xref: /openbsd-src/sys/kern/kern_synch.c (revision 4b70baf6e17fc8b27fc1f7fa7929335753fa94c3)
1 /*	$OpenBSD: kern_synch.c,v 1.148 2019/04/23 13:35:12 visa Exp $	*/
2 /*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1990, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/resourcevar.h>
46 #include <sys/sched.h>
47 #include <sys/timeout.h>
48 #include <sys/mount.h>
49 #include <sys/syscallargs.h>
50 #include <sys/pool.h>
51 #include <sys/refcnt.h>
52 #include <sys/atomic.h>
53 #include <sys/witness.h>
54 #include <ddb/db_output.h>
55 
56 #include <machine/spinlock.h>
57 
58 #ifdef KTRACE
59 #include <sys/ktrace.h>
60 #endif
61 
62 int	thrsleep(struct proc *, struct sys___thrsleep_args *);
63 int	thrsleep_unlock(void *);
64 
65 /*
66  * We're only looking at 7 bits of the address; everything is
67  * aligned to 4, lots of things are aligned to greater powers
68  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
69  */
70 #define TABLESIZE	128
71 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
72 TAILQ_HEAD(slpque,proc) slpque[TABLESIZE];
73 
74 void
75 sleep_queue_init(void)
76 {
77 	int i;
78 
79 	for (i = 0; i < TABLESIZE; i++)
80 		TAILQ_INIT(&slpque[i]);
81 }
82 
83 
84 /*
85  * During autoconfiguration or after a panic, a sleep will simply
86  * lower the priority briefly to allow interrupts, then return.
87  * The priority to be used (safepri) is machine-dependent, thus this
88  * value is initialized and maintained in the machine-dependent layers.
89  * This priority will typically be 0, or the lowest priority
90  * that is safe for use on the interrupt stack; it can be made
91  * higher to block network software interrupts after panics.
92  */
93 extern int safepri;
94 
95 /*
96  * General sleep call.  Suspends the current process until a wakeup is
97  * performed on the specified identifier.  The process will then be made
98  * runnable with the specified priority.  Sleeps at most timo/hz seconds
99  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
100  * before and after sleeping, else signals are not checked.  Returns 0 if
101  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
102  * signal needs to be delivered, ERESTART is returned if the current system
103  * call should be restarted if possible, and EINTR is returned if the system
104  * call should be interrupted by the signal (return EINTR).
105  */
106 int
107 tsleep(const volatile void *ident, int priority, const char *wmesg, int timo)
108 {
109 	struct sleep_state sls;
110 #ifdef MULTIPROCESSOR
111 	int hold_count;
112 #endif
113 
114 	KASSERT((priority & ~(PRIMASK | PCATCH)) == 0);
115 
116 #ifdef MULTIPROCESSOR
117 	KASSERT(timo || _kernel_lock_held());
118 #endif
119 
120 #ifdef DDB
121 	if (cold == 2)
122 		db_stack_dump();
123 #endif
124 	if (cold || panicstr) {
125 		int s;
126 		/*
127 		 * After a panic, or during autoconfiguration,
128 		 * just give interrupts a chance, then just return;
129 		 * don't run any other procs or panic below,
130 		 * in case this is the idle process and already asleep.
131 		 */
132 		s = splhigh();
133 		splx(safepri);
134 #ifdef MULTIPROCESSOR
135 		if (_kernel_lock_held()) {
136 			hold_count = __mp_release_all(&kernel_lock);
137 			__mp_acquire_count(&kernel_lock, hold_count);
138 		}
139 #endif
140 		splx(s);
141 		return (0);
142 	}
143 
144 	sleep_setup(&sls, ident, priority, wmesg);
145 	sleep_setup_timeout(&sls, timo);
146 	sleep_setup_signal(&sls, priority);
147 
148 	return sleep_finish_all(&sls, 1);
149 }
150 
151 int
152 sleep_finish_all(struct sleep_state *sls, int do_sleep)
153 {
154 	int error, error1;
155 
156 	sleep_finish(sls, do_sleep);
157 	error1 = sleep_finish_timeout(sls);
158 	error = sleep_finish_signal(sls);
159 
160 	/* Signal errors are higher priority than timeouts. */
161 	if (error == 0 && error1 != 0)
162 		error = error1;
163 
164 	return error;
165 }
166 
167 /*
168  * Same as tsleep, but if we have a mutex provided, then once we've
169  * entered the sleep queue we drop the mutex. After sleeping we re-lock.
170  */
171 int
172 msleep(const volatile void *ident, struct mutex *mtx, int priority,
173     const char *wmesg, int timo)
174 {
175 	struct sleep_state sls;
176 	int error, spl;
177 #ifdef MULTIPROCESSOR
178 	int hold_count;
179 #endif
180 
181 	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
182 	KASSERT(mtx != NULL);
183 
184 	if (cold || panicstr) {
185 		/*
186 		 * After a panic, or during autoconfiguration,
187 		 * just give interrupts a chance, then just return;
188 		 * don't run any other procs or panic below,
189 		 * in case this is the idle process and already asleep.
190 		 */
191 		spl = MUTEX_OLDIPL(mtx);
192 		MUTEX_OLDIPL(mtx) = safepri;
193 		mtx_leave(mtx);
194 #ifdef MULTIPROCESSOR
195 		if (_kernel_lock_held()) {
196 			hold_count = __mp_release_all(&kernel_lock);
197 			__mp_acquire_count(&kernel_lock, hold_count);
198 		}
199 #endif
200 		if ((priority & PNORELOCK) == 0) {
201 			mtx_enter(mtx);
202 			MUTEX_OLDIPL(mtx) = spl;
203 		} else
204 			splx(spl);
205 		return (0);
206 	}
207 
208 	sleep_setup(&sls, ident, priority, wmesg);
209 	sleep_setup_timeout(&sls, timo);
210 	sleep_setup_signal(&sls, priority);
211 
212 	/* XXX - We need to make sure that the mutex doesn't
213 	 * unblock splsched. This can be made a bit more
214 	 * correct when the sched_lock is a mutex.
215 	 */
216 	spl = MUTEX_OLDIPL(mtx);
217 	MUTEX_OLDIPL(mtx) = splsched();
218 	mtx_leave(mtx);
219 
220 	error = sleep_finish_all(&sls, 1);
221 
222 	if ((priority & PNORELOCK) == 0) {
223 		mtx_enter(mtx);
224 		MUTEX_OLDIPL(mtx) = spl; /* put the ipl back */
225 	} else
226 		splx(spl);
227 
228 	return error;
229 }
230 
231 /*
232  * Same as tsleep, but if we have a rwlock provided, then once we've
233  * entered the sleep queue we drop the it. After sleeping we re-lock.
234  */
235 int
236 rwsleep(const volatile void *ident, struct rwlock *rwl, int priority,
237     const char *wmesg, int timo)
238 {
239 	struct sleep_state sls;
240 	int error, status;
241 
242 	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
243 	rw_assert_anylock(rwl);
244 	status = rw_status(rwl);
245 
246 	sleep_setup(&sls, ident, priority, wmesg);
247 	sleep_setup_timeout(&sls, timo);
248 	sleep_setup_signal(&sls, priority);
249 
250 	rw_exit(rwl);
251 
252 	error = sleep_finish_all(&sls, 1);
253 
254 	if ((priority & PNORELOCK) == 0)
255 		rw_enter(rwl, status);
256 
257 	return error;
258 }
259 
260 void
261 sleep_setup(struct sleep_state *sls, const volatile void *ident, int prio,
262     const char *wmesg)
263 {
264 	struct proc *p = curproc;
265 
266 #ifdef DIAGNOSTIC
267 	if (p->p_flag & P_CANTSLEEP)
268 		panic("sleep: %s failed insomnia", p->p_p->ps_comm);
269 	if (ident == NULL)
270 		panic("tsleep: no ident");
271 	if (p->p_stat != SONPROC)
272 		panic("tsleep: not SONPROC");
273 #endif
274 
275 	sls->sls_catch = 0;
276 	sls->sls_do_sleep = 1;
277 	sls->sls_sig = 1;
278 
279 	SCHED_LOCK(sls->sls_s);
280 
281 	p->p_wchan = ident;
282 	p->p_wmesg = wmesg;
283 	p->p_slptime = 0;
284 	p->p_priority = prio & PRIMASK;
285 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq);
286 }
287 
288 void
289 sleep_finish(struct sleep_state *sls, int do_sleep)
290 {
291 	struct proc *p = curproc;
292 
293 	if (sls->sls_do_sleep && do_sleep) {
294 		p->p_stat = SSLEEP;
295 		p->p_ru.ru_nvcsw++;
296 		SCHED_ASSERT_LOCKED();
297 		mi_switch();
298 	} else if (!do_sleep) {
299 		unsleep(p);
300 	}
301 
302 #ifdef DIAGNOSTIC
303 	if (p->p_stat != SONPROC)
304 		panic("sleep_finish !SONPROC");
305 #endif
306 
307 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
308 	SCHED_UNLOCK(sls->sls_s);
309 
310 	/*
311 	 * Even though this belongs to the signal handling part of sleep,
312 	 * we need to clear it before the ktrace.
313 	 */
314 	atomic_clearbits_int(&p->p_flag, P_SINTR);
315 }
316 
317 void
318 sleep_setup_timeout(struct sleep_state *sls, int timo)
319 {
320 	if (timo)
321 		timeout_add(&curproc->p_sleep_to, timo);
322 }
323 
324 int
325 sleep_finish_timeout(struct sleep_state *sls)
326 {
327 	struct proc *p = curproc;
328 
329 	if (p->p_flag & P_TIMEOUT) {
330 		atomic_clearbits_int(&p->p_flag, P_TIMEOUT);
331 		return (EWOULDBLOCK);
332 	} else
333 		timeout_del(&p->p_sleep_to);
334 
335 	return (0);
336 }
337 
338 void
339 sleep_setup_signal(struct sleep_state *sls, int prio)
340 {
341 	struct proc *p = curproc;
342 
343 	if ((sls->sls_catch = (prio & PCATCH)) == 0)
344 		return;
345 
346 	/*
347 	 * We put ourselves on the sleep queue and start our timeout
348 	 * before calling CURSIG, as we could stop there, and a wakeup
349 	 * or a SIGCONT (or both) could occur while we were stopped.
350 	 * A SIGCONT would cause us to be marked as SSLEEP
351 	 * without resuming us, thus we must be ready for sleep
352 	 * when CURSIG is called.  If the wakeup happens while we're
353 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
354 	 */
355 	atomic_setbits_int(&p->p_flag, P_SINTR);
356 	if (p->p_p->ps_single != NULL || (sls->sls_sig = CURSIG(p)) != 0) {
357 		if (p->p_wchan)
358 			unsleep(p);
359 		p->p_stat = SONPROC;
360 		sls->sls_do_sleep = 0;
361 	} else if (p->p_wchan == 0) {
362 		sls->sls_catch = 0;
363 		sls->sls_do_sleep = 0;
364 	}
365 }
366 
367 int
368 sleep_finish_signal(struct sleep_state *sls)
369 {
370 	struct proc *p = curproc;
371 	int error;
372 
373 	if (sls->sls_catch != 0) {
374 		if ((error = single_thread_check(p, 1)))
375 			return (error);
376 		if (sls->sls_sig != 0 || (sls->sls_sig = CURSIG(p)) != 0) {
377 			if (p->p_p->ps_sigacts->ps_sigintr &
378 			    sigmask(sls->sls_sig))
379 				return (EINTR);
380 			return (ERESTART);
381 		}
382 	}
383 
384 	return (0);
385 }
386 
387 /*
388  * Implement timeout for tsleep.
389  * If process hasn't been awakened (wchan non-zero),
390  * set timeout flag and undo the sleep.  If proc
391  * is stopped, just unsleep so it will remain stopped.
392  */
393 void
394 endtsleep(void *arg)
395 {
396 	struct proc *p = arg;
397 	int s;
398 
399 	SCHED_LOCK(s);
400 	if (p->p_wchan) {
401 		if (p->p_stat == SSLEEP)
402 			setrunnable(p);
403 		else
404 			unsleep(p);
405 		atomic_setbits_int(&p->p_flag, P_TIMEOUT);
406 	}
407 	SCHED_UNLOCK(s);
408 }
409 
410 /*
411  * Remove a process from its wait queue
412  */
413 void
414 unsleep(struct proc *p)
415 {
416 	SCHED_ASSERT_LOCKED();
417 
418 	if (p->p_wchan) {
419 		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq);
420 		p->p_wchan = NULL;
421 	}
422 }
423 
424 /*
425  * Make a number of processes sleeping on the specified identifier runnable.
426  */
427 void
428 wakeup_n(const volatile void *ident, int n)
429 {
430 	struct slpque *qp;
431 	struct proc *p;
432 	struct proc *pnext;
433 	int s;
434 
435 	SCHED_LOCK(s);
436 	qp = &slpque[LOOKUP(ident)];
437 	for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) {
438 		pnext = TAILQ_NEXT(p, p_runq);
439 #ifdef DIAGNOSTIC
440 		/*
441 		 * If the rwlock passed to rwsleep() is contended, the
442 		 * CPU will end up calling wakeup() between sleep_setup()
443 		 * and sleep_finish().
444 		 */
445 		if (p == curproc) {
446 			KASSERT(p->p_stat == SONPROC);
447 			continue;
448 		}
449 		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
450 			panic("wakeup: p_stat is %d", (int)p->p_stat);
451 #endif
452 		if (p->p_wchan == ident) {
453 			--n;
454 			p->p_wchan = 0;
455 			TAILQ_REMOVE(qp, p, p_runq);
456 			if (p->p_stat == SSLEEP)
457 				setrunnable(p);
458 		}
459 	}
460 	SCHED_UNLOCK(s);
461 }
462 
463 /*
464  * Make all processes sleeping on the specified identifier runnable.
465  */
466 void
467 wakeup(const volatile void *chan)
468 {
469 	wakeup_n(chan, -1);
470 }
471 
472 int
473 sys_sched_yield(struct proc *p, void *v, register_t *retval)
474 {
475 	struct proc *q;
476 	int s;
477 
478 	SCHED_LOCK(s);
479 	/*
480 	 * If one of the threads of a multi-threaded process called
481 	 * sched_yield(2), drop its priority to ensure its siblings
482 	 * can make some progress.
483 	 */
484 	p->p_priority = p->p_usrpri;
485 	TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link)
486 		p->p_priority = max(p->p_priority, q->p_priority);
487 	p->p_stat = SRUN;
488 	setrunqueue(p);
489 	p->p_ru.ru_nvcsw++;
490 	mi_switch();
491 	SCHED_UNLOCK(s);
492 
493 	return (0);
494 }
495 
496 int
497 thrsleep_unlock(void *lock)
498 {
499 	static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED;
500 	_atomic_lock_t *atomiclock = lock;
501 
502 	if (!lock)
503 		return 0;
504 
505 	return copyout(&unlocked, atomiclock, sizeof(unlocked));
506 }
507 
508 static int globalsleepaddr;
509 
510 int
511 thrsleep(struct proc *p, struct sys___thrsleep_args *v)
512 {
513 	struct sys___thrsleep_args /* {
514 		syscallarg(const volatile void *) ident;
515 		syscallarg(clockid_t) clock_id;
516 		syscallarg(const struct timespec *) tp;
517 		syscallarg(void *) lock;
518 		syscallarg(const int *) abort;
519 	} */ *uap = v;
520 	long ident = (long)SCARG(uap, ident);
521 	struct timespec *tsp = (struct timespec *)SCARG(uap, tp);
522 	void *lock = SCARG(uap, lock);
523 	uint64_t to_ticks = 0;
524 	int abort, error;
525 	clockid_t clock_id = SCARG(uap, clock_id);
526 
527 	if (ident == 0)
528 		return (EINVAL);
529 	if (tsp != NULL) {
530 		struct timespec now;
531 
532 		if ((error = clock_gettime(p, clock_id, &now)))
533 			return (error);
534 #ifdef KTRACE
535 		if (KTRPOINT(p, KTR_STRUCT))
536 			ktrabstimespec(p, tsp);
537 #endif
538 
539 		if (timespeccmp(tsp, &now, <)) {
540 			/* already passed: still do the unlock */
541 			if ((error = thrsleep_unlock(lock)))
542 				return (error);
543 			return (EWOULDBLOCK);
544 		}
545 
546 		timespecsub(tsp, &now, tsp);
547 		to_ticks = (uint64_t)hz * tsp->tv_sec +
548 		    (tsp->tv_nsec + tick * 1000 - 1) / (tick * 1000) + 1;
549 		if (to_ticks > INT_MAX)
550 			to_ticks = INT_MAX;
551 	}
552 
553 	p->p_thrslpid = ident;
554 
555 	if ((error = thrsleep_unlock(lock)))
556 		goto out;
557 
558 	if (SCARG(uap, abort) != NULL) {
559 		if ((error = copyin(SCARG(uap, abort), &abort,
560 		    sizeof(abort))) != 0)
561 			goto out;
562 		if (abort) {
563 			error = EINTR;
564 			goto out;
565 		}
566 	}
567 
568 	if (p->p_thrslpid == 0)
569 		error = 0;
570 	else {
571 		void *sleepaddr = &p->p_thrslpid;
572 		if (ident == -1)
573 			sleepaddr = &globalsleepaddr;
574 		error = tsleep(sleepaddr, PUSER | PCATCH, "thrsleep",
575 		    (int)to_ticks);
576 	}
577 
578 out:
579 	p->p_thrslpid = 0;
580 
581 	if (error == ERESTART)
582 		error = ECANCELED;
583 
584 	return (error);
585 
586 }
587 
588 int
589 sys___thrsleep(struct proc *p, void *v, register_t *retval)
590 {
591 	struct sys___thrsleep_args /* {
592 		syscallarg(const volatile void *) ident;
593 		syscallarg(clockid_t) clock_id;
594 		syscallarg(struct timespec *) tp;
595 		syscallarg(void *) lock;
596 		syscallarg(const int *) abort;
597 	} */ *uap = v;
598 	struct timespec ts;
599 	int error;
600 
601 	if (SCARG(uap, tp) != NULL) {
602 		if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) {
603 			*retval = error;
604 			return 0;
605 		}
606 		if (!timespecisvalid(&ts)) {
607 			*retval = EINVAL;
608 			return 0;
609 		}
610 		SCARG(uap, tp) = &ts;
611 	}
612 
613 	*retval = thrsleep(p, uap);
614 	return 0;
615 }
616 
617 int
618 sys___thrwakeup(struct proc *p, void *v, register_t *retval)
619 {
620 	struct sys___thrwakeup_args /* {
621 		syscallarg(const volatile void *) ident;
622 		syscallarg(int) n;
623 	} */ *uap = v;
624 	long ident = (long)SCARG(uap, ident);
625 	int n = SCARG(uap, n);
626 	struct proc *q;
627 	int found = 0;
628 
629 	if (ident == 0)
630 		*retval = EINVAL;
631 	else if (ident == -1)
632 		wakeup(&globalsleepaddr);
633 	else {
634 		TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link) {
635 			if (q->p_thrslpid == ident) {
636 				wakeup_one(&q->p_thrslpid);
637 				q->p_thrslpid = 0;
638 				if (++found == n)
639 					break;
640 			}
641 		}
642 		*retval = found ? 0 : ESRCH;
643 	}
644 
645 	return (0);
646 }
647 
648 void
649 refcnt_init(struct refcnt *r)
650 {
651 	r->refs = 1;
652 }
653 
654 void
655 refcnt_take(struct refcnt *r)
656 {
657 #ifdef DIAGNOSTIC
658 	u_int refcnt;
659 
660 	refcnt = atomic_inc_int_nv(&r->refs);
661 	KASSERT(refcnt != 0);
662 #else
663 	atomic_inc_int(&r->refs);
664 #endif
665 }
666 
667 int
668 refcnt_rele(struct refcnt *r)
669 {
670 	u_int refcnt;
671 
672 	refcnt = atomic_dec_int_nv(&r->refs);
673 	KASSERT(refcnt != ~0);
674 
675 	return (refcnt == 0);
676 }
677 
678 void
679 refcnt_rele_wake(struct refcnt *r)
680 {
681 	if (refcnt_rele(r))
682 		wakeup_one(r);
683 }
684 
685 void
686 refcnt_finalize(struct refcnt *r, const char *wmesg)
687 {
688 	struct sleep_state sls;
689 	u_int refcnt;
690 
691 	refcnt = atomic_dec_int_nv(&r->refs);
692 	while (refcnt) {
693 		sleep_setup(&sls, r, PWAIT, wmesg);
694 		refcnt = r->refs;
695 		sleep_finish(&sls, refcnt);
696 	}
697 }
698 
699 void
700 cond_init(struct cond *c)
701 {
702 	c->c_wait = 1;
703 }
704 
705 void
706 cond_signal(struct cond *c)
707 {
708 	c->c_wait = 0;
709 
710 	wakeup_one(c);
711 }
712 
713 void
714 cond_wait(struct cond *c, const char *wmesg)
715 {
716 	struct sleep_state sls;
717 	int wait;
718 
719 	wait = c->c_wait;
720 	while (wait) {
721 		sleep_setup(&sls, c, PWAIT, wmesg);
722 		wait = c->c_wait;
723 		sleep_finish(&sls, wait);
724 	}
725 }
726