xref: /openbsd-src/sys/kern/kern_synch.c (revision 47911bd667ac77dc523b8a13ef40b012dbffa741)
1 /*	$OpenBSD: kern_synch.c,v 1.46 2002/10/15 20:17:22 art Exp $	*/
2 /*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1990, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/buf.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <uvm/uvm_extern.h>
52 #include <sys/sched.h>
53 #include <sys/timeout.h>
54 
55 #ifdef KTRACE
56 #include <sys/ktrace.h>
57 #endif
58 
59 #include <machine/cpu.h>
60 
61 u_char	curpriority;		/* usrpri of curproc */
62 int	lbolt;			/* once a second sleep address */
63 
64 int whichqs;			/* Bit mask summary of non-empty Q's. */
65 struct prochd qs[NQS];
66 
67 void scheduler_start(void);
68 
69 void roundrobin(void *);
70 void schedcpu(void *);
71 void updatepri(struct proc *);
72 void endtsleep(void *);
73 
74 void
75 scheduler_start()
76 {
77 	static struct timeout roundrobin_to;
78 	static struct timeout schedcpu_to;
79 
80 	/*
81 	 * We avoid polluting the global namespace by keeping the scheduler
82 	 * timeouts static in this function.
83 	 * We setup the timeouts here and kick roundrobin and schedcpu once to
84 	 * make them do their job.
85 	 */
86 
87 	timeout_set(&roundrobin_to, roundrobin, &roundrobin_to);
88 	timeout_set(&schedcpu_to, schedcpu, &schedcpu_to);
89 
90 	roundrobin(&roundrobin_to);
91 	schedcpu(&schedcpu_to);
92 }
93 
94 /*
95  * Force switch among equal priority processes every 100ms.
96  */
97 /* ARGSUSED */
98 void
99 roundrobin(arg)
100 	void *arg;
101 {
102 	struct timeout *to = (struct timeout *)arg;
103 	struct proc *p = curproc;
104 	int s;
105 
106 	if (p != NULL) {
107 		s = splstatclock();
108 		if (p->p_schedflags & PSCHED_SEENRR) {
109 			/*
110 			 * The process has already been through a roundrobin
111 			 * without switching and may be hogging the CPU.
112 			 * Indicate that the process should yield.
113 			 */
114 			p->p_schedflags |= PSCHED_SHOULDYIELD;
115 		} else {
116 			p->p_schedflags |= PSCHED_SEENRR;
117 		}
118 		splx(s);
119 	}
120 	need_resched();
121 	timeout_add(to, hz / 10);
122 }
123 
124 /*
125  * Constants for digital decay and forget:
126  *	90% of (p_estcpu) usage in 5 * loadav time
127  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
128  *          Note that, as ps(1) mentions, this can let percentages
129  *          total over 100% (I've seen 137.9% for 3 processes).
130  *
131  * Note that hardclock updates p_estcpu and p_cpticks independently.
132  *
133  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
134  * That is, the system wants to compute a value of decay such
135  * that the following for loop:
136  * 	for (i = 0; i < (5 * loadavg); i++)
137  * 		p_estcpu *= decay;
138  * will compute
139  * 	p_estcpu *= 0.1;
140  * for all values of loadavg:
141  *
142  * Mathematically this loop can be expressed by saying:
143  * 	decay ** (5 * loadavg) ~= .1
144  *
145  * The system computes decay as:
146  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
147  *
148  * We wish to prove that the system's computation of decay
149  * will always fulfill the equation:
150  * 	decay ** (5 * loadavg) ~= .1
151  *
152  * If we compute b as:
153  * 	b = 2 * loadavg
154  * then
155  * 	decay = b / (b + 1)
156  *
157  * We now need to prove two things:
158  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
159  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
160  *
161  * Facts:
162  *         For x close to zero, exp(x) =~ 1 + x, since
163  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
164  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
165  *         For x close to zero, ln(1+x) =~ x, since
166  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
167  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
168  *         ln(.1) =~ -2.30
169  *
170  * Proof of (1):
171  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
172  *	solving for factor,
173  *      ln(factor) =~ (-2.30/5*loadav), or
174  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
175  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
176  *
177  * Proof of (2):
178  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
179  *	solving for power,
180  *      power*ln(b/(b+1)) =~ -2.30, or
181  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
182  *
183  * Actual power values for the implemented algorithm are as follows:
184  *      loadav: 1       2       3       4
185  *      power:  5.68    10.32   14.94   19.55
186  */
187 
188 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
189 #define	loadfactor(loadav)	(2 * (loadav))
190 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
191 
192 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
193 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
194 
195 /*
196  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
197  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
198  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
199  *
200  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
201  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
202  *
203  * If you dont want to bother with the faster/more-accurate formula, you
204  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
205  * (more general) method of calculating the %age of CPU used by a process.
206  */
207 #define	CCPU_SHIFT	11
208 
209 /*
210  * Recompute process priorities, every hz ticks.
211  */
212 /* ARGSUSED */
213 void
214 schedcpu(arg)
215 	void *arg;
216 {
217 	struct timeout *to = (struct timeout *)arg;
218 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
219 	struct proc *p;
220 	int s;
221 	unsigned int newcpu;
222 	int phz;
223 
224 	/*
225 	 * If we have a statistics clock, use that to calculate CPU
226 	 * time, otherwise revert to using the profiling clock (which,
227 	 * in turn, defaults to hz if there is no separate profiling
228 	 * clock available)
229 	 */
230 	phz = stathz ? stathz : profhz;
231 	KASSERT(phz);
232 
233 	for (p = LIST_FIRST(&allproc); p != 0; p = LIST_NEXT(p, p_list)) {
234 		/*
235 		 * Increment time in/out of memory and sleep time
236 		 * (if sleeping).  We ignore overflow; with 16-bit int's
237 		 * (remember them?) overflow takes 45 days.
238 		 */
239 		p->p_swtime++;
240 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
241 			p->p_slptime++;
242 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
243 		/*
244 		 * If the process has slept the entire second,
245 		 * stop recalculating its priority until it wakes up.
246 		 */
247 		if (p->p_slptime > 1)
248 			continue;
249 		s = splstatclock();	/* prevent state changes */
250 		/*
251 		 * p_pctcpu is only for ps.
252 		 */
253 #if	(FSHIFT >= CCPU_SHIFT)
254 		p->p_pctcpu += (phz == 100)?
255 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
256                 	100 * (((fixpt_t) p->p_cpticks)
257 				<< (FSHIFT - CCPU_SHIFT)) / phz;
258 #else
259 		p->p_pctcpu += ((FSCALE - ccpu) *
260 			(p->p_cpticks * FSCALE / phz)) >> FSHIFT;
261 #endif
262 		p->p_cpticks = 0;
263 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu);
264 		p->p_estcpu = newcpu;
265 		resetpriority(p);
266 		if (p->p_priority >= PUSER) {
267 			if ((p != curproc) &&
268 			    p->p_stat == SRUN &&
269 			    (p->p_flag & P_INMEM) &&
270 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
271 				remrunqueue(p);
272 				p->p_priority = p->p_usrpri;
273 				setrunqueue(p);
274 			} else
275 				p->p_priority = p->p_usrpri;
276 		}
277 		splx(s);
278 	}
279 	uvm_meter();
280 	wakeup((caddr_t)&lbolt);
281 	timeout_add(to, hz);
282 }
283 
284 /*
285  * Recalculate the priority of a process after it has slept for a while.
286  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
287  * least six times the loadfactor will decay p_estcpu to zero.
288  */
289 void
290 updatepri(p)
291 	register struct proc *p;
292 {
293 	register unsigned int newcpu = p->p_estcpu;
294 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
295 
296 	if (p->p_slptime > 5 * loadfac)
297 		p->p_estcpu = 0;
298 	else {
299 		p->p_slptime--;	/* the first time was done in schedcpu */
300 		while (newcpu && --p->p_slptime)
301 			newcpu = (int) decay_cpu(loadfac, newcpu);
302 		p->p_estcpu = newcpu;
303 	}
304 	resetpriority(p);
305 }
306 
307 /*
308  * We're only looking at 7 bits of the address; everything is
309  * aligned to 4, lots of things are aligned to greater powers
310  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
311  */
312 #define TABLESIZE	128
313 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
314 struct slpque {
315 	struct proc *sq_head;
316 	struct proc **sq_tailp;
317 } slpque[TABLESIZE];
318 
319 /*
320  * During autoconfiguration or after a panic, a sleep will simply
321  * lower the priority briefly to allow interrupts, then return.
322  * The priority to be used (safepri) is machine-dependent, thus this
323  * value is initialized and maintained in the machine-dependent layers.
324  * This priority will typically be 0, or the lowest priority
325  * that is safe for use on the interrupt stack; it can be made
326  * higher to block network software interrupts after panics.
327  */
328 int safepri;
329 
330 /*
331  * General sleep call.  Suspends the current process until a wakeup is
332  * performed on the specified identifier.  The process will then be made
333  * runnable with the specified priority.  Sleeps at most timo/hz seconds
334  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
335  * before and after sleeping, else signals are not checked.  Returns 0 if
336  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
337  * signal needs to be delivered, ERESTART is returned if the current system
338  * call should be restarted if possible, and EINTR is returned if the system
339  * call should be interrupted by the signal (return EINTR).
340  *
341  * The interlock is held until the scheduler_slock (XXX) is held.  The
342  * interlock will be locked before returning back to the caller
343  * unless the PNORELOCK flag is specified, in which case the
344  * interlock will always be unlocked upon return.
345  */
346 int
347 ltsleep(ident, priority, wmesg, timo, interlock)
348 	void *ident;
349 	int priority, timo;
350 	const char *wmesg;
351 	volatile struct simplelock *interlock;
352 {
353 	struct proc *p = curproc;
354 	struct slpque *qp;
355 	int s, sig;
356 	int catch = priority & PCATCH;
357 	int relock = (priority & PNORELOCK) == 0;
358 
359 #ifdef KTRACE
360 	if (KTRPOINT(p, KTR_CSW))
361 		ktrcsw(p, 1, 0);
362 #endif
363 	s = splhigh();
364 	if (cold || panicstr) {
365 		/*
366 		 * After a panic, or during autoconfiguration,
367 		 * just give interrupts a chance, then just return;
368 		 * don't run any other procs or panic below,
369 		 * in case this is the idle process and already asleep.
370 		 */
371 		splx(safepri);
372 		splx(s);
373 		if (interlock != NULL && relock == 0)
374 			simple_unlock(interlock);
375 		return (0);
376 	}
377 #ifdef DIAGNOSTIC
378 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
379 		panic("tsleep");
380 #endif
381 	p->p_wchan = ident;
382 	p->p_wmesg = wmesg;
383 	p->p_slptime = 0;
384 	p->p_priority = priority & PRIMASK;
385 	qp = &slpque[LOOKUP(ident)];
386 	if (qp->sq_head == 0)
387 		qp->sq_head = p;
388 	else
389 		*qp->sq_tailp = p;
390 	*(qp->sq_tailp = &p->p_forw) = 0;
391 	if (timo)
392 		timeout_add(&p->p_sleep_to, timo);
393 	/*
394 	 * We can now release the interlock; the scheduler_slock
395 	 * is held, so a thread can't get in to do wakeup() before
396 	 * we do the switch.
397 	 *
398 	 * XXX We leave the code block here, after inserting ourselves
399 	 * on the sleep queue, because we might want a more clever
400 	 * data structure for the sleep queues at some point.
401 	 */
402 	if (interlock != NULL)
403 		simple_unlock(interlock);
404 
405 	/*
406 	 * We put ourselves on the sleep queue and start our timeout
407 	 * before calling CURSIG, as we could stop there, and a wakeup
408 	 * or a SIGCONT (or both) could occur while we were stopped.
409 	 * A SIGCONT would cause us to be marked as SSLEEP
410 	 * without resuming us, thus we must be ready for sleep
411 	 * when CURSIG is called.  If the wakeup happens while we're
412 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
413 	 */
414 	if (catch) {
415 		p->p_flag |= P_SINTR;
416 		if ((sig = CURSIG(p)) != 0) {
417 			if (p->p_wchan)
418 				unsleep(p);
419 			p->p_stat = SRUN;
420 			goto resume;
421 		}
422 		if (p->p_wchan == 0) {
423 			catch = 0;
424 			goto resume;
425 		}
426 	} else
427 		sig = 0;
428 	p->p_stat = SSLEEP;
429 	p->p_stats->p_ru.ru_nvcsw++;
430 	mi_switch();
431 #ifdef	DDB
432 	/* handy breakpoint location after process "wakes" */
433 	__asm(".globl bpendtsleep\nbpendtsleep:");
434 #endif
435 resume:
436 	curpriority = p->p_usrpri;
437 	splx(s);
438 	p->p_flag &= ~P_SINTR;
439 	if (p->p_flag & P_TIMEOUT) {
440 		p->p_flag &= ~P_TIMEOUT;
441 		if (sig == 0) {
442 #ifdef KTRACE
443 			if (KTRPOINT(p, KTR_CSW))
444 				ktrcsw(p, 0, 0);
445 #endif
446 			if (interlock != NULL && relock)
447 				simple_lock(interlock);
448 			return (EWOULDBLOCK);
449 		}
450 	} else if (timo)
451 		timeout_del(&p->p_sleep_to);
452 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
453 #ifdef KTRACE
454 		if (KTRPOINT(p, KTR_CSW))
455 			ktrcsw(p, 0, 0);
456 #endif
457 		if (interlock != NULL && relock)
458 			simple_lock(interlock);
459 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
460 			return (EINTR);
461 		return (ERESTART);
462 	}
463 #ifdef KTRACE
464 	if (KTRPOINT(p, KTR_CSW))
465 		ktrcsw(p, 0, 0);
466 #endif
467 	if (interlock != NULL && relock)
468 		simple_lock(interlock);
469 	return (0);
470 }
471 
472 /*
473  * Implement timeout for tsleep.
474  * If process hasn't been awakened (wchan non-zero),
475  * set timeout flag and undo the sleep.  If proc
476  * is stopped, just unsleep so it will remain stopped.
477  */
478 void
479 endtsleep(arg)
480 	void *arg;
481 {
482 	struct proc *p;
483 	int s;
484 
485 	p = (struct proc *)arg;
486 	s = splhigh();
487 	if (p->p_wchan) {
488 		if (p->p_stat == SSLEEP)
489 			setrunnable(p);
490 		else
491 			unsleep(p);
492 		p->p_flag |= P_TIMEOUT;
493 	}
494 	splx(s);
495 }
496 
497 /*
498  * Short-term, non-interruptable sleep.
499  */
500 void
501 sleep(ident, priority)
502 	void *ident;
503 	int priority;
504 {
505 	register struct proc *p = curproc;
506 	register struct slpque *qp;
507 	register int s;
508 
509 #ifdef DIAGNOSTIC
510 	if (priority > PZERO) {
511 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
512 		    priority, ident);
513 		panic("old sleep");
514 	}
515 #endif
516 	s = splhigh();
517 	if (cold || panicstr) {
518 		/*
519 		 * After a panic, or during autoconfiguration,
520 		 * just give interrupts a chance, then just return;
521 		 * don't run any other procs or panic below,
522 		 * in case this is the idle process and already asleep.
523 		 */
524 		splx(safepri);
525 		splx(s);
526 		return;
527 	}
528 #ifdef DIAGNOSTIC
529 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
530 		panic("sleep");
531 #endif
532 	p->p_wchan = ident;
533 	p->p_wmesg = NULL;
534 	p->p_slptime = 0;
535 	p->p_priority = priority;
536 	qp = &slpque[LOOKUP(ident)];
537 	if (qp->sq_head == 0)
538 		qp->sq_head = p;
539 	else
540 		*qp->sq_tailp = p;
541 	*(qp->sq_tailp = &p->p_forw) = 0;
542 	p->p_stat = SSLEEP;
543 	p->p_stats->p_ru.ru_nvcsw++;
544 #ifdef KTRACE
545 	if (KTRPOINT(p, KTR_CSW))
546 		ktrcsw(p, 1, 0);
547 #endif
548 	mi_switch();
549 #ifdef	DDB
550 	/* handy breakpoint location after process "wakes" */
551 	__asm(".globl bpendsleep\nbpendsleep:");
552 #endif
553 #ifdef KTRACE
554 	if (KTRPOINT(p, KTR_CSW))
555 		ktrcsw(p, 0, 0);
556 #endif
557 	curpriority = p->p_usrpri;
558 	splx(s);
559 }
560 
561 /*
562  * Remove a process from its wait queue
563  */
564 void
565 unsleep(p)
566 	register struct proc *p;
567 {
568 	register struct slpque *qp;
569 	register struct proc **hp;
570 	int s;
571 
572 	s = splhigh();
573 	if (p->p_wchan) {
574 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
575 		while (*hp != p)
576 			hp = &(*hp)->p_forw;
577 		*hp = p->p_forw;
578 		if (qp->sq_tailp == &p->p_forw)
579 			qp->sq_tailp = hp;
580 		p->p_wchan = 0;
581 	}
582 	splx(s);
583 }
584 
585 /*
586  * Make all processes sleeping on the specified identifier runnable.
587  */
588 void
589 wakeup_n(ident, n)
590 	void *ident;
591 	int n;
592 {
593 	struct slpque *qp;
594 	struct proc *p, **q;
595 	int s;
596 
597 	s = splhigh();
598 	qp = &slpque[LOOKUP(ident)];
599 restart:
600 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
601 #ifdef DIAGNOSTIC
602 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
603 			panic("wakeup");
604 #endif
605 		if (p->p_wchan == ident) {
606 			--n;
607 			p->p_wchan = 0;
608 			*q = p->p_forw;
609 			if (qp->sq_tailp == &p->p_forw)
610 				qp->sq_tailp = q;
611 			if (p->p_stat == SSLEEP) {
612 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
613 				if (p->p_slptime > 1)
614 					updatepri(p);
615 				p->p_slptime = 0;
616 				p->p_stat = SRUN;
617 
618 				/*
619 				 * Since curpriority is a user priority,
620 				 * p->p_priority is always better than
621 				 * curpriority.
622 				 */
623 
624 				if ((p->p_flag & P_INMEM) != 0) {
625 					setrunqueue(p);
626 					need_resched();
627 				} else {
628 					wakeup((caddr_t)&proc0);
629 				}
630 				/* END INLINE EXPANSION */
631 
632 				if (n != 0)
633 					goto restart;
634 				else
635 					break;
636 			}
637 		} else
638 			q = &p->p_forw;
639 	}
640 	splx(s);
641 }
642 
643 void
644 wakeup(chan)
645 	void *chan;
646 {
647 	wakeup_n(chan, -1);
648 }
649 
650 /*
651  * General yield call.  Puts the current process back on its run queue and
652  * performs a voluntary context switch.
653  */
654 void
655 yield()
656 {
657 	struct proc *p = curproc;
658 	int s;
659 
660 	s = splstatclock();
661 	p->p_priority = p->p_usrpri;
662 	setrunqueue(p);
663 	p->p_stats->p_ru.ru_nvcsw++;
664 	mi_switch();
665 	splx(s);
666 }
667 
668 /*
669  * General preemption call.  Puts the current process back on its run queue
670  * and performs an involuntary context switch.  If a process is supplied,
671  * we switch to that process.  Otherwise, we use the normal process selection
672  * criteria.
673  */
674 void
675 preempt(newp)
676 	struct proc *newp;
677 {
678 	struct proc *p = curproc;
679 	int s;
680 
681 	/*
682 	 * XXX Switching to a specific process is not supported yet.
683 	 */
684 	if (newp != NULL)
685 		panic("preempt: cpu_preempt not yet implemented");
686 
687 	s = splstatclock();
688 	p->p_priority = p->p_usrpri;
689 	setrunqueue(p);
690 	p->p_stats->p_ru.ru_nivcsw++;
691 	mi_switch();
692 	splx(s);
693 }
694 
695 
696 /*
697  * Must be called at splstatclock() or higher.
698  */
699 void
700 mi_switch()
701 {
702 	struct proc *p = curproc;	/* XXX */
703 	struct rlimit *rlim;
704 	long s, u;
705 	struct timeval tv;
706 
707 	splassert(IPL_STATCLOCK);
708 
709 	/*
710 	 * Compute the amount of time during which the current
711 	 * process was running, and add that to its total so far.
712 	 */
713 	microtime(&tv);
714 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
715 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
716 	if (u < 0) {
717 		u += 1000000;
718 		s--;
719 	} else if (u >= 1000000) {
720 		u -= 1000000;
721 		s++;
722 	}
723 	p->p_rtime.tv_usec = u;
724 	p->p_rtime.tv_sec = s;
725 
726 	/*
727 	 * Check if the process exceeds its cpu resource allocation.
728 	 * If over max, kill it.  In any case, if it has run for more
729 	 * than 10 minutes, reduce priority to give others a chance.
730 	 */
731 	rlim = &p->p_rlimit[RLIMIT_CPU];
732 	if (s >= rlim->rlim_cur) {
733 		if (s >= rlim->rlim_max)
734 			psignal(p, SIGKILL);
735 		else {
736 			psignal(p, SIGXCPU);
737 			if (rlim->rlim_cur < rlim->rlim_max)
738 				rlim->rlim_cur += 5;
739 		}
740 	}
741 	if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
742 		p->p_nice = NZERO + 4;
743 		resetpriority(p);
744 	}
745 
746 
747 	/*
748 	 * Process is about to yield the CPU; clear the appropriate
749 	 * scheduling flags.
750 	 */
751 	p->p_schedflags &= ~PSCHED_SWITCHCLEAR;
752 
753 	/*
754 	 * Pick a new current process and record its start time.
755 	 */
756 	uvmexp.swtch++;
757 	cpu_switch(p);
758 	microtime(&runtime);
759 }
760 
761 /*
762  * Initialize the (doubly-linked) run queues
763  * to be empty.
764  */
765 void
766 rqinit()
767 {
768 	register int i;
769 
770 	for (i = 0; i < NQS; i++)
771 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
772 }
773 
774 /*
775  * Change process state to be runnable,
776  * placing it on the run queue if it is in memory,
777  * and awakening the swapper if it isn't in memory.
778  */
779 void
780 setrunnable(p)
781 	register struct proc *p;
782 {
783 	register int s;
784 
785 	s = splhigh();
786 	switch (p->p_stat) {
787 	case 0:
788 	case SRUN:
789 	case SZOMB:
790 	case SDEAD:
791 	default:
792 		panic("setrunnable");
793 	case SSTOP:
794 		/*
795 		 * If we're being traced (possibly because someone attached us
796 		 * while we were stopped), check for a signal from the debugger.
797 		 */
798 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
799 			p->p_siglist |= sigmask(p->p_xstat);
800 	case SSLEEP:
801 		unsleep(p);		/* e.g. when sending signals */
802 		break;
803 	case SIDL:
804 		break;
805 	}
806 	p->p_stat = SRUN;
807 	if (p->p_flag & P_INMEM)
808 		setrunqueue(p);
809 	splx(s);
810 	if (p->p_slptime > 1)
811 		updatepri(p);
812 	p->p_slptime = 0;
813 	if ((p->p_flag & P_INMEM) == 0)
814 		wakeup((caddr_t)&proc0);
815 	else if (p->p_priority < curpriority)
816 		need_resched();
817 }
818 
819 /*
820  * Compute the priority of a process when running in user mode.
821  * Arrange to reschedule if the resulting priority is better
822  * than that of the current process.
823  */
824 void
825 resetpriority(p)
826 	register struct proc *p;
827 {
828 	register unsigned int newpriority;
829 
830 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
831 	newpriority = min(newpriority, MAXPRI);
832 	p->p_usrpri = newpriority;
833 	if (newpriority < curpriority)
834 		need_resched();
835 }
836 
837 /*
838  * We adjust the priority of the current process.  The priority of a process
839  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
840  * is increased here.  The formula for computing priorities (in kern_synch.c)
841  * will compute a different value each time p_estcpu increases. This can
842  * cause a switch, but unless the priority crosses a PPQ boundary the actual
843  * queue will not change.  The cpu usage estimator ramps up quite quickly
844  * when the process is running (linearly), and decays away exponentially, at
845  * a rate which is proportionally slower when the system is busy.  The basic
846  * principle is that the system will 90% forget that the process used a lot
847  * of CPU time in 5 * loadav seconds.  This causes the system to favor
848  * processes which haven't run much recently, and to round-robin among other
849  * processes.
850  */
851 
852 void
853 schedclock(p)
854 	struct proc *p;
855 {
856 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
857 	resetpriority(p);
858 	if (p->p_priority >= PUSER)
859 		p->p_priority = p->p_usrpri;
860 }
861 
862 #ifdef DDB
863 #include <machine/db_machdep.h>
864 
865 #include <ddb/db_interface.h>
866 #include <ddb/db_output.h>
867 
868 void
869 db_show_all_procs(addr, haddr, count, modif)
870 	db_expr_t addr;
871 	int haddr;
872 	db_expr_t count;
873 	char *modif;
874 {
875 	char *mode;
876 	int doingzomb = 0;
877 	struct proc *p, *pp;
878 
879 	if (modif[0] == 0)
880 		modif[0] = 'n';			/* default == normal mode */
881 
882 	mode = "mawn";
883 	while (*mode && *mode != modif[0])
884 		mode++;
885 	if (*mode == 0 || *mode == 'm') {
886 		db_printf("usage: show all procs [/a] [/n] [/w]\n");
887 		db_printf("\t/a == show process address info\n");
888 		db_printf("\t/n == show normal process info [default]\n");
889 		db_printf("\t/w == show process wait/emul info\n");
890 		return;
891 	}
892 
893 	p = LIST_FIRST(&allproc);
894 
895 	switch (*mode) {
896 
897 	case 'a':
898 		db_printf("   PID  %-10s  %18s  %18s  %18s\n",
899 		    "COMMAND", "STRUCT PROC *", "UAREA *", "VMSPACE/VM_MAP");
900 		break;
901 	case 'n':
902 		db_printf("   PID  %5s  %5s  %5s  S  %10s  %-9s  %-16s\n",
903 		    "PPID", "PGRP", "UID", "FLAGS", "WAIT", "COMMAND");
904 		break;
905 	case 'w':
906 		db_printf("   PID  %-16s  %-8s  %18s  %s\n",
907 		    "COMMAND", "EMUL", "WAIT-CHANNEL", "WAIT-MSG");
908 		break;
909 	}
910 
911 	while (p != 0) {
912 		pp = p->p_pptr;
913 		if (p->p_stat) {
914 
915 			db_printf("%c%5d  ", p == curproc ? '*' : ' ',
916 				p->p_pid);
917 
918 			switch (*mode) {
919 
920 			case 'a':
921 				db_printf("%-10.10s  %18p  %18p  %18p\n",
922 				    p->p_comm, p, p->p_addr, p->p_vmspace);
923 				break;
924 
925 			case 'n':
926 				db_printf("%5d  %5d  %5d  %d  %#10x  "
927 				    "%-9.9s  %-16s\n",
928 				    pp ? pp->p_pid : -1, p->p_pgrp->pg_id,
929 				    p->p_cred->p_ruid, p->p_stat, p->p_flag,
930 				    (p->p_wchan && p->p_wmesg) ?
931 					p->p_wmesg : "", p->p_comm);
932 				break;
933 
934 			case 'w':
935 				db_printf("%-16s  %-8s  %18p  %s\n", p->p_comm,
936 				    p->p_emul->e_name, p->p_wchan,
937 				    (p->p_wchan && p->p_wmesg) ?
938 					p->p_wmesg : "");
939 				break;
940 
941 			}
942 		}
943 		p = LIST_NEXT(p, p_list);
944 		if (p == 0 && doingzomb == 0) {
945 			doingzomb = 1;
946 			p = LIST_FIRST(&zombproc);
947 		}
948 	}
949 }
950 #endif
951