick a new current process and record its start time.
609 	 */
610 	cnt.v_swtch++;
611 	cpu_switch(p);
612 	microtime(&runtime);
613 }
614 
615 /*
616  * Initialize the (doubly-linked) run queues
617  * to be empty.
618  */
619 void
620 rqinit()
621 {
622 	register int i;
623 
624 	for (i = 0; i < NQS; i++)
625 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
626 }
627 
628 /*
629  * Change process state to be runnable,
630  * placing it on the run queue if it is in memory,
631  * and awakening the swapper if it isn't in memory.
632  */
633 void
634 setrunnable(p)
635 	register struct proc *p;
636 {
637 	register int s;
638 
639 	s = splhigh();
640 	switch (p->p_stat) {
641 	case 0:
642 	case SRUN:
643 	case SZOMB:
644 	default:
645 		panic("setrunnable");
646 	case SSTOP:
647 		/*
648 		 * If we're being traced (possibly because someone attached us
649 		 * while we were stopped), check for a signal from the debugger.
650 		 */
651 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
652 			p->p_siglist |= sigmask(p->p_xstat);
653 	case SSLEEP:
654 		unsleep(p);		/* e.g. when sending signals */
655 		break;
656 
657 	case SIDL:
658 		break;
659 	}
660 	p->p_stat = SRUN;
661 	if (p->p_flag & P_INMEM)
662 		setrunqueue(p);
663 	splx(s);
664 	if (p->p_slptime > 1)
665 		updatepri(p);
666 	p->p_slptime = 0;
667 	if ((p->p_flag & P_INMEM) == 0)
668 		wakeup((caddr_t)&proc0);
669 	else if (p->p_priority < curpriority)
670 		need_resched();
671 }
672 
673 /*
674  * Compute the priority of a process when running in user mode.
675  * Arrange to reschedule if the resulting priority is better
676  * than that of the current process.
677  */
678 void
679 resetpriority(p)
680 	register struct proc *p;
681 {
682 	register unsigned int newpriority;
683 
684 	newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
685 	newpriority = min(newpriority, MAXPRI);
686 	p->p_usrpri = newpriority;
687 	if (newpriority < curpriority)
688 		need_resched();
689 }
690 
691 #ifdef DDB
692 #include <machine/db_machdep.h>
693 
694 #include <ddb/db_interface.h>
695 #include <ddb/db_output.h>
696 
697 void
698 db_show_all_procs(addr, haddr, count, modif)
699 	db_expr_t addr;
700 	int haddr;
701 	db_expr_t count;
702 	char *modif;
703 {
704 	int map = modif[0] == 'm';
705 	int doingzomb = 0;
706 	struct proc *p, *pp;
707 
708 	p = allproc.lh_first;
709 	db_printf("  pid proc     addr     %s comm         wchan\n",
710 	    map ? "map     " : "uid  ppid  pgrp  flag stat em ");
711 	while (p != 0) {
712 		pp = p->p_pptr;
713 		if (p->p_stat) {
714 			db_printf("%5d %p %p ",
715 			    p->p_pid, p, p->p_addr);
716 			if (map)
717 				db_printf("%p %s   ",
718 				    p->p_vmspace, p->p_comm);
719 			else
720 				db_printf("%3d %5d %5d  %06x  %d  %s  %s   ",
721 				    p->p_cred->p_ruid, pp ? pp->p_pid : -1,
722 				    p->p_pgrp->pg_id, p->p_flag, p->p_stat,
723 				    p->p_emul->e_name, p->p_comm);
724 			if (p->p_wchan) {
725 				if (p->p_wmesg)
726 					db_printf("%s ", p->p_wmesg);
727 				db_printf("%p", p->p_wchan);
728 			}
729 			db_printf("\n");
730 		}
731 		p = p->p_list.le_next;
732 		if (p == 0 && doingzomb == 0) {
733 			doingzomb = 1;
734 			p = zombproc.lh_first;
735 		}
736 	}
737 }
738 #endif
739