xref: /openbsd-src/sys/kern/kern_synch.c (revision 62a742911104f98b9185b2c6b6007d9b1c36396c)
1 /*	$OpenBSD: kern_synch.c,v 1.15 1999/04/21 01:21:48 alex Exp $	*/
2 /*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1990, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/buf.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <vm/vm.h>
52 
53 #if defined(UVM)
54 #include <uvm/uvm_extern.h>
55 #endif
56 
57 #ifdef KTRACE
58 #include <sys/ktrace.h>
59 #endif
60 
61 #include <machine/cpu.h>
62 
63 u_char	curpriority;		/* usrpri of curproc */
64 int	lbolt;			/* once a second sleep address */
65 
66 void roundrobin __P((void *));
67 void schedcpu __P((void *));
68 void updatepri __P((struct proc *));
69 void endtsleep __P((void *));
70 
71 /*
72  * Force switch among equal priority processes every 100ms.
73  */
74 /* ARGSUSED */
75 void
76 roundrobin(arg)
77 	void *arg;
78 {
79 
80 	need_resched();
81 	timeout(roundrobin, NULL, hz / 10);
82 }
83 
84 /*
85  * Constants for digital decay and forget:
86  *	90% of (p_estcpu) usage in 5 * loadav time
87  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
88  *          Note that, as ps(1) mentions, this can let percentages
89  *          total over 100% (I've seen 137.9% for 3 processes).
90  *
91  * Note that hardclock updates p_estcpu and p_cpticks independently.
92  *
93  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
94  * That is, the system wants to compute a value of decay such
95  * that the following for loop:
96  * 	for (i = 0; i < (5 * loadavg); i++)
97  * 		p_estcpu *= decay;
98  * will compute
99  * 	p_estcpu *= 0.1;
100  * for all values of loadavg:
101  *
102  * Mathematically this loop can be expressed by saying:
103  * 	decay ** (5 * loadavg) ~= .1
104  *
105  * The system computes decay as:
106  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
107  *
108  * We wish to prove that the system's computation of decay
109  * will always fulfill the equation:
110  * 	decay ** (5 * loadavg) ~= .1
111  *
112  * If we compute b as:
113  * 	b = 2 * loadavg
114  * then
115  * 	decay = b / (b + 1)
116  *
117  * We now need to prove two things:
118  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
119  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
120  *
121  * Facts:
122  *         For x close to zero, exp(x) =~ 1 + x, since
123  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
124  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
125  *         For x close to zero, ln(1+x) =~ x, since
126  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
127  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
128  *         ln(.1) =~ -2.30
129  *
130  * Proof of (1):
131  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
132  *	solving for factor,
133  *      ln(factor) =~ (-2.30/5*loadav), or
134  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
135  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
136  *
137  * Proof of (2):
138  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
139  *	solving for power,
140  *      power*ln(b/(b+1)) =~ -2.30, or
141  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
142  *
143  * Actual power values for the implemented algorithm are as follows:
144  *      loadav: 1       2       3       4
145  *      power:  5.68    10.32   14.94   19.55
146  */
147 
148 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
149 #define	loadfactor(loadav)	(2 * (loadav))
150 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
151 
152 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
153 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
154 
155 /*
156  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
157  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
158  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
159  *
160  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
161  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
162  *
163  * If you dont want to bother with the faster/more-accurate formula, you
164  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
165  * (more general) method of calculating the %age of CPU used by a process.
166  */
167 #define	CCPU_SHIFT	11
168 
169 /*
170  * Recompute process priorities, every hz ticks.
171  */
172 /* ARGSUSED */
173 void
174 schedcpu(arg)
175 	void *arg;
176 {
177 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
178 	register struct proc *p;
179 	register int s;
180 	register unsigned int newcpu;
181 
182 	for (p = allproc.lh_first; p != 0; p = p->p_list.le_next) {
183 		/*
184 		 * Increment time in/out of memory and sleep time
185 		 * (if sleeping).  We ignore overflow; with 16-bit int's
186 		 * (remember them?) overflow takes 45 days.
187 		 */
188 		p->p_swtime++;
189 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
190 			p->p_slptime++;
191 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
192 		/*
193 		 * If the process has slept the entire second,
194 		 * stop recalculating its priority until it wakes up.
195 		 */
196 		if (p->p_slptime > 1)
197 			continue;
198 		s = splstatclock();	/* prevent state changes */
199 		/*
200 		 * p_pctcpu is only for ps.
201 		 */
202 #if	(FSHIFT >= CCPU_SHIFT)
203 		p->p_pctcpu += (hz == 100)?
204 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
205                 	100 * (((fixpt_t) p->p_cpticks)
206 				<< (FSHIFT - CCPU_SHIFT)) / hz;
207 #else
208 		p->p_pctcpu += ((FSCALE - ccpu) *
209 			(p->p_cpticks * FSCALE / hz)) >> FSHIFT;
210 #endif
211 		p->p_cpticks = 0;
212 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu) + p->p_nice;
213 		p->p_estcpu = min(newcpu, UCHAR_MAX);
214 		resetpriority(p);
215 		if (p->p_priority >= PUSER) {
216 #define	PPQ	(128 / NQS)		/* priorities per queue */
217 			if ((p != curproc) &&
218 			    p->p_stat == SRUN &&
219 			    (p->p_flag & P_INMEM) &&
220 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
221 				remrunqueue(p);
222 				p->p_priority = p->p_usrpri;
223 				setrunqueue(p);
224 			} else
225 				p->p_priority = p->p_usrpri;
226 		}
227 		splx(s);
228 	}
229 #if defined(UVM)
230 	uvm_meter();
231 #else
232 	vmmeter();
233 #endif
234 	wakeup((caddr_t)&lbolt);
235 	timeout(schedcpu, (void *)0, hz);
236 }
237 
238 /*
239  * Recalculate the priority of a process after it has slept for a while.
240  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
241  * least six times the loadfactor will decay p_estcpu to zero.
242  */
243 void
244 updatepri(p)
245 	register struct proc *p;
246 {
247 	register unsigned int newcpu = p->p_estcpu;
248 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
249 
250 	if (p->p_slptime > 5 * loadfac)
251 		p->p_estcpu = 0;
252 	else {
253 		p->p_slptime--;	/* the first time was done in schedcpu */
254 		while (newcpu && --p->p_slptime)
255 			newcpu = (int) decay_cpu(loadfac, newcpu);
256 		p->p_estcpu = min(newcpu, UCHAR_MAX);
257 	}
258 	resetpriority(p);
259 }
260 
261 /*
262  * We're only looking at 7 bits of the address; everything is
263  * aligned to 4, lots of things are aligned to greater powers
264  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
265  */
266 #define TABLESIZE	128
267 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
268 struct slpque {
269 	struct proc *sq_head;
270 	struct proc **sq_tailp;
271 } slpque[TABLESIZE];
272 
273 /*
274  * During autoconfiguration or after a panic, a sleep will simply
275  * lower the priority briefly to allow interrupts, then return.
276  * The priority to be used (safepri) is machine-dependent, thus this
277  * value is initialized and maintained in the machine-dependent layers.
278  * This priority will typically be 0, or the lowest priority
279  * that is safe for use on the interrupt stack; it can be made
280  * higher to block network software interrupts after panics.
281  */
282 int safepri;
283 
284 /*
285  * General sleep call.  Suspends the current process until a wakeup is
286  * performed on the specified identifier.  The process will then be made
287  * runnable with the specified priority.  Sleeps at most timo/hz seconds
288  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
289  * before and after sleeping, else signals are not checked.  Returns 0 if
290  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
291  * signal needs to be delivered, ERESTART is returned if the current system
292  * call should be restarted if possible, and EINTR is returned if the system
293  * call should be interrupted by the signal (return EINTR).
294  */
295 int
296 tsleep(ident, priority, wmesg, timo)
297 	void *ident;
298 	int priority, timo;
299 	char *wmesg;
300 {
301 	register struct proc *p = curproc;
302 	register struct slpque *qp;
303 	register int s;
304 	int sig, catch = priority & PCATCH;
305 	extern int cold;
306 
307 #ifdef KTRACE
308 	if (KTRPOINT(p, KTR_CSW))
309 		ktrcsw(p->p_tracep, 1, 0);
310 #endif
311 	s = splhigh();
312 	if (cold || panicstr) {
313 		/*
314 		 * After a panic, or during autoconfiguration,
315 		 * just give interrupts a chance, then just return;
316 		 * don't run any other procs or panic below,
317 		 * in case this is the idle process and already asleep.
318 		 */
319 		splx(safepri);
320 		splx(s);
321 		return (0);
322 	}
323 #ifdef DIAGNOSTIC
324 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
325 		panic("tsleep");
326 #endif
327 	p->p_wchan = ident;
328 	p->p_wmesg = wmesg;
329 	p->p_slptime = 0;
330 	p->p_priority = priority & PRIMASK;
331 	qp = &slpque[LOOKUP(ident)];
332 	if (qp->sq_head == 0)
333 		qp->sq_head = p;
334 	else
335 		*qp->sq_tailp = p;
336 	*(qp->sq_tailp = &p->p_forw) = 0;
337 	if (timo)
338 		timeout(endtsleep, (void *)p, timo);
339 	/*
340 	 * We put ourselves on the sleep queue and start our timeout
341 	 * before calling CURSIG, as we could stop there, and a wakeup
342 	 * or a SIGCONT (or both) could occur while we were stopped.
343 	 * A SIGCONT would cause us to be marked as SSLEEP
344 	 * without resuming us, thus we must be ready for sleep
345 	 * when CURSIG is called.  If the wakeup happens while we're
346 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
347 	 */
348 	if (catch) {
349 		p->p_flag |= P_SINTR;
350 		if ((sig = CURSIG(p)) != 0) {
351 			if (p->p_wchan)
352 				unsleep(p);
353 			p->p_stat = SRUN;
354 			goto resume;
355 		}
356 		if (p->p_wchan == 0) {
357 			catch = 0;
358 			goto resume;
359 		}
360 	} else
361 		sig = 0;
362 	p->p_stat = SSLEEP;
363 	p->p_stats->p_ru.ru_nvcsw++;
364 	mi_switch();
365 #ifdef	DDB
366 	/* handy breakpoint location after process "wakes" */
367 	__asm(".globl bpendtsleep ; bpendtsleep:");
368 #endif
369 resume:
370 	curpriority = p->p_usrpri;
371 	splx(s);
372 	p->p_flag &= ~P_SINTR;
373 	if (p->p_flag & P_TIMEOUT) {
374 		p->p_flag &= ~P_TIMEOUT;
375 		if (sig == 0) {
376 #ifdef KTRACE
377 			if (KTRPOINT(p, KTR_CSW))
378 				ktrcsw(p->p_tracep, 0, 0);
379 #endif
380 			return (EWOULDBLOCK);
381 		}
382 	} else if (timo)
383 		untimeout(endtsleep, (void *)p);
384 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
385 #ifdef KTRACE
386 		if (KTRPOINT(p, KTR_CSW))
387 			ktrcsw(p->p_tracep, 0, 0);
388 #endif
389 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
390 			return (EINTR);
391 		return (ERESTART);
392 	}
393 #ifdef KTRACE
394 	if (KTRPOINT(p, KTR_CSW))
395 		ktrcsw(p->p_tracep, 0, 0);
396 #endif
397 	return (0);
398 }
399 
400 /*
401  * Implement timeout for tsleep.
402  * If process hasn't been awakened (wchan non-zero),
403  * set timeout flag and undo the sleep.  If proc
404  * is stopped, just unsleep so it will remain stopped.
405  */
406 void
407 endtsleep(arg)
408 	void *arg;
409 {
410 	register struct proc *p;
411 	int s;
412 
413 	p = (struct proc *)arg;
414 	s = splhigh();
415 	if (p->p_wchan) {
416 		if (p->p_stat == SSLEEP)
417 			setrunnable(p);
418 		else
419 			unsleep(p);
420 		p->p_flag |= P_TIMEOUT;
421 	}
422 	splx(s);
423 }
424 
425 /*
426  * Short-term, non-interruptable sleep.
427  */
428 void
429 sleep(ident, priority)
430 	void *ident;
431 	int priority;
432 {
433 	register struct proc *p = curproc;
434 	register struct slpque *qp;
435 	register int s;
436 	extern int cold;
437 
438 #ifdef DIAGNOSTIC
439 	if (priority > PZERO) {
440 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
441 		    priority, ident);
442 		panic("old sleep");
443 	}
444 #endif
445 	s = splhigh();
446 	if (cold || panicstr) {
447 		/*
448 		 * After a panic, or during autoconfiguration,
449 		 * just give interrupts a chance, then just return;
450 		 * don't run any other procs or panic below,
451 		 * in case this is the idle process and already asleep.
452 		 */
453 		splx(safepri);
454 		splx(s);
455 		return;
456 	}
457 #ifdef DIAGNOSTIC
458 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
459 		panic("sleep");
460 #endif
461 	p->p_wchan = ident;
462 	p->p_wmesg = NULL;
463 	p->p_slptime = 0;
464 	p->p_priority = priority;
465 	qp = &slpque[LOOKUP(ident)];
466 	if (qp->sq_head == 0)
467 		qp->sq_head = p;
468 	else
469 		*qp->sq_tailp = p;
470 	*(qp->sq_tailp = &p->p_forw) = 0;
471 	p->p_stat = SSLEEP;
472 	p->p_stats->p_ru.ru_nvcsw++;
473 #ifdef KTRACE
474 	if (KTRPOINT(p, KTR_CSW))
475 		ktrcsw(p->p_tracep, 1, 0);
476 #endif
477 	mi_switch();
478 #ifdef	DDB
479 	/* handy breakpoint location after process "wakes" */
480 	__asm(".globl bpendsleep ; bpendsleep:");
481 #endif
482 #ifdef KTRACE
483 	if (KTRPOINT(p, KTR_CSW))
484 		ktrcsw(p->p_tracep, 0, 0);
485 #endif
486 	curpriority = p->p_usrpri;
487 	splx(s);
488 }
489 
490 /*
491  * Remove a process from its wait queue
492  */
493 void
494 unsleep(p)
495 	register struct proc *p;
496 {
497 	register struct slpque *qp;
498 	register struct proc **hp;
499 	int s;
500 
501 	s = splhigh();
502 	if (p->p_wchan) {
503 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
504 		while (*hp != p)
505 			hp = &(*hp)->p_forw;
506 		*hp = p->p_forw;
507 		if (qp->sq_tailp == &p->p_forw)
508 			qp->sq_tailp = hp;
509 		p->p_wchan = 0;
510 	}
511 	splx(s);
512 }
513 
514 /*
515  * Make all processes sleeping on the specified identifier runnable.
516  */
517 void
518 wakeup(ident)
519 	register void *ident;
520 {
521 	register struct slpque *qp;
522 	register struct proc *p, **q;
523 	int s;
524 
525 	s = splhigh();
526 	qp = &slpque[LOOKUP(ident)];
527 restart:
528 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
529 #ifdef DIAGNOSTIC
530 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
531 			panic("wakeup");
532 #endif
533 		if (p->p_wchan == ident) {
534 			p->p_wchan = 0;
535 			*q = p->p_forw;
536 			if (qp->sq_tailp == &p->p_forw)
537 				qp->sq_tailp = q;
538 			if (p->p_stat == SSLEEP) {
539 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
540 				if (p->p_slptime > 1)
541 					updatepri(p);
542 				p->p_slptime = 0;
543 				p->p_stat = SRUN;
544 				if (p->p_flag & P_INMEM)
545 					setrunqueue(p);
546 				/*
547 				 * Since curpriority is a user priority,
548 				 * p->p_priority is always better than
549 				 * curpriority.
550 				 */
551 				if ((p->p_flag & P_INMEM) == 0)
552 					wakeup((caddr_t)&proc0);
553 				else
554 					need_resched();
555 				/* END INLINE EXPANSION */
556 				goto restart;
557 			}
558 		} else
559 			q = &p->p_forw;
560 	}
561 	splx(s);
562 }
563 
564 /*
565  * The machine independent parts of mi_switch().
566  * Must be called at splstatclock() or higher.
567  */
568 void
569 mi_switch()
570 {
571 	register struct proc *p = curproc;	/* XXX */
572 	register struct rlimit *rlim;
573 	register long s, u;
574 	struct timeval tv;
575 
576 	/*
577 	 * Compute the amount of time during which the current
578 	 * process was running, and add that to its total so far.
579 	 */
580 	microtime(&tv);
581 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
582 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
583 	if (u < 0) {
584 		u += 1000000;
585 		s--;
586 	} else if (u >= 1000000) {
587 		u -= 1000000;
588 		s++;
589 	}
590 	p->p_rtime.tv_usec = u;
591 	p->p_rtime.tv_sec = s;
592 
593 	/*
594 	 * Check if the process exceeds its cpu resource allocation.
595 	 * If over max, kill it.  In any case, if it has run for more
596 	 * than 10 minutes, reduce priority to give others a chance.
597 	 */
598 	rlim = &p->p_rlimit[RLIMIT_CPU];
599 	if (s >= rlim->rlim_cur) {
600 		if (s >= rlim->rlim_max)
601 			psignal(p, SIGKILL);
602 		else {
603 			psignal(p, SIGXCPU);
604 			if (rlim->rlim_cur < rlim->rlim_max)
605 				rlim->rlim_cur += 5;
606 		}
607 	}
608 	if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
609 		p->p_nice = NZERO + 4;
610 		resetpriority(p);
611 	}
612 
613 	/*
614 	 * Pick a new current process and record its start time.
615 	 */
616 #if defined(UVM)
617 	uvmexp.swtch++;
618 #else
619 	cnt.v_swtch++;
620 #endif
621 	cpu_switch(p);
622 	microtime(&runtime);
623 }
624 
625 /*
626  * Initialize the (doubly-linked) run queues
627  * to be empty.
628  */
629 void
630 rqinit()
631 {
632 	register int i;
633 
634 	for (i = 0; i < NQS; i++)
635 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
636 }
637 
638 /*
639  * Change process state to be runnable,
640  * placing it on the run queue if it is in memory,
641  * and awakening the swapper if it isn't in memory.
642  */
643 void
644 setrunnable(p)
645 	register struct proc *p;
646 {
647 	register int s;
648 
649 	s = splhigh();
650 	switch (p->p_stat) {
651 	case 0:
652 	case SRUN:
653 	case SZOMB:
654 	default:
655 		panic("setrunnable");
656 	case SSTOP:
657 		/*
658 		 * If we're being traced (possibly because someone attached us
659 		 * while we were stopped), check for a signal from the debugger.
660 		 */
661 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
662 			p->p_siglist |= sigmask(p->p_xstat);
663 	case SSLEEP:
664 		unsleep(p);		/* e.g. when sending signals */
665 		break;
666 
667 	case SIDL:
668 		break;
669 	}
670 	p->p_stat = SRUN;
671 	if (p->p_flag & P_INMEM)
672 		setrunqueue(p);
673 	splx(s);
674 	if (p->p_slptime > 1)
675 		updatepri(p);
676 	p->p_slptime = 0;
677 	if ((p->p_flag & P_INMEM) == 0)
678 		wakeup((caddr_t)&proc0);
679 	else if (p->p_priority < curpriority)
680 		need_resched();
681 }
682 
683 /*
684  * Compute the priority of a process when running in user mode.
685  * Arrange to reschedule if the resulting priority is better
686  * than that of the current process.
687  */
688 void
689 resetpriority(p)
690 	register struct proc *p;
691 {
692 	register unsigned int newpriority;
693 
694 	newpriority = PUSER + p->p_estcpu / 4 + 2 * p->p_nice;
695 	newpriority = min(newpriority, MAXPRI);
696 	p->p_usrpri = newpriority;
697 	if (newpriority < curpriority)
698 		need_resched();
699 }
700 
701 #ifdef DDB
702 #include <machine/db_machdep.h>
703 
704 #include <ddb/db_interface.h>
705 #include <ddb/db_output.h>
706 
707 void
708 db_show_all_procs(addr, haddr, count, modif)
709 	db_expr_t addr;
710 	int haddr;
711 	db_expr_t count;
712 	char *modif;
713 {
714 	char *mode;
715 	int doingzomb = 0;
716 	struct proc *p, *pp;
717 
718 	if (modif[0] == 0)
719 		modif[0] = 'n';			/* default == normal mode */
720 
721 	mode = "mawn";
722 	while (*mode && *mode != modif[0])
723 		mode++;
724 	if (*mode == 0 || *mode == 'm') {
725 		db_printf("usage: show all procs [/a] [/n] [/w]\n");
726 		db_printf("\t/a == show process address info\n");
727 		db_printf("\t/n == show normal process info [default]\n");
728 		db_printf("\t/w == show process wait/emul info\n");
729 		return;
730 	}
731 
732 	p = allproc.lh_first;
733 
734 	switch (*mode) {
735 
736 	case 'a':
737 		db_printf("  PID  %-10s  %18s  %18s  %18s\n",
738 		    "COMMAND", "STRUCT PROC *", "UAREA *", "VMSPACE/VM_MAP");
739 		break;
740 	case 'n':
741 		db_printf("  PID  %5s  %5s  %5s  S  %10s  %-9s  %-16s\n",
742 		    "PPID", "PGRP", "UID", "FLAGS", "WAIT", "COMMAND");
743 		break;
744 	case 'w':
745 		db_printf("  PID  %-16s  %-8s  %18s  %s\n",
746 		    "COMMAND", "EMUL", "WAIT-CHANNEL", "WAIT-MSG");
747 		break;
748 	}
749 
750 	while (p != 0) {
751 		pp = p->p_pptr;
752 		if (p->p_stat) {
753 
754 			db_printf("%5d  ", p->p_pid);
755 
756 			switch (*mode) {
757 
758 			case 'a':
759 				db_printf("%-10.10s  %18p  %18p  %18p\n",
760 				    p->p_comm, p, p->p_addr, p->p_vmspace);
761 				break;
762 
763 			case 'n':
764 				db_printf("%5d  %5d  %5d  %d  %#10x  "
765 				    "%-9.9s  %-16s\n",
766 				    pp ? pp->p_pid : -1, p->p_pgrp->pg_id,
767 				    p->p_cred->p_ruid, p->p_stat, p->p_flag,
768 				    (p->p_wchan && p->p_wmesg) ?
769 					p->p_wmesg : "", p->p_comm);
770 				break;
771 
772 			case 'w':
773 				db_printf("%-16s  %-8s  %18p  %s\n", p->p_comm,
774 				    p->p_emul->e_name, p->p_wchan,
775 				    (p->p_wchan && p->p_wmesg) ?
776 					p->p_wmesg : "");
777 				break;
778 
779 			}
780 		}
781 		p = p->p_list.le_next;
782 		if (p == 0 && doingzomb == 0) {
783 			doingzomb = 1;
784 			p = zombproc.lh_first;
785 		}
786 	}
787 }
788 #endif
789