xref: /openbsd-src/sys/kern/kern_synch.c (revision 921bf80fe82458e3ce775a4cf030b44dcdc5ba59)
1 /*	$OpenBSD: kern_synch.c,v 1.209 2024/11/03 22:52:08 claudio Exp $	*/
2 /*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1990, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/sched.h>
46 #include <sys/timeout.h>
47 #include <sys/mount.h>
48 #include <sys/syscallargs.h>
49 #include <sys/refcnt.h>
50 #include <sys/atomic.h>
51 #include <sys/tracepoint.h>
52 
53 #include <ddb/db_output.h>
54 
55 #include <machine/spinlock.h>
56 
57 #ifdef DIAGNOSTIC
58 #include <sys/syslog.h>
59 #endif
60 
61 #ifdef KTRACE
62 #include <sys/ktrace.h>
63 #endif
64 
65 int	sleep_signal_check(struct proc *);
66 int	thrsleep(struct proc *, struct sys___thrsleep_args *);
67 int	thrsleep_unlock(void *);
68 
69 /*
70  * We're only looking at 7 bits of the address; everything is
71  * aligned to 4, lots of things are aligned to greater powers
72  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
73  */
74 #define TABLESIZE	128
75 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
76 TAILQ_HEAD(slpque,proc) slpque[TABLESIZE];
77 
78 void
79 sleep_queue_init(void)
80 {
81 	int i;
82 
83 	for (i = 0; i < TABLESIZE; i++)
84 		TAILQ_INIT(&slpque[i]);
85 }
86 
87 /*
88  * Global sleep channel for threads that do not want to
89  * receive wakeup(9) broadcasts.
90  */
91 int nowake;
92 
93 /*
94  * During autoconfiguration or after a panic, a sleep will simply
95  * lower the priority briefly to allow interrupts, then return.
96  * The priority to be used (safepri) is machine-dependent, thus this
97  * value is initialized and maintained in the machine-dependent layers.
98  * This priority will typically be 0, or the lowest priority
99  * that is safe for use on the interrupt stack; it can be made
100  * higher to block network software interrupts after panics.
101  */
102 extern int safepri;
103 
104 /*
105  * General sleep call.  Suspends the current process until a wakeup is
106  * performed on the specified identifier.  The process will then be made
107  * runnable with the specified priority.  Sleeps at most timo/hz seconds
108  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
109  * before and after sleeping, else signals are not checked.  Returns 0 if
110  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
111  * signal needs to be delivered, ERESTART is returned if the current system
112  * call should be restarted if possible, and EINTR is returned if the system
113  * call should be interrupted by the signal (return EINTR).
114  */
115 int
116 tsleep(const volatile void *ident, int priority, const char *wmesg, int timo)
117 {
118 #ifdef MULTIPROCESSOR
119 	int hold_count;
120 #endif
121 
122 	KASSERT((priority & ~(PRIMASK | PCATCH)) == 0);
123 	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
124 
125 #ifdef MULTIPROCESSOR
126 	KASSERT(ident == &nowake || timo || _kernel_lock_held());
127 #endif
128 
129 #ifdef DDB
130 	if (cold == 2)
131 		db_stack_dump();
132 #endif
133 	if (cold || panicstr) {
134 		int s;
135 		/*
136 		 * After a panic, or during autoconfiguration,
137 		 * just give interrupts a chance, then just return;
138 		 * don't run any other procs or panic below,
139 		 * in case this is the idle process and already asleep.
140 		 */
141 		s = splhigh();
142 		splx(safepri);
143 #ifdef MULTIPROCESSOR
144 		if (_kernel_lock_held()) {
145 			hold_count = __mp_release_all(&kernel_lock);
146 			__mp_acquire_count(&kernel_lock, hold_count);
147 		}
148 #endif
149 		splx(s);
150 		return (0);
151 	}
152 
153 	sleep_setup(ident, priority, wmesg);
154 	return sleep_finish(timo, 1);
155 }
156 
157 int
158 tsleep_nsec(const volatile void *ident, int priority, const char *wmesg,
159     uint64_t nsecs)
160 {
161 	uint64_t to_ticks;
162 
163 	if (nsecs == INFSLP)
164 		return tsleep(ident, priority, wmesg, 0);
165 #ifdef DIAGNOSTIC
166 	if (nsecs == 0) {
167 		log(LOG_WARNING,
168 		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
169 		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
170 		    wmesg);
171 	}
172 #endif
173 	/*
174 	 * We want to sleep at least nsecs nanoseconds worth of ticks.
175 	 *
176 	 *  - Clamp nsecs to prevent arithmetic overflow.
177 	 *
178 	 *  - Round nsecs up to account for any nanoseconds that do not
179 	 *    divide evenly into tick_nsec, otherwise we'll lose them to
180 	 *    integer division in the next step.  We add (tick_nsec - 1)
181 	 *    to keep from introducing a spurious tick if there are no
182 	 *    such nanoseconds, i.e. nsecs % tick_nsec == 0.
183 	 *
184 	 *  - Divide the rounded value to a count of ticks.  We divide
185 	 *    by (tick_nsec + 1) to discard the extra tick introduced if,
186 	 *    before rounding, nsecs % tick_nsec == 1.
187 	 *
188 	 *  - Finally, add a tick to the result.  We need to wait out
189 	 *    the current tick before we can begin counting our interval,
190 	 *    as we do not know how much time has elapsed since the
191 	 *    current tick began.
192 	 */
193 	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
194 	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
195 	if (to_ticks > INT_MAX)
196 		to_ticks = INT_MAX;
197 	return tsleep(ident, priority, wmesg, (int)to_ticks);
198 }
199 
200 /*
201  * Same as tsleep, but if we have a mutex provided, then once we've
202  * entered the sleep queue we drop the mutex. After sleeping we re-lock.
203  */
204 int
205 msleep(const volatile void *ident, struct mutex *mtx, int priority,
206     const char *wmesg, int timo)
207 {
208 	int error, spl;
209 #ifdef MULTIPROCESSOR
210 	int hold_count;
211 #endif
212 
213 	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
214 	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
215 	KASSERT(mtx != NULL);
216 
217 #ifdef DDB
218 	if (cold == 2)
219 		db_stack_dump();
220 #endif
221 	if (cold || panicstr) {
222 		/*
223 		 * After a panic, or during autoconfiguration,
224 		 * just give interrupts a chance, then just return;
225 		 * don't run any other procs or panic below,
226 		 * in case this is the idle process and already asleep.
227 		 */
228 		spl = MUTEX_OLDIPL(mtx);
229 		MUTEX_OLDIPL(mtx) = safepri;
230 		mtx_leave(mtx);
231 #ifdef MULTIPROCESSOR
232 		if (_kernel_lock_held()) {
233 			hold_count = __mp_release_all(&kernel_lock);
234 			__mp_acquire_count(&kernel_lock, hold_count);
235 		}
236 #endif
237 		if ((priority & PNORELOCK) == 0) {
238 			mtx_enter(mtx);
239 			MUTEX_OLDIPL(mtx) = spl;
240 		} else
241 			splx(spl);
242 		return (0);
243 	}
244 
245 	sleep_setup(ident, priority, wmesg);
246 
247 	mtx_leave(mtx);
248 	/* signal may stop the process, release mutex before that */
249 	error = sleep_finish(timo, 1);
250 
251 	if ((priority & PNORELOCK) == 0)
252 		mtx_enter(mtx);
253 
254 	return error;
255 }
256 
257 int
258 msleep_nsec(const volatile void *ident, struct mutex *mtx, int priority,
259     const char *wmesg, uint64_t nsecs)
260 {
261 	uint64_t to_ticks;
262 
263 	if (nsecs == INFSLP)
264 		return msleep(ident, mtx, priority, wmesg, 0);
265 #ifdef DIAGNOSTIC
266 	if (nsecs == 0) {
267 		log(LOG_WARNING,
268 		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
269 		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
270 		    wmesg);
271 	}
272 #endif
273 	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
274 	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
275 	if (to_ticks > INT_MAX)
276 		to_ticks = INT_MAX;
277 	return msleep(ident, mtx, priority, wmesg, (int)to_ticks);
278 }
279 
280 /*
281  * Same as tsleep, but if we have a rwlock provided, then once we've
282  * entered the sleep queue we drop the it. After sleeping we re-lock.
283  */
284 int
285 rwsleep(const volatile void *ident, struct rwlock *rwl, int priority,
286     const char *wmesg, int timo)
287 {
288 	int error, status;
289 
290 	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
291 	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
292 	KASSERT(ident != rwl);
293 	rw_assert_anylock(rwl);
294 	status = rw_status(rwl);
295 
296 	sleep_setup(ident, priority, wmesg);
297 
298 	rw_exit(rwl);
299 	/* signal may stop the process, release rwlock before that */
300 	error = sleep_finish(timo, 1);
301 
302 	if ((priority & PNORELOCK) == 0)
303 		rw_enter(rwl, status);
304 
305 	return error;
306 }
307 
308 int
309 rwsleep_nsec(const volatile void *ident, struct rwlock *rwl, int priority,
310     const char *wmesg, uint64_t nsecs)
311 {
312 	uint64_t to_ticks;
313 
314 	if (nsecs == INFSLP)
315 		return rwsleep(ident, rwl, priority, wmesg, 0);
316 #ifdef DIAGNOSTIC
317 	if (nsecs == 0) {
318 		log(LOG_WARNING,
319 		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
320 		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
321 		    wmesg);
322 	}
323 #endif
324 	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
325 	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
326 	if (to_ticks > INT_MAX)
327 		to_ticks = INT_MAX;
328 	return 	rwsleep(ident, rwl, priority, wmesg, (int)to_ticks);
329 }
330 
331 void
332 sleep_setup(const volatile void *ident, int prio, const char *wmesg)
333 {
334 	struct proc *p = curproc;
335 
336 #ifdef DIAGNOSTIC
337 	if (p->p_flag & P_CANTSLEEP)
338 		panic("sleep: %s failed insomnia", p->p_p->ps_comm);
339 	if (ident == NULL)
340 		panic("tsleep: no ident");
341 	if (p->p_stat != SONPROC)
342 		panic("tsleep: not SONPROC");
343 #endif
344 	/* exiting processes are not allowed to catch signals */
345 	if (p->p_flag & P_WEXIT)
346 		CLR(prio, PCATCH);
347 
348 	SCHED_LOCK();
349 
350 	TRACEPOINT(sched, sleep, NULL);
351 
352 	p->p_wchan = ident;
353 	p->p_wmesg = wmesg;
354 	p->p_slptime = 0;
355 	p->p_slppri = prio & PRIMASK;
356 	atomic_setbits_int(&p->p_flag, P_WSLEEP);
357 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq);
358 	if (prio & PCATCH)
359 		atomic_setbits_int(&p->p_flag, P_SINTR);
360 	p->p_stat = SSLEEP;
361 
362 	SCHED_UNLOCK();
363 }
364 
365 int
366 sleep_finish(int timo, int do_sleep)
367 {
368 	struct proc *p = curproc;
369 	int catch, error = 0, error1 = 0;
370 
371 	catch = p->p_flag & P_SINTR;
372 
373 	if (timo != 0) {
374 		KASSERT((p->p_flag & P_TIMEOUT) == 0);
375 		timeout_add(&p->p_sleep_to, timo);
376 	}
377 
378 	if (catch != 0) {
379 		/*
380 		 * We put ourselves on the sleep queue and start our
381 		 * timeout before calling sleep_signal_check(), as we could
382 		 * stop there, and a wakeup or a SIGCONT (or both) could
383 		 * occur while we were stopped.  A SIGCONT would cause
384 		 * us to be marked as SSLEEP without resuming us, thus
385 		 * we must be ready for sleep when sleep_signal_check() is
386 		 * called.
387 		 */
388 		if ((error = sleep_signal_check(p)) != 0) {
389 			catch = 0;
390 			do_sleep = 0;
391 		}
392 	}
393 
394 	SCHED_LOCK();
395 	/*
396 	 * A few checks need to happen before going to sleep:
397 	 * - If the wakeup happens while going to sleep, p->p_wchan
398 	 * will be NULL. In that case unwind immediately but still
399 	 * check for possible signals and timeouts.
400 	 * - If the sleep is aborted call unsleep and take us of the
401 	 * sleep queue.
402 	 * - If requested to stop force a switch even if the sleep
403 	 * condition got cleared.
404 	 */
405 	if (p->p_wchan == NULL)
406 		do_sleep = 0;
407 	if (do_sleep == 0)
408 		unsleep(p);
409 	if (p->p_stat == SSTOP)
410 		do_sleep = 1;
411 	atomic_clearbits_int(&p->p_flag, P_WSLEEP);
412 
413 	if (do_sleep) {
414 		KASSERT(p->p_stat == SSLEEP || p->p_stat == SSTOP);
415 		p->p_ru.ru_nvcsw++;
416 		mi_switch();
417 	} else {
418 		KASSERT(p->p_stat == SONPROC || p->p_stat == SSLEEP);
419 		p->p_stat = SONPROC;
420 	}
421 
422 #ifdef DIAGNOSTIC
423 	if (p->p_stat != SONPROC)
424 		panic("sleep_finish !SONPROC");
425 #endif
426 
427 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
428 	SCHED_UNLOCK();
429 
430 	/*
431 	 * Even though this belongs to the signal handling part of sleep,
432 	 * we need to clear it before the ktrace.
433 	 */
434 	atomic_clearbits_int(&p->p_flag, P_SINTR);
435 
436 	if (timo != 0) {
437 		if (p->p_flag & P_TIMEOUT) {
438 			error1 = EWOULDBLOCK;
439 		} else {
440 			/* This can sleep. It must not use timeouts. */
441 			timeout_del_barrier(&p->p_sleep_to);
442 		}
443 		atomic_clearbits_int(&p->p_flag, P_TIMEOUT);
444 	}
445 
446 	/* Check if thread was woken up because of a unwind or signal */
447 	if (catch != 0)
448 		error = sleep_signal_check(p);
449 
450 	/* Signal errors are higher priority than timeouts. */
451 	if (error == 0 && error1 != 0)
452 		error = error1;
453 
454 	return error;
455 }
456 
457 /*
458  * Check and handle signals and suspensions around a sleep cycle.
459  */
460 int
461 sleep_signal_check(struct proc *p)
462 {
463 	struct sigctx ctx;
464 	int err, sig;
465 
466 	if ((err = single_thread_check(p, 1)) != 0)
467 		return err;
468 	if ((sig = cursig(p, &ctx, 1)) != 0) {
469 		if (ctx.sig_intr)
470 			return EINTR;
471 		else
472 			return ERESTART;
473 	}
474 	return 0;
475 }
476 
477 int
478 wakeup_proc(struct proc *p, int flags)
479 {
480 	int awakened = 0;
481 
482 	SCHED_ASSERT_LOCKED();
483 
484 	if (p->p_wchan != NULL) {
485 		awakened = 1;
486 		if (flags)
487 			atomic_setbits_int(&p->p_flag, flags);
488 #ifdef DIAGNOSTIC
489 		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
490 			panic("thread %d p_stat is %d", p->p_tid, p->p_stat);
491 #endif
492 		unsleep(p);
493 		if (p->p_stat == SSLEEP)
494 			setrunnable(p);
495 	}
496 
497 	return awakened;
498 }
499 
500 
501 /*
502  * Implement timeout for tsleep.
503  * If process hasn't been awakened (wchan non-zero),
504  * set timeout flag and undo the sleep.  If proc
505  * is stopped, just unsleep so it will remain stopped.
506  */
507 void
508 endtsleep(void *arg)
509 {
510 	struct proc *p = arg;
511 
512 	SCHED_LOCK();
513 	wakeup_proc(p, P_TIMEOUT);
514 	SCHED_UNLOCK();
515 }
516 
517 /*
518  * Remove a process from its wait queue
519  */
520 void
521 unsleep(struct proc *p)
522 {
523 	SCHED_ASSERT_LOCKED();
524 
525 	if (p->p_wchan != NULL) {
526 		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq);
527 		p->p_wchan = NULL;
528 		p->p_wmesg = NULL;
529 		TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET,
530 		    p->p_p->ps_pid);
531 	}
532 }
533 
534 /*
535  * Make a number of processes sleeping on the specified identifier runnable.
536  */
537 void
538 wakeup_n(const volatile void *ident, int n)
539 {
540 	struct slpque *qp, wakeq;
541 	struct proc *p;
542 	struct proc *pnext;
543 
544 	TAILQ_INIT(&wakeq);
545 
546 	SCHED_LOCK();
547 	qp = &slpque[LOOKUP(ident)];
548 	for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) {
549 		pnext = TAILQ_NEXT(p, p_runq);
550 #ifdef DIAGNOSTIC
551 		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
552 			panic("thread %d p_stat is %d", p->p_tid, p->p_stat);
553 #endif
554 		KASSERT(p->p_wchan != NULL);
555 		if (p->p_wchan == ident) {
556 			TAILQ_REMOVE(qp, p, p_runq);
557 			p->p_wchan = NULL;
558 			p->p_wmesg = NULL;
559 			TAILQ_INSERT_TAIL(&wakeq, p, p_runq);
560 			--n;
561 		}
562 	}
563 	while ((p = TAILQ_FIRST(&wakeq))) {
564 		TAILQ_REMOVE(&wakeq, p, p_runq);
565 		TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET,
566 		    p->p_p->ps_pid);
567 		if (p->p_stat == SSLEEP)
568 			setrunnable(p);
569 	}
570 	SCHED_UNLOCK();
571 }
572 
573 /*
574  * Make all processes sleeping on the specified identifier runnable.
575  */
576 void
577 wakeup(const volatile void *chan)
578 {
579 	wakeup_n(chan, -1);
580 }
581 
582 int
583 sys_sched_yield(struct proc *p, void *v, register_t *retval)
584 {
585 	struct proc *q;
586 	uint8_t newprio;
587 
588 	/*
589 	 * If one of the threads of a multi-threaded process called
590 	 * sched_yield(2), drop its priority to ensure its siblings
591 	 * can make some progress.
592 	 */
593 	mtx_enter(&p->p_p->ps_mtx);
594 	newprio = p->p_usrpri;
595 	TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link)
596 		newprio = max(newprio, q->p_runpri);
597 	mtx_leave(&p->p_p->ps_mtx);
598 
599 	SCHED_LOCK();
600 	setrunqueue(p->p_cpu, p, newprio);
601 	p->p_ru.ru_nvcsw++;
602 	mi_switch();
603 	SCHED_UNLOCK();
604 
605 	return (0);
606 }
607 
608 int
609 thrsleep_unlock(void *lock)
610 {
611 	static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED;
612 	_atomic_lock_t *atomiclock = lock;
613 
614 	if (!lock)
615 		return 0;
616 
617 	return copyout(&unlocked, atomiclock, sizeof(unlocked));
618 }
619 
620 struct tslpentry {
621 	TAILQ_ENTRY(tslpentry)	tslp_link;
622 	long			tslp_ident;
623 };
624 
625 /* thrsleep queue shared between processes */
626 static struct tslpqueue thrsleep_queue = TAILQ_HEAD_INITIALIZER(thrsleep_queue);
627 static struct rwlock thrsleep_lock = RWLOCK_INITIALIZER("thrsleeplk");
628 
629 int
630 thrsleep(struct proc *p, struct sys___thrsleep_args *v)
631 {
632 	struct sys___thrsleep_args /* {
633 		syscallarg(const volatile void *) ident;
634 		syscallarg(clockid_t) clock_id;
635 		syscallarg(const struct timespec *) tp;
636 		syscallarg(void *) lock;
637 		syscallarg(const int *) abort;
638 	} */ *uap = v;
639 	long ident = (long)SCARG(uap, ident);
640 	struct tslpentry entry;
641 	struct tslpqueue *queue;
642 	struct rwlock *qlock;
643 	struct timespec *tsp = (struct timespec *)SCARG(uap, tp);
644 	void *lock = SCARG(uap, lock);
645 	uint64_t nsecs = INFSLP;
646 	int abort = 0, error;
647 	clockid_t clock_id = SCARG(uap, clock_id);
648 
649 	if (ident == 0)
650 		return (EINVAL);
651 	if (tsp != NULL) {
652 		struct timespec now;
653 
654 		if ((error = clock_gettime(p, clock_id, &now)))
655 			return (error);
656 #ifdef KTRACE
657 		if (KTRPOINT(p, KTR_STRUCT))
658 			ktrabstimespec(p, tsp);
659 #endif
660 
661 		if (timespeccmp(tsp, &now, <=)) {
662 			/* already passed: still do the unlock */
663 			if ((error = thrsleep_unlock(lock)))
664 				return (error);
665 			return (EWOULDBLOCK);
666 		}
667 
668 		timespecsub(tsp, &now, tsp);
669 		nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP);
670 	}
671 
672 	if (ident == -1) {
673 		queue = &thrsleep_queue;
674 		qlock = &thrsleep_lock;
675 	} else {
676 		queue = &p->p_p->ps_tslpqueue;
677 		qlock = &p->p_p->ps_lock;
678 	}
679 
680 	/* Interlock with wakeup. */
681 	entry.tslp_ident = ident;
682 	rw_enter_write(qlock);
683 	TAILQ_INSERT_TAIL(queue, &entry, tslp_link);
684 	rw_exit_write(qlock);
685 
686 	error = thrsleep_unlock(lock);
687 
688 	if (error == 0 && SCARG(uap, abort) != NULL)
689 		error = copyin(SCARG(uap, abort), &abort, sizeof(abort));
690 
691 	rw_enter_write(qlock);
692 	if (error != 0)
693 		goto out;
694 	if (abort != 0) {
695 		error = EINTR;
696 		goto out;
697 	}
698 	if (entry.tslp_ident != 0) {
699 		error = rwsleep_nsec(&entry, qlock, PWAIT|PCATCH, "thrsleep",
700 		    nsecs);
701 	}
702 
703 out:
704 	if (entry.tslp_ident != 0)
705 		TAILQ_REMOVE(queue, &entry, tslp_link);
706 	rw_exit_write(qlock);
707 
708 	if (error == ERESTART)
709 		error = ECANCELED;
710 
711 	return (error);
712 
713 }
714 
715 int
716 sys___thrsleep(struct proc *p, void *v, register_t *retval)
717 {
718 	struct sys___thrsleep_args /* {
719 		syscallarg(const volatile void *) ident;
720 		syscallarg(clockid_t) clock_id;
721 		syscallarg(struct timespec *) tp;
722 		syscallarg(void *) lock;
723 		syscallarg(const int *) abort;
724 	} */ *uap = v;
725 	struct timespec ts;
726 	int error;
727 
728 	if (SCARG(uap, tp) != NULL) {
729 		if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) {
730 			*retval = error;
731 			return 0;
732 		}
733 		if (!timespecisvalid(&ts)) {
734 			*retval = EINVAL;
735 			return 0;
736 		}
737 		SCARG(uap, tp) = &ts;
738 	}
739 
740 	*retval = thrsleep(p, uap);
741 	return 0;
742 }
743 
744 int
745 sys___thrwakeup(struct proc *p, void *v, register_t *retval)
746 {
747 	struct sys___thrwakeup_args /* {
748 		syscallarg(const volatile void *) ident;
749 		syscallarg(int) n;
750 	} */ *uap = v;
751 	struct tslpentry *entry, *tmp;
752 	struct tslpqueue *queue;
753 	struct rwlock *qlock;
754 	long ident = (long)SCARG(uap, ident);
755 	int n = SCARG(uap, n);
756 	int found = 0;
757 
758 	if (ident == 0)
759 		*retval = EINVAL;
760 	else {
761 		if (ident == -1) {
762 			queue = &thrsleep_queue;
763 			qlock = &thrsleep_lock;
764 			/*
765 			 * Wake up all waiters with ident -1. This is needed
766 			 * because ident -1 can be shared by multiple userspace
767 			 * lock state machines concurrently. The implementation
768 			 * has no way to direct the wakeup to a particular
769 			 * state machine.
770 			 */
771 			n = 0;
772 		} else {
773 			queue = &p->p_p->ps_tslpqueue;
774 			qlock = &p->p_p->ps_lock;
775 		}
776 
777 		rw_enter_write(qlock);
778 		TAILQ_FOREACH_SAFE(entry, queue, tslp_link, tmp) {
779 			if (entry->tslp_ident == ident) {
780 				TAILQ_REMOVE(queue, entry, tslp_link);
781 				entry->tslp_ident = 0;
782 				wakeup_one(entry);
783 				if (++found == n)
784 					break;
785 			}
786 		}
787 		rw_exit_write(qlock);
788 
789 		if (ident == -1)
790 			*retval = 0;
791 		else
792 			*retval = found ? 0 : ESRCH;
793 	}
794 
795 	return (0);
796 }
797 
798 void
799 refcnt_init(struct refcnt *r)
800 {
801 	refcnt_init_trace(r, 0);
802 }
803 
804 void
805 refcnt_init_trace(struct refcnt *r, int idx)
806 {
807 	r->r_traceidx = idx;
808 	atomic_store_int(&r->r_refs, 1);
809 	TRACEINDEX(refcnt, r->r_traceidx, r, 0, +1);
810 }
811 
812 void
813 refcnt_take(struct refcnt *r)
814 {
815 	u_int refs;
816 
817 	refs = atomic_inc_int_nv(&r->r_refs);
818 	KASSERT(refs != 0);
819 	TRACEINDEX(refcnt, r->r_traceidx, r, refs - 1, +1);
820 	(void)refs;
821 }
822 
823 int
824 refcnt_rele(struct refcnt *r)
825 {
826 	u_int refs;
827 
828 	membar_exit_before_atomic();
829 	refs = atomic_dec_int_nv(&r->r_refs);
830 	KASSERT(refs != ~0);
831 	TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1);
832 	if (refs == 0) {
833 		membar_enter_after_atomic();
834 		return (1);
835 	}
836 	return (0);
837 }
838 
839 void
840 refcnt_rele_wake(struct refcnt *r)
841 {
842 	if (refcnt_rele(r))
843 		wakeup_one(r);
844 }
845 
846 void
847 refcnt_finalize(struct refcnt *r, const char *wmesg)
848 {
849 	u_int refs;
850 
851 	membar_exit_before_atomic();
852 	refs = atomic_dec_int_nv(&r->r_refs);
853 	KASSERT(refs != ~0);
854 	TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1);
855 	while (refs) {
856 		sleep_setup(r, PWAIT, wmesg);
857 		refs = atomic_load_int(&r->r_refs);
858 		sleep_finish(0, refs);
859 	}
860 	TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
861 	/* Order subsequent loads and stores after refs == 0 load. */
862 	membar_sync();
863 }
864 
865 int
866 refcnt_shared(struct refcnt *r)
867 {
868 	u_int refs;
869 
870 	refs = atomic_load_int(&r->r_refs);
871 	TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
872 	return (refs > 1);
873 }
874 
875 unsigned int
876 refcnt_read(struct refcnt *r)
877 {
878 	u_int refs;
879 
880 	refs = atomic_load_int(&r->r_refs);
881 	TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
882 	return (refs);
883 }
884 
885 void
886 cond_init(struct cond *c)
887 {
888 	atomic_store_int(&c->c_wait, 1);
889 }
890 
891 void
892 cond_signal(struct cond *c)
893 {
894 	atomic_store_int(&c->c_wait, 0);
895 
896 	wakeup_one(c);
897 }
898 
899 void
900 cond_wait(struct cond *c, const char *wmesg)
901 {
902 	unsigned int wait;
903 
904 	wait = atomic_load_int(&c->c_wait);
905 	while (wait) {
906 		sleep_setup(c, PWAIT, wmesg);
907 		wait = atomic_load_int(&c->c_wait);
908 		sleep_finish(0, wait);
909 	}
910 }
911