xref: /openbsd-src/sys/kern/kern_synch.c (revision 3edd791eb4ea78dd290319d4649ee764d92ebc5b)
1 /*	$OpenBSD: kern_synch.c,v 1.215 2024/12/05 14:53:55 claudio Exp $	*/
2 /*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1990, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/proc.h>
43 #include <sys/kernel.h>
44 #include <sys/signalvar.h>
45 #include <sys/sched.h>
46 #include <sys/timeout.h>
47 #include <sys/mount.h>
48 #include <sys/syscallargs.h>
49 #include <sys/refcnt.h>
50 #include <sys/atomic.h>
51 #include <sys/tracepoint.h>
52 
53 #include <ddb/db_output.h>
54 
55 #include <machine/spinlock.h>
56 
57 #ifdef DIAGNOSTIC
58 #include <sys/syslog.h>
59 #endif
60 
61 #ifdef KTRACE
62 #include <sys/ktrace.h>
63 #endif
64 
65 int	sleep_signal_check(struct proc *, int);
66 
67 extern void proc_stop(struct proc *p, int);
68 
69 /*
70  * We're only looking at 7 bits of the address; everything is
71  * aligned to 4, lots of things are aligned to greater powers
72  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
73  */
74 #define TABLESIZE	128
75 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
76 TAILQ_HEAD(slpque,proc) slpque[TABLESIZE];
77 
78 void
79 sleep_queue_init(void)
80 {
81 	int i;
82 
83 	for (i = 0; i < TABLESIZE; i++)
84 		TAILQ_INIT(&slpque[i]);
85 }
86 
87 /*
88  * Global sleep channel for threads that do not want to
89  * receive wakeup(9) broadcasts.
90  */
91 int nowake;
92 
93 /*
94  * During autoconfiguration or after a panic, a sleep will simply
95  * lower the priority briefly to allow interrupts, then return.
96  * The priority to be used (safepri) is machine-dependent, thus this
97  * value is initialized and maintained in the machine-dependent layers.
98  * This priority will typically be 0, or the lowest priority
99  * that is safe for use on the interrupt stack; it can be made
100  * higher to block network software interrupts after panics.
101  */
102 extern int safepri;
103 
104 /*
105  * General sleep call.  Suspends the current process until a wakeup is
106  * performed on the specified identifier.  The process will then be made
107  * runnable with the specified priority.  Sleeps at most timo/hz seconds
108  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
109  * before and after sleeping, else signals are not checked.  Returns 0 if
110  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
111  * signal needs to be delivered, ERESTART is returned if the current system
112  * call should be restarted if possible, and EINTR is returned if the system
113  * call should be interrupted by the signal (return EINTR).
114  */
115 int
116 tsleep(const volatile void *ident, int priority, const char *wmesg, int timo)
117 {
118 #ifdef MULTIPROCESSOR
119 	int hold_count;
120 #endif
121 
122 	KASSERT((priority & ~(PRIMASK | PCATCH)) == 0);
123 	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
124 
125 #ifdef MULTIPROCESSOR
126 	KASSERT(ident == &nowake || timo || _kernel_lock_held());
127 #endif
128 
129 #ifdef DDB
130 	if (cold == 2)
131 		db_stack_dump();
132 #endif
133 	if (cold || panicstr) {
134 		int s;
135 		/*
136 		 * After a panic, or during autoconfiguration,
137 		 * just give interrupts a chance, then just return;
138 		 * don't run any other procs or panic below,
139 		 * in case this is the idle process and already asleep.
140 		 */
141 		s = splhigh();
142 		splx(safepri);
143 #ifdef MULTIPROCESSOR
144 		if (_kernel_lock_held()) {
145 			hold_count = __mp_release_all(&kernel_lock);
146 			__mp_acquire_count(&kernel_lock, hold_count);
147 		}
148 #endif
149 		splx(s);
150 		return (0);
151 	}
152 
153 	sleep_setup(ident, priority, wmesg);
154 	return sleep_finish(timo, 1);
155 }
156 
157 int
158 tsleep_nsec(const volatile void *ident, int priority, const char *wmesg,
159     uint64_t nsecs)
160 {
161 	uint64_t to_ticks;
162 
163 	if (nsecs == INFSLP)
164 		return tsleep(ident, priority, wmesg, 0);
165 #ifdef DIAGNOSTIC
166 	if (nsecs == 0) {
167 		log(LOG_WARNING,
168 		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
169 		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
170 		    wmesg);
171 	}
172 #endif
173 	/*
174 	 * We want to sleep at least nsecs nanoseconds worth of ticks.
175 	 *
176 	 *  - Clamp nsecs to prevent arithmetic overflow.
177 	 *
178 	 *  - Round nsecs up to account for any nanoseconds that do not
179 	 *    divide evenly into tick_nsec, otherwise we'll lose them to
180 	 *    integer division in the next step.  We add (tick_nsec - 1)
181 	 *    to keep from introducing a spurious tick if there are no
182 	 *    such nanoseconds, i.e. nsecs % tick_nsec == 0.
183 	 *
184 	 *  - Divide the rounded value to a count of ticks.  We divide
185 	 *    by (tick_nsec + 1) to discard the extra tick introduced if,
186 	 *    before rounding, nsecs % tick_nsec == 1.
187 	 *
188 	 *  - Finally, add a tick to the result.  We need to wait out
189 	 *    the current tick before we can begin counting our interval,
190 	 *    as we do not know how much time has elapsed since the
191 	 *    current tick began.
192 	 */
193 	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
194 	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
195 	if (to_ticks > INT_MAX)
196 		to_ticks = INT_MAX;
197 	return tsleep(ident, priority, wmesg, (int)to_ticks);
198 }
199 
200 /*
201  * Same as tsleep, but if we have a mutex provided, then once we've
202  * entered the sleep queue we drop the mutex. After sleeping we re-lock.
203  */
204 int
205 msleep(const volatile void *ident, struct mutex *mtx, int priority,
206     const char *wmesg, int timo)
207 {
208 	int error, spl;
209 #ifdef MULTIPROCESSOR
210 	int hold_count;
211 #endif
212 
213 	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
214 	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
215 	KASSERT(mtx != NULL);
216 
217 #ifdef DDB
218 	if (cold == 2)
219 		db_stack_dump();
220 #endif
221 	if (cold || panicstr) {
222 		/*
223 		 * After a panic, or during autoconfiguration,
224 		 * just give interrupts a chance, then just return;
225 		 * don't run any other procs or panic below,
226 		 * in case this is the idle process and already asleep.
227 		 */
228 		spl = MUTEX_OLDIPL(mtx);
229 		MUTEX_OLDIPL(mtx) = safepri;
230 		mtx_leave(mtx);
231 #ifdef MULTIPROCESSOR
232 		if (_kernel_lock_held()) {
233 			hold_count = __mp_release_all(&kernel_lock);
234 			__mp_acquire_count(&kernel_lock, hold_count);
235 		}
236 #endif
237 		if ((priority & PNORELOCK) == 0) {
238 			mtx_enter(mtx);
239 			MUTEX_OLDIPL(mtx) = spl;
240 		} else
241 			splx(spl);
242 		return (0);
243 	}
244 
245 	sleep_setup(ident, priority, wmesg);
246 
247 	mtx_leave(mtx);
248 	/* signal may stop the process, release mutex before that */
249 	error = sleep_finish(timo, 1);
250 
251 	if ((priority & PNORELOCK) == 0)
252 		mtx_enter(mtx);
253 
254 	return error;
255 }
256 
257 int
258 msleep_nsec(const volatile void *ident, struct mutex *mtx, int priority,
259     const char *wmesg, uint64_t nsecs)
260 {
261 	uint64_t to_ticks;
262 
263 	if (nsecs == INFSLP)
264 		return msleep(ident, mtx, priority, wmesg, 0);
265 #ifdef DIAGNOSTIC
266 	if (nsecs == 0) {
267 		log(LOG_WARNING,
268 		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
269 		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
270 		    wmesg);
271 	}
272 #endif
273 	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
274 	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
275 	if (to_ticks > INT_MAX)
276 		to_ticks = INT_MAX;
277 	return msleep(ident, mtx, priority, wmesg, (int)to_ticks);
278 }
279 
280 /*
281  * Same as tsleep, but if we have a rwlock provided, then once we've
282  * entered the sleep queue we drop the it. After sleeping we re-lock.
283  */
284 int
285 rwsleep(const volatile void *ident, struct rwlock *rwl, int priority,
286     const char *wmesg, int timo)
287 {
288 	int error, status;
289 
290 	KASSERT((priority & ~(PRIMASK | PCATCH | PNORELOCK)) == 0);
291 	KASSERT(ident != &nowake || ISSET(priority, PCATCH) || timo != 0);
292 	KASSERT(ident != rwl);
293 	rw_assert_anylock(rwl);
294 	status = rw_status(rwl);
295 
296 	sleep_setup(ident, priority, wmesg);
297 
298 	rw_exit(rwl);
299 	/* signal may stop the process, release rwlock before that */
300 	error = sleep_finish(timo, 1);
301 
302 	if ((priority & PNORELOCK) == 0)
303 		rw_enter(rwl, status);
304 
305 	return error;
306 }
307 
308 int
309 rwsleep_nsec(const volatile void *ident, struct rwlock *rwl, int priority,
310     const char *wmesg, uint64_t nsecs)
311 {
312 	uint64_t to_ticks;
313 
314 	if (nsecs == INFSLP)
315 		return rwsleep(ident, rwl, priority, wmesg, 0);
316 #ifdef DIAGNOSTIC
317 	if (nsecs == 0) {
318 		log(LOG_WARNING,
319 		    "%s: %s[%d]: %s: trying to sleep zero nanoseconds\n",
320 		    __func__, curproc->p_p->ps_comm, curproc->p_p->ps_pid,
321 		    wmesg);
322 	}
323 #endif
324 	nsecs = MIN(nsecs, UINT64_MAX - tick_nsec);
325 	to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
326 	if (to_ticks > INT_MAX)
327 		to_ticks = INT_MAX;
328 	return 	rwsleep(ident, rwl, priority, wmesg, (int)to_ticks);
329 }
330 
331 void
332 sleep_setup(const volatile void *ident, int prio, const char *wmesg)
333 {
334 	struct proc *p = curproc;
335 
336 #ifdef DIAGNOSTIC
337 	if (p->p_flag & P_CANTSLEEP)
338 		panic("sleep: %s failed insomnia", p->p_p->ps_comm);
339 	if (ident == NULL)
340 		panic("sleep: no ident");
341 	if (p->p_stat != SONPROC)
342 		panic("sleep: not SONPROC but %d", p->p_stat);
343 #endif
344 	/* exiting processes are not allowed to catch signals */
345 	if (p->p_flag & P_WEXIT)
346 		CLR(prio, PCATCH);
347 
348 	SCHED_LOCK();
349 
350 	TRACEPOINT(sched, sleep, NULL);
351 
352 	p->p_wchan = ident;
353 	p->p_wmesg = wmesg;
354 	p->p_slptime = 0;
355 	p->p_slppri = prio & PRIMASK;
356 	atomic_setbits_int(&p->p_flag, P_WSLEEP);
357 	TAILQ_INSERT_TAIL(&slpque[LOOKUP(ident)], p, p_runq);
358 	if (prio & PCATCH)
359 		atomic_setbits_int(&p->p_flag, P_SINTR);
360 	p->p_stat = SSLEEP;
361 
362 	SCHED_UNLOCK();
363 }
364 
365 int
366 sleep_finish(int timo, int do_sleep)
367 {
368 	struct proc *p = curproc;
369 	int catch, error = 0, error1 = 0;
370 
371 	catch = p->p_flag & P_SINTR;
372 
373 	if (timo != 0) {
374 		KASSERT((p->p_flag & P_TIMEOUT) == 0);
375 		timeout_add(&p->p_sleep_to, timo);
376 	}
377 
378 	if (catch != 0) {
379 		/*
380 		 * We put ourselves on the sleep queue and start our
381 		 * timeout before calling sleep_signal_check(), as we could
382 		 * stop there, and a wakeup or a SIGCONT (or both) could
383 		 * occur while we were stopped.  A SIGCONT would cause
384 		 * us to be marked as SSLEEP without resuming us, thus
385 		 * we must be ready for sleep when sleep_signal_check() is
386 		 * called.
387 		 */
388 		if ((error = sleep_signal_check(p, 0)) != 0) {
389 			catch = 0;
390 			do_sleep = 0;
391 		}
392 	}
393 
394 	SCHED_LOCK();
395 	/*
396 	 * A few checks need to happen before going to sleep:
397 	 * - If the wakeup happens while going to sleep, p->p_wchan
398 	 * will be NULL. In that case unwind immediately but still
399 	 * check for possible signals and timeouts.
400 	 * - If the sleep is aborted call unsleep and take us of the
401 	 * sleep queue.
402 	 * - If requested to stop force a switch even if the sleep
403 	 * condition got cleared.
404 	 */
405 	if (p->p_wchan == NULL)
406 		do_sleep = 0;
407 	if (do_sleep == 0)
408 		unsleep(p);
409 	if (p->p_stat == SSTOP)
410 		do_sleep = 1;
411 	atomic_clearbits_int(&p->p_flag, P_WSLEEP);
412 
413 	if (do_sleep) {
414 		KASSERT(p->p_stat == SSLEEP || p->p_stat == SSTOP);
415 		p->p_ru.ru_nvcsw++;
416 		mi_switch();
417 	} else {
418 		KASSERT(p->p_stat == SONPROC || p->p_stat == SSLEEP);
419 		p->p_stat = SONPROC;
420 	}
421 
422 #ifdef DIAGNOSTIC
423 	if (p->p_stat != SONPROC)
424 		panic("sleep_finish !SONPROC");
425 #endif
426 
427 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
428 	SCHED_UNLOCK();
429 
430 	/*
431 	 * Even though this belongs to the signal handling part of sleep,
432 	 * we need to clear it before the ktrace.
433 	 */
434 	atomic_clearbits_int(&p->p_flag, P_SINTR);
435 
436 	if (timo != 0) {
437 		if (p->p_flag & P_TIMEOUT) {
438 			error1 = EWOULDBLOCK;
439 		} else {
440 			/* This can sleep. It must not use timeouts. */
441 			timeout_del_barrier(&p->p_sleep_to);
442 		}
443 		atomic_clearbits_int(&p->p_flag, P_TIMEOUT);
444 	}
445 
446 	/*
447 	 * Check if thread was woken up because of a unwind or signal
448 	 * but ignore any pending stop condition.
449 	 */
450 	if (catch != 0)
451 		error = sleep_signal_check(p, 1);
452 
453 	/* Signal errors are higher priority than timeouts. */
454 	if (error == 0 && error1 != 0)
455 		error = error1;
456 
457 	return error;
458 }
459 
460 /*
461  * Check and handle signals and suspensions around a sleep cycle.
462  * The 2nd call in sleep_finish() sets nostop = 1 and then stop
463  * signals can be ignored since the sleep is over and the process
464  * will stop in userret.
465  */
466 int
467 sleep_signal_check(struct proc *p, int nostop)
468 {
469 	struct sigctx ctx;
470 	int err, sig;
471 
472 	if ((err = single_thread_check(p, 1)) != 0)
473 		return err;
474 	if ((sig = cursig(p, &ctx, 1)) != 0) {
475 		if (ctx.sig_stop) {
476 			if (nostop)
477 				return 0;
478 			p->p_p->ps_xsig = sig;
479 			SCHED_LOCK();
480 			proc_stop(p, 0);
481 			SCHED_UNLOCK();
482 		} else if (ctx.sig_intr && !ctx.sig_ignore)
483 			return EINTR;
484 		else
485 			return ERESTART;
486 	}
487 	return 0;
488 }
489 
490 int
491 wakeup_proc(struct proc *p, int flags)
492 {
493 	int awakened = 0;
494 
495 	SCHED_ASSERT_LOCKED();
496 
497 	if (p->p_wchan != NULL) {
498 		awakened = 1;
499 		if (flags)
500 			atomic_setbits_int(&p->p_flag, flags);
501 #ifdef DIAGNOSTIC
502 		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
503 			panic("thread %d p_stat is %d", p->p_tid, p->p_stat);
504 #endif
505 		unsleep(p);
506 		if (p->p_stat == SSLEEP)
507 			setrunnable(p);
508 	}
509 
510 	return awakened;
511 }
512 
513 
514 /*
515  * Implement timeout for tsleep.
516  * If process hasn't been awakened (wchan non-zero),
517  * set timeout flag and undo the sleep.  If proc
518  * is stopped, just unsleep so it will remain stopped.
519  */
520 void
521 endtsleep(void *arg)
522 {
523 	struct proc *p = arg;
524 
525 	SCHED_LOCK();
526 	wakeup_proc(p, P_TIMEOUT);
527 	SCHED_UNLOCK();
528 }
529 
530 /*
531  * Remove a process from its wait queue
532  */
533 void
534 unsleep(struct proc *p)
535 {
536 	SCHED_ASSERT_LOCKED();
537 
538 	if (p->p_wchan != NULL) {
539 		TAILQ_REMOVE(&slpque[LOOKUP(p->p_wchan)], p, p_runq);
540 		p->p_wchan = NULL;
541 		p->p_wmesg = NULL;
542 		TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET,
543 		    p->p_p->ps_pid);
544 	}
545 }
546 
547 /*
548  * Make a number of processes sleeping on the specified identifier runnable.
549  */
550 void
551 wakeup_n(const volatile void *ident, int n)
552 {
553 	struct slpque *qp, wakeq;
554 	struct proc *p;
555 	struct proc *pnext;
556 
557 	TAILQ_INIT(&wakeq);
558 
559 	SCHED_LOCK();
560 	qp = &slpque[LOOKUP(ident)];
561 	for (p = TAILQ_FIRST(qp); p != NULL && n != 0; p = pnext) {
562 		pnext = TAILQ_NEXT(p, p_runq);
563 #ifdef DIAGNOSTIC
564 		if (p->p_stat != SSLEEP && p->p_stat != SSTOP)
565 			panic("thread %d p_stat is %d", p->p_tid, p->p_stat);
566 #endif
567 		KASSERT(p->p_wchan != NULL);
568 		if (p->p_wchan == ident) {
569 			TAILQ_REMOVE(qp, p, p_runq);
570 			p->p_wchan = NULL;
571 			p->p_wmesg = NULL;
572 			TAILQ_INSERT_TAIL(&wakeq, p, p_runq);
573 			--n;
574 		}
575 	}
576 	while ((p = TAILQ_FIRST(&wakeq))) {
577 		TAILQ_REMOVE(&wakeq, p, p_runq);
578 		TRACEPOINT(sched, unsleep, p->p_tid + THREAD_PID_OFFSET,
579 		    p->p_p->ps_pid);
580 		if (p->p_stat == SSLEEP)
581 			setrunnable(p);
582 	}
583 	SCHED_UNLOCK();
584 }
585 
586 /*
587  * Make all processes sleeping on the specified identifier runnable.
588  */
589 void
590 wakeup(const volatile void *chan)
591 {
592 	wakeup_n(chan, -1);
593 }
594 
595 int
596 sys_sched_yield(struct proc *p, void *v, register_t *retval)
597 {
598 	struct proc *q;
599 	uint8_t newprio;
600 
601 	/*
602 	 * If one of the threads of a multi-threaded process called
603 	 * sched_yield(2), drop its priority to ensure its siblings
604 	 * can make some progress.
605 	 */
606 	mtx_enter(&p->p_p->ps_mtx);
607 	newprio = p->p_usrpri;
608 	TAILQ_FOREACH(q, &p->p_p->ps_threads, p_thr_link)
609 		newprio = max(newprio, q->p_runpri);
610 	mtx_leave(&p->p_p->ps_mtx);
611 
612 	SCHED_LOCK();
613 	setrunqueue(p->p_cpu, p, newprio);
614 	p->p_ru.ru_nvcsw++;
615 	mi_switch();
616 	SCHED_UNLOCK();
617 
618 	return (0);
619 }
620 
621 static inline int
622 thrsleep_unlock(_atomic_lock_t *atomiclock)
623 {
624 	static _atomic_lock_t unlocked = _ATOMIC_LOCK_UNLOCKED;
625 
626 	if (atomiclock == NULL)
627 		return 0;
628 
629 	return copyout(&unlocked, atomiclock, sizeof(unlocked));
630 }
631 
632 struct tslpentry {
633 	TAILQ_ENTRY(tslpentry)	 tslp_link;
634 	struct process		*tslp_ps;
635 	long			 tslp_ident;
636 	struct proc *volatile	 tslp_p;
637 };
638 
639 struct tslp_bucket {
640 	struct tslpqueue	 tsb_list;
641 	struct mutex		 tsb_lock;
642 } __aligned(64);
643 
644 /* thrsleep queue shared between processes */
645 static struct tslp_bucket tsb_shared;
646 
647 #define TSLP_BUCKET_BITS	6
648 #define TSLP_BUCKET_SIZE	(1UL << TSLP_BUCKET_BITS)
649 #define TSLP_BUCKET_MASK	(TSLP_BUCKET_SIZE - 1)
650 
651 static struct tslp_bucket tsb_buckets[TSLP_BUCKET_SIZE];
652 
653 void
654 tslp_init(void)
655 {
656 	struct tslp_bucket *tsb;
657 	size_t i;
658 
659 	TAILQ_INIT(&tsb_shared.tsb_list);
660 	mtx_init(&tsb_shared.tsb_lock, IPL_MPFLOOR);
661 
662 	for (i = 0; i < nitems(tsb_buckets); i++) {
663 		tsb = &tsb_buckets[i];
664 
665 		TAILQ_INIT(&tsb->tsb_list);
666 		mtx_init(&tsb->tsb_lock, IPL_MPFLOOR);
667 	}
668 }
669 
670 static struct tslp_bucket *
671 thrsleep_bucket(long ident)
672 {
673 	ident >>= 3;
674 	ident ^= ident >> TSLP_BUCKET_BITS;
675 	ident &= TSLP_BUCKET_MASK;
676 
677 	return &tsb_buckets[ident];
678 }
679 
680 static int
681 thrsleep(struct proc *p, struct sys___thrsleep_args *v)
682 {
683 	struct sys___thrsleep_args /* {
684 		syscallarg(const volatile void *) ident;
685 		syscallarg(clockid_t) clock_id;
686 		syscallarg(const struct timespec *) tp;
687 		syscallarg(void *) lock;
688 		syscallarg(const int *) abort;
689 	} */ *uap = v;
690 	long ident = (long)SCARG(uap, ident);
691 	struct tslpentry entry;
692 	struct tslp_bucket *tsb;
693 	struct timespec *tsp = (struct timespec *)SCARG(uap, tp);
694 	void *lock = SCARG(uap, lock);
695 	const uint32_t *abortp = SCARG(uap, abort);
696 	clockid_t clock_id = SCARG(uap, clock_id);
697 	uint64_t to_ticks = 0;
698 	int error = 0;
699 
700 	if (ident == 0)
701 		return (EINVAL);
702 	if (tsp != NULL) {
703 		struct timespec now;
704 		uint64_t nsecs;
705 
706 		if ((error = clock_gettime(p, clock_id, &now)))
707 			return (error);
708 #ifdef KTRACE
709 		if (KTRPOINT(p, KTR_STRUCT))
710 			ktrabstimespec(p, tsp);
711 #endif
712 
713 		if (timespeccmp(tsp, &now, <=)) {
714 			/* already passed: still do the unlock */
715 			if ((error = thrsleep_unlock(lock)))
716 				return (error);
717 			return (EWOULDBLOCK);
718 		}
719 
720 		timespecsub(tsp, &now, tsp);
721 		nsecs = MIN(TIMESPEC_TO_NSEC(tsp), MAXTSLP);
722 		to_ticks = (nsecs + tick_nsec - 1) / (tick_nsec + 1) + 1;
723 		if (to_ticks > INT_MAX)
724 			to_ticks = INT_MAX;
725 	}
726 
727 	tsb = (ident == -1) ? &tsb_shared : thrsleep_bucket(ident);
728 
729 	/* Interlock with wakeup. */
730 	entry.tslp_ps = p->p_p;
731 	entry.tslp_ident = ident;
732 	entry.tslp_p = p;
733 
734 	mtx_enter(&tsb->tsb_lock);
735 	TAILQ_INSERT_TAIL(&tsb->tsb_list, &entry, tslp_link);
736 	mtx_leave(&tsb->tsb_lock);
737 
738 	error = thrsleep_unlock(lock);
739 	if (error != 0)
740 		goto leave;
741 
742 	if (abortp != NULL) {
743 		uint32_t abort;
744 		error = copyin32(abortp, &abort);
745 		if (error != 0)
746 			goto leave;
747 		if (abort) {
748 			error = EINTR;
749 			goto leave;
750 		}
751 	}
752 
753 	sleep_setup(&entry, PWAIT|PCATCH, "thrsleep");
754 	error = sleep_finish(to_ticks, entry.tslp_p != NULL);
755 	if (error != 0 || entry.tslp_p != NULL) {
756 		mtx_enter(&tsb->tsb_lock);
757 		if (entry.tslp_p != NULL)
758 			TAILQ_REMOVE(&tsb->tsb_list, &entry, tslp_link);
759 		else
760 			error = 0;
761 		mtx_leave(&tsb->tsb_lock);
762 
763 		if (error == ERESTART)
764 			error = ECANCELED;
765 	}
766 
767 	return (error);
768 
769 leave:
770 	if (entry.tslp_p != NULL) {
771 		mtx_enter(&tsb->tsb_lock);
772 		if (entry.tslp_p != NULL)
773 			TAILQ_REMOVE(&tsb->tsb_list, &entry, tslp_link);
774 		mtx_leave(&tsb->tsb_lock);
775 	}
776 
777 	return (error);
778 }
779 
780 int
781 sys___thrsleep(struct proc *p, void *v, register_t *retval)
782 {
783 	struct sys___thrsleep_args /* {
784 		syscallarg(const volatile void *) ident;
785 		syscallarg(clockid_t) clock_id;
786 		syscallarg(struct timespec *) tp;
787 		syscallarg(void *) lock;
788 		syscallarg(const int *) abort;
789 	} */ *uap = v;
790 	struct timespec ts;
791 	int error;
792 
793 	if (SCARG(uap, tp) != NULL) {
794 		if ((error = copyin(SCARG(uap, tp), &ts, sizeof(ts)))) {
795 			*retval = error;
796 			return 0;
797 		}
798 		if (!timespecisvalid(&ts)) {
799 			*retval = EINVAL;
800 			return 0;
801 		}
802 		SCARG(uap, tp) = &ts;
803 	}
804 
805 	*retval = thrsleep(p, uap);
806 	return 0;
807 }
808 
809 static void
810 tslp_wakeups(struct tslpqueue *tslpq)
811 {
812 	struct tslpentry *entry, *nentry;
813 	struct proc *p;
814 
815 	SCHED_LOCK();
816 	TAILQ_FOREACH_SAFE(entry, tslpq, tslp_link, nentry) {
817 		p = entry->tslp_p;
818 		entry->tslp_p = NULL;
819 		wakeup_proc(p, 0);
820 	}
821 	SCHED_UNLOCK();
822 }
823 
824 int
825 sys___thrwakeup(struct proc *p, void *v, register_t *retval)
826 {
827 	struct sys___thrwakeup_args /* {
828 		syscallarg(const volatile void *) ident;
829 		syscallarg(int) n;
830 	} */ *uap = v;
831 	struct tslpentry *entry, *nentry;
832 	struct tslp_bucket *tsb;
833 	long ident = (long)SCARG(uap, ident);
834 	int n = SCARG(uap, n);
835 	int found = 0;
836 	struct tslpqueue wq = TAILQ_HEAD_INITIALIZER(wq);
837 
838 	if (ident == 0) {
839 		*retval = EINVAL;
840 		return (0);
841 	}
842 
843 	if (ident == -1) {
844 		/*
845 		 * Wake up all waiters with ident -1. This is needed
846 		 * because ident -1 can be shared by multiple userspace
847 		 * lock state machines concurrently. The implementation
848 		 * has no way to direct the wakeup to a particular
849 		 * state machine.
850 		 */
851 		mtx_enter(&tsb_shared.tsb_lock);
852 		tslp_wakeups(&tsb_shared.tsb_list);
853 		TAILQ_INIT(&tsb_shared.tsb_list);
854 		mtx_leave(&tsb_shared.tsb_lock);
855 
856 		*retval = 0;
857 		return (0);
858 	}
859 
860 	tsb = thrsleep_bucket(ident);
861 
862 	mtx_enter(&tsb->tsb_lock);
863 	TAILQ_FOREACH_SAFE(entry, &tsb->tsb_list, tslp_link, nentry) {
864 		if (entry->tslp_ident == ident && entry->tslp_ps == p->p_p) {
865 			TAILQ_REMOVE(&tsb->tsb_list, entry, tslp_link);
866 			TAILQ_INSERT_TAIL(&wq, entry, tslp_link);
867 
868 			if (++found == n)
869 				break;
870 		}
871 	}
872 
873 	if (found)
874 		tslp_wakeups(&wq);
875 	mtx_leave(&tsb->tsb_lock);
876 
877 	*retval = found ? 0 : ESRCH;
878 	return (0);
879 }
880 
881 void
882 refcnt_init(struct refcnt *r)
883 {
884 	refcnt_init_trace(r, 0);
885 }
886 
887 void
888 refcnt_init_trace(struct refcnt *r, int idx)
889 {
890 	r->r_traceidx = idx;
891 	atomic_store_int(&r->r_refs, 1);
892 	TRACEINDEX(refcnt, r->r_traceidx, r, 0, +1);
893 }
894 
895 void
896 refcnt_take(struct refcnt *r)
897 {
898 	u_int refs;
899 
900 	refs = atomic_inc_int_nv(&r->r_refs);
901 	KASSERT(refs != 0);
902 	TRACEINDEX(refcnt, r->r_traceidx, r, refs - 1, +1);
903 	(void)refs;
904 }
905 
906 int
907 refcnt_rele(struct refcnt *r)
908 {
909 	u_int refs;
910 
911 	membar_exit_before_atomic();
912 	refs = atomic_dec_int_nv(&r->r_refs);
913 	KASSERT(refs != ~0);
914 	TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1);
915 	if (refs == 0) {
916 		membar_enter_after_atomic();
917 		return (1);
918 	}
919 	return (0);
920 }
921 
922 void
923 refcnt_rele_wake(struct refcnt *r)
924 {
925 	if (refcnt_rele(r))
926 		wakeup_one(r);
927 }
928 
929 void
930 refcnt_finalize(struct refcnt *r, const char *wmesg)
931 {
932 	u_int refs;
933 
934 	membar_exit_before_atomic();
935 	refs = atomic_dec_int_nv(&r->r_refs);
936 	KASSERT(refs != ~0);
937 	TRACEINDEX(refcnt, r->r_traceidx, r, refs + 1, -1);
938 	while (refs) {
939 		sleep_setup(r, PWAIT, wmesg);
940 		refs = atomic_load_int(&r->r_refs);
941 		sleep_finish(0, refs);
942 	}
943 	TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
944 	/* Order subsequent loads and stores after refs == 0 load. */
945 	membar_sync();
946 }
947 
948 int
949 refcnt_shared(struct refcnt *r)
950 {
951 	u_int refs;
952 
953 	refs = atomic_load_int(&r->r_refs);
954 	TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
955 	return (refs > 1);
956 }
957 
958 unsigned int
959 refcnt_read(struct refcnt *r)
960 {
961 	u_int refs;
962 
963 	refs = atomic_load_int(&r->r_refs);
964 	TRACEINDEX(refcnt, r->r_traceidx, r, refs, 0);
965 	return (refs);
966 }
967 
968 void
969 cond_init(struct cond *c)
970 {
971 	atomic_store_int(&c->c_wait, 1);
972 }
973 
974 void
975 cond_signal(struct cond *c)
976 {
977 	atomic_store_int(&c->c_wait, 0);
978 
979 	wakeup_one(c);
980 }
981 
982 void
983 cond_wait(struct cond *c, const char *wmesg)
984 {
985 	unsigned int wait;
986 
987 	wait = atomic_load_int(&c->c_wait);
988 	while (wait) {
989 		sleep_setup(c, PWAIT, wmesg);
990 		wait = atomic_load_int(&c->c_wait);
991 		sleep_finish(0, wait);
992 	}
993 }
994