1 /* $OpenBSD: kern_synch.c,v 1.209 2024/11/03 22:52:08 claudio Exp $ */ 2 /* $NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1990, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)kern_synch.c 8.6 (Berkeley) 1/21/94 38 */ 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/proc.h> 43 #include <sys/kernel.h> 44 #include <sys/signalvar.h> 45 #include <sys/sched.h> 46 #include <sys/timeout.h> 47 #include <sys/mount.h> 48 #include <sys/syscallargs.h> 49 #include <sys/refcnt.h> 50 #include <sys/atomic.h> 51 #include <sys/tracepoint.h> 52 53 #include <ddb/db_output.h> 54 55 #include <machine/spinlock.h> 56 57 #ifdef DIAGNOSTIC 58 #include <sys/syslog.h> 59 #endif 60 61 #ifdef KTRACE 62 #include <sys/ktrace.h> 63 #endif 64 65 int sleep_signal_check(struct proc *); 66 int thrsleep(struct proc *, struct sys___thrsleep_args *); 67 int thrsleep_unlock(void *); 68 69 /* 70 * We're only looking at 7 bits of the address; everything is 71 * aligned to 4, lots of things are aligned to greater powers 72 * of 2. Shift right by 8, i.e. drop the bottom 256 worth. 73 */ 74 #define TABLESIZE 128 75 #define LOOKUP(x) (((long)(x) >> 8) & (TABLESIZE - 1)) 76 TAILQ_HEAD(slpque,proc) slpque[TABLESIZE]; 77 78 void 79 sleep_queue_init(void) 80 { 81 int i; 82 83 for (i = 0; i < TABLESIZE; i++) 84 TAILQ_INIT(&slpque[i]); 85 } 86 87 /* 88 * Global sleep channel for threads that do not want to 89 * receive wakeup(9) broadcasts. 90 */ 91 int nowake; 92 93 /* 94 * During autoconfiguration or after a panic, a sleep will simply 95 * lower the priority briefly to allow interrupts, then return. 96 * The priority to be used (safepri) is machine-dependent, thus this 97 * value is initialized and maintained in the machine-dependent layers. 98 * This priority will typically be 0, or the lowest priority 99 * that is safe for use on the interrupt stack; it can be made 100 * higher to block network software interrupts after panics. 101 */ 102 extern int safepri; 103 104 /* 105 * General sleep call. Suspends the current process until a wakeup is 106 * performed on the specified identifier. The process will then be made 107 * runnable with the specified priority. Sleeps at most timo/hz seconds 108 * (0 means no timeout). If pri includes PCATCH flag, signals are checked 109 * before and after sleeping, else signals are not checked. Returns 0 if 110 * awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a 111 * signal needs to be delivered, ERESTART is returned if the current system 112 * call should be restarted if possible, and EINTR is returned if the system 113 * call should be interrupted by the signal (return EINTR). 114 */ 115 int 116 tsleep(const volatile void *ident, int priority, const char *wmesg, int timo) 117 { 118 #ifdef MULTIPROCESSOR 119 int hold_count; 120 #endif 121 122 KASSERT((priority & ~(PRIMASK | PCATCH)) == 0); 123 KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0); 124 125 #ifdef MULTIPROCESSOR 126 KASSERT(ident == &nowake || timo || _kernel_lock_held()); 127 #endif 128 129 #ifdef DDB 130 if (cold == 2) 131 db_stack_dump(); 132 #endif 133 if (cold || panicstr) { 134 int s; 135 /* 136 * After a panic, or during autoconfiguration, 137 * just give interrupts a chance, then just return; 138 * don't run any other procs or panic below, 139 * in case this is the idle process and already asleep. 140 */ 141 s = splhigh(); 142 splx(safepri); 143 #ifdef MULTIPROCESSOR 144 if (_kernel_lock_held()) { 145 hold_count = __mp_release_all(&kernel_lock); 146 __mp_acquire_count(&kernel_lock, hold_count); 147 } 148 #endif 149 splx(s); 150 return (0); 151 } 152 153 sleep_setup(ident, priority, wmesg); 154 return sleep_finish(timo, 1); 155 } 156 157 int 158 tsleep_nsec(const volatile void *ident, int priority, const char *wmesg, 159 uint64_t nsecs) 160 { 161 uint64_t to_ticks; 162 163 if (nsecs == INFSLP) 164 return tsleep(ident, priority, wmesg, 0); 165 #ifdef DIAGNOSTIC 166 if (nsecs == 0) { 167 log(LOG_WARNING, 168 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n", 169 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid, 170 wmesg); 171 } 172 #endif 173 /* 174 * We want to sleep at least nsecs nanoseconds worth of ticks. 175 * 176 * - Clamp nsecs to prevent arithmetic overflow. 177 * 178 * - Round nsecs up to account for any nanoseconds that do not 179 * divide evenly into tick_nsec, otherwise we'll lose them to 180 * integer division in the next step. We add (tick_nsec - 1) 181 * to keep from introducing a spurious tick if there are no 182 * such nanoseconds, i.e. nsecs % tick_nsec == 0. 183 * 184 * - Divide the rounded value to a count of ticks. We divide 185 * by (tick_nsec + 1) to discard the extra tick introduced if, 186 * before rounding, nsecs % tick_nsec == 1. 187 * 188 * - Finally, add a tick to the result. We need to wait out 189 * the current tick before we can begin counting our interval, 190 * as we do not know how much time has elapsed since the 191 * current tick began. 192 */ 193 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec); 194 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 195 if (to_ticks > INT_MAX) 196 to_ticks = INT_MAX; 197 return tsleep(ident, priority, wmesg, (int)to_ticks); 198 } 199 200 /* 201 * Same as tsleep, but if we have a mutex provided, then once we've 202 * entered the sleep queue we drop the mutex. After sleeping we re-lock. 203 */ 204 int 205 msleep(const volatile void *ident, struct mutex *mtx, int priority, 206 const char *wmesg, int timo) 207 { 208 int error, spl; 209 #ifdef MULTIPROCESSOR 210 int hold_count; 211 #endif 212 213 KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0); 214 KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0); 215 KASSERT(mtx != NULL); 216 217 #ifdef DDB 218 if (cold == 2) 219 db_stack_dump(); 220 #endif 221 if (cold || panicstr) { 222 /* 223 * After a panic, or during autoconfiguration, 224 * just give interrupts a chance, then just return; 225 * don't run any other procs or panic below, 226 * in case this is the idle process and already asleep. 227 */ 228 spl = MUTEX_OLDIPL(mtx); 229 MUTEX_OLDIPL(mtx) = safepri; 230 mtx_leave(mtx); 231 #ifdef MULTIPROCESSOR 232 if (_kernel_lock_held()) { 233 hold_count = __mp_release_all(&kernel_lock); 234 __mp_acquire_count(&kernel_lock, hold_count); 235 } 236 #endif 237 if ((priority & PNORELOCK) == 0) { 238 mtx_enter(mtx); 239 MUTEX_OLDIPL(mtx) = spl; 240 } else 241 splx(spl); 242 return (0); 243 } 244 245 sleep_setup(ident, priority, wmesg); 246 247 mtx_leave(mtx); 248 /* signal may stop the process, release mutex before that */ 249 error = sleep_finish(timo, 1); 250 251 if ((priority & PNORELOCK) == 0) 252 mtx_enter(mtx); 253 254 return error; 255 } 256 257 int 258 msleep_nsec(const volatile void *ident, struct mutex *mtx, int priority, 259 const char *wmesg, uint64_t nsecs) 260 { 261 uint64_t to_ticks; 262 263 if (nsecs == INFSLP) 264 return msleep(ident, mtx, priority, wmesg, 0); 265 #ifdef DIAGNOSTIC 266 if (nsecs == 0) { 267 log(LOG_WARNING, 268 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n", 269 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid, 270 wmesg); 271 } 272 #endif 273 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec); 274 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 275 if (to_ticks > INT_MAX) 276 to_ticks = INT_MAX; 277 return msleep(ident, mtx, priority, wmesg, (int)to_ticks); 278 } 279 280 /* 281 * Same as tsleep, but if we have a rwlock provided, then once we've 282 * entered the sleep queue we drop the it. After sleeping we re-lock. 283 */ 284 int 285 rwsleep(const volatile void *ident, struct rwlock *rwl, int priority, 286 const char *wmesg, int timo) 287 { 288 int error, status; 289 290 KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0); 291 KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0); 292 KASSERT(ident != rwl); 293 rw_assert_anylock(rwl); 294 status = rw_status(rwl); 295 296 sleep_setup(ident, priority, wmesg); 297 298 rw_exit(rwl); 299 /* signal may stop the process, release rwlock before that */ 300 error = sleep_finish(timo, 1); 301 302 if ((priority & PNORELOCK) == 0) 303 rw_enter(rwl, status); 304 305 return error; 306 } 307 308 int 309 rwsleep_nsec(const volatile void *ident, struct rwlock *rwl, int priority, 310 const char *wmesg, uint64_t nsecs) 311 { 312 uint64_t to_ticks; 313 314 if (nsecs == INFSLP) 315 return rwsleep(ident, rwl, priority, wmesg, 0); 316 #ifdef DIAGNOSTIC 317 if (nsecs == 0) { 318 log(LOG_WARNING, 319 "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n", 320 __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid, 321 wmesg); 322 } 323 #endif 324 nsecs = MIN(nsecs, UINT64_MAX - tick_nsec); 325 to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1; 326 if (to_ticks > INT_MAX) 327 to_ticks = INT_MAX; 328 return rwsleep(ident, rwl, priority, wmesg, (int)to_ticks); 329 } 330 331 void 332 sleep_setup(const volatile void *ident, int prio, const char *wmesg) 333 { 334 struct proc *p = curproc; 335 336 #ifdef DIAGNOSTIC 337 if (p->p_flag & P_CANTSLEEP) 338 panic("sleep: %s failed insomnia", p->p_p->ps_comm); 339 if (ident == NULL) 340 panic("tsleep: no ident"); 341 if (p->p_stat != SONPROC) 342 panic("tsleep: not SONPROC"); 343 #endif 344 /* exiting processes are not allowed to catch signals */ 345 if (p->p_flag & P_WEXIT) 346 CLR(prio, PCATCH); 347 348 SCHED_LOCK(); 349 350 TRACEPOINT(sched, sleep, NULL); 351 352 p->p_wchan = ident; 353 p->p_wmesg = wmesg; 354 p->p_slptime = 0; 355 p->p_slppri = prio & PRIMASK; 356 atomic_setbits_int(&p->p_flag, P_WSLEEP); 357 TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq); 358 if (prio & PCATCH) 359 atomic_setbits_int(&p->p_flag, P_SINTR); 360 p->p_stat = SSLEEP; 361 362 SCHED_UNLOCK(); 363 } 364 365 int 366 sleep_finish(int timo, int do_sleep) 367 { 368 struct proc *p = curproc; 369 int catch, error = 0, error1 = 0; 370 371 catch = p->p_flag & P_SINTR; 372 373 if (timo != 0) { 374 KASSERT((p->p_flag & P_TIMEOUT) == 0); 375 timeout_add(&p->p_sleep_to, timo); 376 } 377 378 if (catch != 0) { 379 /* 380 * We put ourselves on the sleep queue and start our 381 * timeout before calling sleep_signal_check(), as we could 382 * stop there, and a wakeup or a SIGCONT (or both) could 383 * occur while we were stopped. A SIGCONT would cause 384 * us to be marked as SSLEEP without resuming us, thus 385 * we must be ready for sleep when sleep_signal_check() is 386 * called. 387 */ 388 if ((error = sleep_signal_check(p)) != 0) { 389 catch = 0; 390 do_sleep = 0; 391 } 392 } 393 394 SCHED_LOCK(); 395 /* 396 * A few checks need to happen before going to sleep: 397 * - If the wakeup happens while going to sleep, p->p_wchan 398 * will be NULL. In that case unwind immediately but still 399 * check for possible signals and timeouts. 400 * - If the sleep is aborted call unsleep and take us of the 401 * sleep queue. 402 * - If requested to stop force a switch even if the sleep 403 * condition got cleared. 404 */ 405 if (p->p_wchan == NULL) 406 do_sleep = 0; 407 if (do_sleep == 0) 408 unsleep(p); 409 if (p->p_stat == SSTOP) 410 do_sleep = 1; 411 atomic_clearbits_int(&p->p_flag, P_WSLEEP); 412 413 if (do_sleep) { 414 KASSERT(p->p_stat == SSLEEP || p->p_stat == SSTOP); 415 p->p_ru.ru_nvcsw++; 416 mi_switch(); 417 } else { 418 KASSERT(p->p_stat == SONPROC || p->p_stat == SSLEEP); 419 p->p_stat = SONPROC; 420 } 421 422 #ifdef DIAGNOSTIC 423 if (p->p_stat != SONPROC) 424 panic("sleep_finish !SONPROC"); 425 #endif 426 427 p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri; 428 SCHED_UNLOCK(); 429 430 /* 431 * Even though this belongs to the signal handling part of sleep, 432 * we need to clear it before the ktrace. 433 */ 434 atomic_clearbits_int(&p->p_flag, P_SINTR); 435 436 if (timo != 0) { 437 if (p->p_flag & P_TIMEOUT) { 438 error1 = EWOULDBLOCK; 439 } else { 440 /* This can sleep. It must not use timeouts. */ 441 timeout_del_barrier(&p->p_sleep_to); 442 } 443 atomic_clearbits_int(&p->p_flag, P_TIMEOUT); 444 } 445 446 /* Check if thread was woken up because of a unwind or signal */ 447 if (catch != 0) 448 error = sleep_signal_check(p); 449 450 /* Signal errors are higher priority than timeouts. */ 451 if (error == 0 && error1 != 0) 452 error = error1; 453 454 return error; 455 } 456 457 /* 458 * Check and handle signals and suspensions around a sleep cycle. 459 */ 460 int 461 sleep_signal_check(struct proc *p) 462 { 463 struct sigctx ctx; 464 int err, sig; 465 466 if ((err = single_thread_check(p, 1)) != 0) 467 return err; 468 if ((sig = cursig(p, &ctx, 1)) != 0) { 469 if (ctx.sig_intr) 470 return EINTR; 471 else 472 return ERESTART; 473 } 474 return 0; 475 } 476 477 int 478 wakeup_proc(struct proc *p, int flags) 479 { 480 int awakened = 0; 481 482 SCHED_ASSERT_LOCKED(); 483 484 if (p->p_wchan != NULL) { 485 awakened = 1; 486 if (flags) 487 atomic_setbits_int(&p->p_flag, flags); 488 #ifdef DIAGNOSTIC 489 if (p->p_stat != SSLEEP && p->p_stat != SSTOP) 490 panic("thread %d p_stat is %d", p->p_tid, p->p_stat); 491 #endif 492 unsleep(p); 493 if (p->p_stat == SSLEEP) 494 setrunnable(p); 495 } 496 497 return awakened; 498 } 499 500 501 /* 502 * Implement timeout for tsleep. 503 * If process hasn't been awakened (wchan non-zero), 504 * set timeout flag and undo the sleep. If proc 505 * is stopped, just unsleep so it will remain stopped. 506 */ 507 void 508 endtsleep(void *arg) 509 { 510 struct proc *p = arg; 511 512 SCHED_LOCK(); 513 wakeup_proc(p, P_TIMEOUT); 514 SCHED_UNLOCK(); 515 } 516 517 /* 518 * Remove a process from its wait queue 519 */ 520 void 521 unsleep(struct proc *p) 522 { 523 SCHED_ASSERT_LOCKED(); 524 525 if (p->p_wchan != NULL) { 526 TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq); 527 p->p_wchan = NULL; 528 p->p_wmesg = NULL; 529 TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET, 530 p->p_p->ps_pid); 531 } 532 } 533 534 /* 535 * Make a number of processes sleeping on the specified identifier runnable. 536 */ 537 void 538 wakeup_n(const volatile void *ident, int n) 539 { 540 struct slpque *qp, wakeq; 541 struct proc *p; 542 struct proc *pnext; 543 544 TAILQ_INIT(&wakeq); 545 546 SCHED_LOCK(); 547 qp = &slpque[LOOKUP(ident)]; 548 for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) { 549 pnext = TAILQ_NEXT(p, p_runq); 550 #ifdef DIAGNOSTIC 551 if (p->p_stat != SSLEEP && p->p_stat != SSTOP) 552 panic("thread %d p_stat is %d", p->p_tid, p->p_stat); 553 #endif 554 KASSERT(p->p_wchan != NULL); 555 if (p->p_wchan == ident) { 556 TAILQ_REMOVE(qp, p, p_runq); 557 p->p_wchan = NULL; 558 p->p_wmesg = NULL; 559 TAILQ_INSERT_TAIL(&wakeq, p, p_runq); 560 --n; 561 } 562 } 563 while ((p = TAILQ_FIRST(&wakeq))) { 564 TAILQ_REMOVE(&wakeq, p, p_runq); 565 TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET, 566 p->p_p->ps_pid); 567 if (p->p_stat == SSLEEP) 568 setrunnable(p); 569 } 570 SCHED_UNLOCK(); 571 } 572 573 /* 574 * Make all processes sleeping on the specified identifier runnable. 575 */ 576 void 577 wakeup(const volatile void *chan) 578 { 579 wakeup_n(chan, -1); 580 } 581 582 int 583 sys_sched_yield(struct proc *p, void *v, register_t *retval) 584 { 585 struct proc *q; 586 uint8_t newprio; 587 588 /* 589 * If one of the threads of a multi-threaded process called 590 * sched_yield(2), drop its priority to ensure its siblings 591 * can make some progress. 592 */ 593 mtx_enter(&p->p_p->ps_mtx); 594 newprio = p->p_usrpri; 595 TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link) 596 newprio = max(newprio, q->p_runpri); 597 mtx_leave(&p->p_p->ps_mtx); 598 599 SCHED_LOCK(); 600 setrunqueue(p->p_cpu, p, newprio); 601 p->p_ru.ru_nvcsw++; 602 mi_switch(); 603 SCHED_UNLOCK(); 604 605 return (0); 606 } 607 608 int 609 thrsleep_unlock(void *lock) 610 { 611 static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED; 612 _atomic_lock_t *atomiclock = lock; 613 614 if (!lock) 615 return 0; 616 617 return copyout(&unlocked, atomiclock, sizeof(unlocked)); 618 } 619 620 struct tslpentry { 621 TAILQ_ENTRY(tslpentry) tslp_link; 622 long tslp_ident; 623 }; 624 625 /* thrsleep queue shared between processes */ 626 static struct tslpqueue thrsleep_queue = TAILQ_HEAD_INITIALIZER(thrsleep_queue); 627 static struct rwlock thrsleep_lock = RWLOCK_INITIALIZER("thrsleeplk"); 628 629 int 630 thrsleep(struct proc *p, struct sys___thrsleep_args *v) 631 { 632 struct sys___thrsleep_args /* { 633 syscallarg(const volatile void *) ident; 634 syscallarg(clockid_t) clock_id; 635 syscallarg(const struct timespec *) tp; 636 syscallarg(void *) lock; 637 syscallarg(const int *) abort; 638 } */ *uap = v; 639 long ident = (long)SCARG(uap, ident); 640 struct tslpentry entry; 641 struct tslpqueue *queue; 642 struct rwlock *qlock; 643 struct timespec *tsp = (struct timespec *)SCARG(uap, tp); 644 void *lock = SCARG(uap, lock); 645 uint64_t nsecs = INFSLP; 646 int abort = 0, error; 647 clockid_t clock_id = SCARG(uap, clock_id); 648 649 if (ident == 0) 650 return (EINVAL); 651 if (tsp != NULL) { 652 struct timespec now; 653 654 if ((error = clock_gettime(p, clock_id, &now))) 655 return (error); 656 #ifdef KTRACE 657 if (KTRPOINT(p, KTR_STRUCT)) 658 ktrabstimespec(p, tsp); 659 #endif 660 661 if (timespeccmp(tsp, &now, <=)) { 662 /* already passed: still do the unlock */ 663 if ((error = thrsleep_unlock(lock))) 664 return (error); 665 return (EWOULDBLOCK); 666 } 667 668 timespecsub(tsp, &now, tsp); 669 nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP); 670 } 671 672 if (ident == -1) { 673 queue = &thrsleep_queue; 674 qlock = &thrsleep_lock; 675 } else { 676 queue = &p->p_p->ps_tslpqueue; 677 qlock = &p->p_p->ps_lock; 678 } 679 680 /* Interlock with wakeup. */ 681 entry.tslp_ident = ident; 682 rw_enter_write(qlock); 683 TAILQ_INSERT_TAIL(queue, &entry, tslp_link); 684 rw_exit_write(qlock); 685 686 error = thrsleep_unlock(lock); 687 688 if (error == 0 && SCARG(uap, abort) != NULL) 689 error = copyin(SCARG(uap, abort), &abort, sizeof(abort)); 690 691 rw_enter_write(qlock); 692 if (error != 0) 693 goto out; 694 if (abort != 0) { 695 error = EINTR; 696 goto out; 697 } 698 if (entry.tslp_ident != 0) { 699 error = rwsleep_nsec(&entry, qlock, PWAIT|PCATCH, "thrsleep", 700 nsecs); 701 } 702 703 out: 704 if (entry.tslp_ident != 0) 705 TAILQ_REMOVE(queue, &entry, tslp_link); 706 rw_exit_write(qlock); 707 708 if (error == ERESTART) 709 error = ECANCELED; 710 711 return (error); 712 713 } 714 715 int 716 sys___thrsleep(struct proc *p, void *v, register_t *retval) 717 { 718 struct sys___thrsleep_args /* { 719 syscallarg(const volatile void *) ident; 720 syscallarg(clockid_t) clock_id; 721 syscallarg(struct timespec *) tp; 722 syscallarg(void *) lock; 723 syscallarg(const int *) abort; 724 } */ *uap = v; 725 struct timespec ts; 726 int error; 727 728 if (SCARG(uap, tp) != NULL) { 729 if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) { 730 *retval = error; 731 return 0; 732 } 733 if (!timespecisvalid(&ts)) { 734 *retval = EINVAL; 735 return 0; 736 } 737 SCARG(uap, tp) = &ts; 738 } 739 740 *retval = thrsleep(p, uap); 741 return 0; 742 } 743 744 int 745 sys___thrwakeup(struct proc *p, void *v, register_t *retval) 746 { 747 struct sys___thrwakeup_args /* { 748 syscallarg(const volatile void *) ident; 749 syscallarg(int) n; 750 } */ *uap = v; 751 struct tslpentry *entry, *tmp; 752 struct tslpqueue *queue; 753 struct rwlock *qlock; 754 long ident = (long)SCARG(uap, ident); 755 int n = SCARG(uap, n); 756 int found = 0; 757 758 if (ident == 0) 759 *retval = EINVAL; 760 else { 761 if (ident == -1) { 762 queue = &thrsleep_queue; 763 qlock = &thrsleep_lock; 764 /* 765 * Wake up all waiters with ident -1. This is needed 766 * because ident -1 can be shared by multiple userspace 767 * lock state machines concurrently. The implementation 768 * has no way to direct the wakeup to a particular 769 * state machine. 770 */ 771 n = 0; 772 } else { 773 queue = &p->p_p->ps_tslpqueue; 774 qlock = &p->p_p->ps_lock; 775 } 776 777 rw_enter_write(qlock); 778 TAILQ_FOREACH_SAFE(entry, queue, tslp_link, tmp) { 779 if (entry->tslp_ident == ident) { 780 TAILQ_REMOVE(queue, entry, tslp_link); 781 entry->tslp_ident = 0; 782 wakeup_one(entry); 783 if (++found == n) 784 break; 785 } 786 } 787 rw_exit_write(qlock); 788 789 if (ident == -1) 790 *retval = 0; 791 else 792 *retval = found ? 0 : ESRCH; 793 } 794 795 return (0); 796 } 797 798 void 799 refcnt_init(struct refcnt *r) 800 { 801 refcnt_init_trace(r, 0); 802 } 803 804 void 805 refcnt_init_trace(struct refcnt *r, int idx) 806 { 807 r->r_traceidx = idx; 808 atomic_store_int(&r->r_refs, 1); 809 TRACEINDEX(refcnt, r->r_traceidx, r, 0, +1); 810 } 811 812 void 813 refcnt_take(struct refcnt *r) 814 { 815 u_int refs; 816 817 refs = atomic_inc_int_nv(&r->r_refs); 818 KASSERT(refs != 0); 819 TRACEINDEX(refcnt, r->r_traceidx, r, refs - 1, +1); 820 (void)refs; 821 } 822 823 int 824 refcnt_rele(struct refcnt *r) 825 { 826 u_int refs; 827 828 membar_exit_before_atomic(); 829 refs = atomic_dec_int_nv(&r->r_refs); 830 KASSERT(refs != ~0); 831 TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1); 832 if (refs == 0) { 833 membar_enter_after_atomic(); 834 return (1); 835 } 836 return (0); 837 } 838 839 void 840 refcnt_rele_wake(struct refcnt *r) 841 { 842 if (refcnt_rele(r)) 843 wakeup_one(r); 844 } 845 846 void 847 refcnt_finalize(struct refcnt *r, const char *wmesg) 848 { 849 u_int refs; 850 851 membar_exit_before_atomic(); 852 refs = atomic_dec_int_nv(&r->r_refs); 853 KASSERT(refs != ~0); 854 TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1); 855 while (refs) { 856 sleep_setup(r, PWAIT, wmesg); 857 refs = atomic_load_int(&r->r_refs); 858 sleep_finish(0, refs); 859 } 860 TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0); 861 /* Order subsequent loads and stores after refs == 0 load. */ 862 membar_sync(); 863 } 864 865 int 866 refcnt_shared(struct refcnt *r) 867 { 868 u_int refs; 869 870 refs = atomic_load_int(&r->r_refs); 871 TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0); 872 return (refs > 1); 873 } 874 875 unsigned int 876 refcnt_read(struct refcnt *r) 877 { 878 u_int refs; 879 880 refs = atomic_load_int(&r->r_refs); 881 TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0); 882 return (refs); 883 } 884 885 void 886 cond_init(struct cond *c) 887 { 888 atomic_store_int(&c->c_wait, 1); 889 } 890 891 void 892 cond_signal(struct cond *c) 893 { 894 atomic_store_int(&c->c_wait, 0); 895 896 wakeup_one(c); 897 } 898 899 void 900 cond_wait(struct cond *c, const char *wmesg) 901 { 902 unsigned int wait; 903 904 wait = atomic_load_int(&c->c_wait); 905 while (wait) { 906 sleep_setup(c, PWAIT, wmesg); 907 wait = atomic_load_int(&c->c_wait); 908 sleep_finish(0, wait); 909 } 910 } 911