xref: /openbsd-src/sys/kern/kern_synch.c (revision 3a3fbb3f2e2521ab7c4a56b7ff7462ebd9095ec5)
1 /*	$OpenBSD: kern_synch.c,v 1.40 2001/11/11 22:30:56 art Exp $	*/
2 /*	$NetBSD: kern_synch.c,v 1.37 1996/04/22 01:38:37 christos Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1990, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)kern_synch.c	8.6 (Berkeley) 1/21/94
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/proc.h>
47 #include <sys/kernel.h>
48 #include <sys/buf.h>
49 #include <sys/signalvar.h>
50 #include <sys/resourcevar.h>
51 #include <uvm/uvm_extern.h>
52 #include <sys/sched.h>
53 #include <sys/timeout.h>
54 
55 #ifdef KTRACE
56 #include <sys/ktrace.h>
57 #endif
58 
59 #include <machine/cpu.h>
60 
61 u_char	curpriority;		/* usrpri of curproc */
62 int	lbolt;			/* once a second sleep address */
63 
64 void scheduler_start __P((void));
65 
66 void roundrobin __P((void *));
67 void schedcpu __P((void *));
68 void updatepri __P((struct proc *));
69 void endtsleep __P((void *));
70 
71 void
72 scheduler_start()
73 {
74 	static struct timeout roundrobin_to;
75 	static struct timeout schedcpu_to;
76 
77 	/*
78 	 * We avoid polluting the global namespace by keeping the scheduler
79 	 * timeouts static in this function.
80 	 * We setup the timeouts here and kick roundrobin and schedcpu once to
81 	 * make them do their job.
82 	 */
83 
84 	timeout_set(&roundrobin_to, roundrobin, &roundrobin_to);
85 	timeout_set(&schedcpu_to, schedcpu, &schedcpu_to);
86 
87 	roundrobin(&roundrobin_to);
88 	schedcpu(&schedcpu_to);
89 }
90 
91 /*
92  * Force switch among equal priority processes every 100ms.
93  */
94 /* ARGSUSED */
95 void
96 roundrobin(arg)
97 	void *arg;
98 {
99 	struct timeout *to = (struct timeout *)arg;
100 	struct proc *p = curproc;
101 	int s;
102 
103 	if (p != NULL) {
104 		s = splstatclock();
105 		if (p->p_schedflags & PSCHED_SEENRR) {
106 			/*
107 			 * The process has already been through a roundrobin
108 			 * without switching and may be hogging the CPU.
109 			 * Indicate that the process should yield.
110 			 */
111 			p->p_schedflags |= PSCHED_SHOULDYIELD;
112 		} else {
113 			p->p_schedflags |= PSCHED_SEENRR;
114 		}
115 		splx(s);
116 	}
117 	need_resched();
118 	timeout_add(to, hz / 10);
119 }
120 
121 /*
122  * Constants for digital decay and forget:
123  *	90% of (p_estcpu) usage in 5 * loadav time
124  *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
125  *          Note that, as ps(1) mentions, this can let percentages
126  *          total over 100% (I've seen 137.9% for 3 processes).
127  *
128  * Note that hardclock updates p_estcpu and p_cpticks independently.
129  *
130  * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
131  * That is, the system wants to compute a value of decay such
132  * that the following for loop:
133  * 	for (i = 0; i < (5 * loadavg); i++)
134  * 		p_estcpu *= decay;
135  * will compute
136  * 	p_estcpu *= 0.1;
137  * for all values of loadavg:
138  *
139  * Mathematically this loop can be expressed by saying:
140  * 	decay ** (5 * loadavg) ~= .1
141  *
142  * The system computes decay as:
143  * 	decay = (2 * loadavg) / (2 * loadavg + 1)
144  *
145  * We wish to prove that the system's computation of decay
146  * will always fulfill the equation:
147  * 	decay ** (5 * loadavg) ~= .1
148  *
149  * If we compute b as:
150  * 	b = 2 * loadavg
151  * then
152  * 	decay = b / (b + 1)
153  *
154  * We now need to prove two things:
155  *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
156  *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
157  *
158  * Facts:
159  *         For x close to zero, exp(x) =~ 1 + x, since
160  *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
161  *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
162  *         For x close to zero, ln(1+x) =~ x, since
163  *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
164  *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
165  *         ln(.1) =~ -2.30
166  *
167  * Proof of (1):
168  *    Solve (factor)**(power) =~ .1 given power (5*loadav):
169  *	solving for factor,
170  *      ln(factor) =~ (-2.30/5*loadav), or
171  *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
172  *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
173  *
174  * Proof of (2):
175  *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
176  *	solving for power,
177  *      power*ln(b/(b+1)) =~ -2.30, or
178  *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
179  *
180  * Actual power values for the implemented algorithm are as follows:
181  *      loadav: 1       2       3       4
182  *      power:  5.68    10.32   14.94   19.55
183  */
184 
185 /* calculations for digital decay to forget 90% of usage in 5*loadav sec */
186 #define	loadfactor(loadav)	(2 * (loadav))
187 #define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))
188 
189 /* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
190 fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;		/* exp(-1/20) */
191 
192 /*
193  * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
194  * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
195  * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
196  *
197  * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
198  *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
199  *
200  * If you dont want to bother with the faster/more-accurate formula, you
201  * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
202  * (more general) method of calculating the %age of CPU used by a process.
203  */
204 #define	CCPU_SHIFT	11
205 
206 /*
207  * Recompute process priorities, every hz ticks.
208  */
209 /* ARGSUSED */
210 void
211 schedcpu(arg)
212 	void *arg;
213 {
214 	struct timeout *to = (struct timeout *)arg;
215 	fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
216 	struct proc *p;
217 	int s;
218 	unsigned int newcpu;
219 	int phz;
220 
221 	/*
222 	 * If we have a statistics clock, use that to calculate CPU
223 	 * time, otherwise revert to using the profiling clock (which,
224 	 * in turn, defaults to hz if there is no separate profiling
225 	 * clock available)
226 	 */
227 	phz = stathz ? stathz : profhz;
228 	KASSERT(phz);
229 
230 	for (p = LIST_FIRST(&allproc); p != 0; p = LIST_NEXT(p, p_list)) {
231 		/*
232 		 * Increment time in/out of memory and sleep time
233 		 * (if sleeping).  We ignore overflow; with 16-bit int's
234 		 * (remember them?) overflow takes 45 days.
235 		 */
236 		p->p_swtime++;
237 		if (p->p_stat == SSLEEP || p->p_stat == SSTOP)
238 			p->p_slptime++;
239 		p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
240 		/*
241 		 * If the process has slept the entire second,
242 		 * stop recalculating its priority until it wakes up.
243 		 */
244 		if (p->p_slptime > 1)
245 			continue;
246 		s = splstatclock();	/* prevent state changes */
247 		/*
248 		 * p_pctcpu is only for ps.
249 		 */
250 #if	(FSHIFT >= CCPU_SHIFT)
251 		p->p_pctcpu += (phz == 100)?
252 			((fixpt_t) p->p_cpticks) << (FSHIFT - CCPU_SHIFT):
253                 	100 * (((fixpt_t) p->p_cpticks)
254 				<< (FSHIFT - CCPU_SHIFT)) / phz;
255 #else
256 		p->p_pctcpu += ((FSCALE - ccpu) *
257 			(p->p_cpticks * FSCALE / phz)) >> FSHIFT;
258 #endif
259 		p->p_cpticks = 0;
260 		newcpu = (u_int) decay_cpu(loadfac, p->p_estcpu);
261 		p->p_estcpu = newcpu;
262 		resetpriority(p);
263 		if (p->p_priority >= PUSER) {
264 			if ((p != curproc) &&
265 			    p->p_stat == SRUN &&
266 			    (p->p_flag & P_INMEM) &&
267 			    (p->p_priority / PPQ) != (p->p_usrpri / PPQ)) {
268 				remrunqueue(p);
269 				p->p_priority = p->p_usrpri;
270 				setrunqueue(p);
271 			} else
272 				p->p_priority = p->p_usrpri;
273 		}
274 		splx(s);
275 	}
276 	uvm_meter();
277 	wakeup((caddr_t)&lbolt);
278 	timeout_add(to, hz);
279 }
280 
281 /*
282  * Recalculate the priority of a process after it has slept for a while.
283  * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
284  * least six times the loadfactor will decay p_estcpu to zero.
285  */
286 void
287 updatepri(p)
288 	register struct proc *p;
289 {
290 	register unsigned int newcpu = p->p_estcpu;
291 	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
292 
293 	if (p->p_slptime > 5 * loadfac)
294 		p->p_estcpu = 0;
295 	else {
296 		p->p_slptime--;	/* the first time was done in schedcpu */
297 		while (newcpu && --p->p_slptime)
298 			newcpu = (int) decay_cpu(loadfac, newcpu);
299 		p->p_estcpu = newcpu;
300 	}
301 	resetpriority(p);
302 }
303 
304 /*
305  * We're only looking at 7 bits of the address; everything is
306  * aligned to 4, lots of things are aligned to greater powers
307  * of 2.  Shift right by 8, i.e. drop the bottom 256 worth.
308  */
309 #define TABLESIZE	128
310 #define LOOKUP(x)	(((long)(x) >> 8) & (TABLESIZE - 1))
311 struct slpque {
312 	struct proc *sq_head;
313 	struct proc **sq_tailp;
314 } slpque[TABLESIZE];
315 
316 /*
317  * During autoconfiguration or after a panic, a sleep will simply
318  * lower the priority briefly to allow interrupts, then return.
319  * The priority to be used (safepri) is machine-dependent, thus this
320  * value is initialized and maintained in the machine-dependent layers.
321  * This priority will typically be 0, or the lowest priority
322  * that is safe for use on the interrupt stack; it can be made
323  * higher to block network software interrupts after panics.
324  */
325 int safepri;
326 
327 /*
328  * General sleep call.  Suspends the current process until a wakeup is
329  * performed on the specified identifier.  The process will then be made
330  * runnable with the specified priority.  Sleeps at most timo/hz seconds
331  * (0 means no timeout).  If pri includes PCATCH flag, signals are checked
332  * before and after sleeping, else signals are not checked.  Returns 0 if
333  * awakened, EWOULDBLOCK if the timeout expires.  If PCATCH is set and a
334  * signal needs to be delivered, ERESTART is returned if the current system
335  * call should be restarted if possible, and EINTR is returned if the system
336  * call should be interrupted by the signal (return EINTR).
337  *
338  * The interlock is held until the scheduler_slock (XXX) is held.  The
339  * interlock will be locked before returning back to the caller
340  * unless the PNORELOCK flag is specified, in which case the
341  * interlock will always be unlocked upon return.
342  */
343 int
344 ltsleep(ident, priority, wmesg, timo, interlock)
345 	void *ident;
346 	int priority, timo;
347 	const char *wmesg;
348 	volatile struct simplelock *interlock;
349 {
350 	struct proc *p = curproc;
351 	struct slpque *qp;
352 	int s, sig;
353 	int catch = priority & PCATCH;
354 	int relock = (priority & PNORELOCK) == 0;
355 
356 #ifdef KTRACE
357 	if (KTRPOINT(p, KTR_CSW))
358 		ktrcsw(p, 1, 0);
359 #endif
360 	s = splhigh();
361 	if (cold || panicstr) {
362 		/*
363 		 * After a panic, or during autoconfiguration,
364 		 * just give interrupts a chance, then just return;
365 		 * don't run any other procs or panic below,
366 		 * in case this is the idle process and already asleep.
367 		 */
368 		splx(safepri);
369 		splx(s);
370 		if (interlock != NULL && relock == 0)
371 			simple_unlock(interlock);
372 		return (0);
373 	}
374 #ifdef DIAGNOSTIC
375 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
376 		panic("tsleep");
377 #endif
378 	p->p_wchan = ident;
379 	p->p_wmesg = wmesg;
380 	p->p_slptime = 0;
381 	p->p_priority = priority & PRIMASK;
382 	qp = &slpque[LOOKUP(ident)];
383 	if (qp->sq_head == 0)
384 		qp->sq_head = p;
385 	else
386 		*qp->sq_tailp = p;
387 	*(qp->sq_tailp = &p->p_forw) = 0;
388 	if (timo)
389 		timeout_add(&p->p_sleep_to, timo);
390 	/*
391 	 * We can now release the interlock; the scheduler_slock
392 	 * is held, so a thread can't get in to do wakeup() before
393 	 * we do the switch.
394 	 *
395 	 * XXX We leave the code block here, after inserting ourselves
396 	 * on the sleep queue, because we might want a more clever
397 	 * data structure for the sleep queues at some point.
398 	 */
399 	if (interlock != NULL)
400 		simple_unlock(interlock);
401 
402 	/*
403 	 * We put ourselves on the sleep queue and start our timeout
404 	 * before calling CURSIG, as we could stop there, and a wakeup
405 	 * or a SIGCONT (or both) could occur while we were stopped.
406 	 * A SIGCONT would cause us to be marked as SSLEEP
407 	 * without resuming us, thus we must be ready for sleep
408 	 * when CURSIG is called.  If the wakeup happens while we're
409 	 * stopped, p->p_wchan will be 0 upon return from CURSIG.
410 	 */
411 	if (catch) {
412 		p->p_flag |= P_SINTR;
413 		if ((sig = CURSIG(p)) != 0) {
414 			if (p->p_wchan)
415 				unsleep(p);
416 			p->p_stat = SRUN;
417 			goto resume;
418 		}
419 		if (p->p_wchan == 0) {
420 			catch = 0;
421 			goto resume;
422 		}
423 	} else
424 		sig = 0;
425 	p->p_stat = SSLEEP;
426 	p->p_stats->p_ru.ru_nvcsw++;
427 	mi_switch();
428 #ifdef	DDB
429 	/* handy breakpoint location after process "wakes" */
430 	__asm(".globl bpendtsleep ; bpendtsleep:");
431 #endif
432 resume:
433 	curpriority = p->p_usrpri;
434 	splx(s);
435 	p->p_flag &= ~P_SINTR;
436 	if (p->p_flag & P_TIMEOUT) {
437 		p->p_flag &= ~P_TIMEOUT;
438 		if (sig == 0) {
439 #ifdef KTRACE
440 			if (KTRPOINT(p, KTR_CSW))
441 				ktrcsw(p, 0, 0);
442 #endif
443 			if (interlock != NULL && relock)
444 				simple_lock(interlock);
445 			return (EWOULDBLOCK);
446 		}
447 	} else if (timo)
448 		timeout_del(&p->p_sleep_to);
449 	if (catch && (sig != 0 || (sig = CURSIG(p)) != 0)) {
450 #ifdef KTRACE
451 		if (KTRPOINT(p, KTR_CSW))
452 			ktrcsw(p, 0, 0);
453 #endif
454 		if (interlock != NULL && relock)
455 			simple_lock(interlock);
456 		if (p->p_sigacts->ps_sigintr & sigmask(sig))
457 			return (EINTR);
458 		return (ERESTART);
459 	}
460 #ifdef KTRACE
461 	if (KTRPOINT(p, KTR_CSW))
462 		ktrcsw(p, 0, 0);
463 #endif
464 	if (interlock != NULL && relock)
465 		simple_lock(interlock);
466 	return (0);
467 }
468 
469 /*
470  * Implement timeout for tsleep.
471  * If process hasn't been awakened (wchan non-zero),
472  * set timeout flag and undo the sleep.  If proc
473  * is stopped, just unsleep so it will remain stopped.
474  */
475 void
476 endtsleep(arg)
477 	void *arg;
478 {
479 	struct proc *p;
480 	int s;
481 
482 	p = (struct proc *)arg;
483 	s = splhigh();
484 	if (p->p_wchan) {
485 		if (p->p_stat == SSLEEP)
486 			setrunnable(p);
487 		else
488 			unsleep(p);
489 		p->p_flag |= P_TIMEOUT;
490 	}
491 	splx(s);
492 }
493 
494 /*
495  * Short-term, non-interruptable sleep.
496  */
497 void
498 sleep(ident, priority)
499 	void *ident;
500 	int priority;
501 {
502 	register struct proc *p = curproc;
503 	register struct slpque *qp;
504 	register int s;
505 
506 #ifdef DIAGNOSTIC
507 	if (priority > PZERO) {
508 		printf("sleep called with priority %d > PZERO, wchan: %p\n",
509 		    priority, ident);
510 		panic("old sleep");
511 	}
512 #endif
513 	s = splhigh();
514 	if (cold || panicstr) {
515 		/*
516 		 * After a panic, or during autoconfiguration,
517 		 * just give interrupts a chance, then just return;
518 		 * don't run any other procs or panic below,
519 		 * in case this is the idle process and already asleep.
520 		 */
521 		splx(safepri);
522 		splx(s);
523 		return;
524 	}
525 #ifdef DIAGNOSTIC
526 	if (ident == NULL || p->p_stat != SRUN || p->p_back)
527 		panic("sleep");
528 #endif
529 	p->p_wchan = ident;
530 	p->p_wmesg = NULL;
531 	p->p_slptime = 0;
532 	p->p_priority = priority;
533 	qp = &slpque[LOOKUP(ident)];
534 	if (qp->sq_head == 0)
535 		qp->sq_head = p;
536 	else
537 		*qp->sq_tailp = p;
538 	*(qp->sq_tailp = &p->p_forw) = 0;
539 	p->p_stat = SSLEEP;
540 	p->p_stats->p_ru.ru_nvcsw++;
541 #ifdef KTRACE
542 	if (KTRPOINT(p, KTR_CSW))
543 		ktrcsw(p, 1, 0);
544 #endif
545 	mi_switch();
546 #ifdef	DDB
547 	/* handy breakpoint location after process "wakes" */
548 	__asm(".globl bpendsleep ; bpendsleep:");
549 #endif
550 #ifdef KTRACE
551 	if (KTRPOINT(p, KTR_CSW))
552 		ktrcsw(p, 0, 0);
553 #endif
554 	curpriority = p->p_usrpri;
555 	splx(s);
556 }
557 
558 /*
559  * Remove a process from its wait queue
560  */
561 void
562 unsleep(p)
563 	register struct proc *p;
564 {
565 	register struct slpque *qp;
566 	register struct proc **hp;
567 	int s;
568 
569 	s = splhigh();
570 	if (p->p_wchan) {
571 		hp = &(qp = &slpque[LOOKUP(p->p_wchan)])->sq_head;
572 		while (*hp != p)
573 			hp = &(*hp)->p_forw;
574 		*hp = p->p_forw;
575 		if (qp->sq_tailp == &p->p_forw)
576 			qp->sq_tailp = hp;
577 		p->p_wchan = 0;
578 	}
579 	splx(s);
580 }
581 
582 /*
583  * Make all processes sleeping on the specified identifier runnable.
584  */
585 void
586 wakeup_n(ident, n)
587 	void *ident;
588 	int n;
589 {
590 	struct slpque *qp;
591 	struct proc *p, **q;
592 	int s;
593 
594 	s = splhigh();
595 	qp = &slpque[LOOKUP(ident)];
596 restart:
597 	for (q = &qp->sq_head; (p = *q) != NULL; ) {
598 #ifdef DIAGNOSTIC
599 		if (p->p_back || (p->p_stat != SSLEEP && p->p_stat != SSTOP))
600 			panic("wakeup");
601 #endif
602 		if (p->p_wchan == ident) {
603 			--n;
604 			p->p_wchan = 0;
605 			*q = p->p_forw;
606 			if (qp->sq_tailp == &p->p_forw)
607 				qp->sq_tailp = q;
608 			if (p->p_stat == SSLEEP) {
609 				/* OPTIMIZED EXPANSION OF setrunnable(p); */
610 				if (p->p_slptime > 1)
611 					updatepri(p);
612 				p->p_slptime = 0;
613 				p->p_stat = SRUN;
614 
615 				/*
616 				 * Since curpriority is a user priority,
617 				 * p->p_priority is always better than
618 				 * curpriority.
619 				 */
620 
621 				if ((p->p_flag & P_INMEM) != 0) {
622 					setrunqueue(p);
623 					need_resched();
624 				} else {
625 					wakeup((caddr_t)&proc0);
626 				}
627 				/* END INLINE EXPANSION */
628 
629 				if (n != 0)
630 					goto restart;
631 				else
632 					break;
633 			}
634 		} else
635 			q = &p->p_forw;
636 	}
637 	splx(s);
638 }
639 
640 void
641 wakeup(chan)
642 	void *chan;
643 {
644 	wakeup_n(chan, -1);
645 }
646 
647 /*
648  * General yield call.  Puts the current process back on its run queue and
649  * performs a voluntary context switch.
650  */
651 void
652 yield()
653 {
654 	struct proc *p = curproc;
655 	int s;
656 
657 	p->p_priority = p->p_usrpri;
658 	s = splstatclock();
659 	setrunqueue(p);
660 	p->p_stats->p_ru.ru_nvcsw++;
661 	mi_switch();
662 	splx(s);
663 }
664 
665 /*
666  * General preemption call.  Puts the current process back on its run queue
667  * and performs an involuntary context switch.  If a process is supplied,
668  * we switch to that process.  Otherwise, we use the normal process selection
669  * criteria.
670  */
671 void
672 preempt(newp)
673 	struct proc *newp;
674 {
675 	struct proc *p = curproc;
676 	int s;
677 
678 	/*
679 	 * XXX Switching to a specific process is not supported yet.
680 	 */
681 	if (newp != NULL)
682 		panic("preempt: cpu_preempt not yet implemented");
683 
684 	p->p_priority = p->p_usrpri;
685 	s = splstatclock();
686 	setrunqueue(p);
687 	p->p_stats->p_ru.ru_nivcsw++;
688 	mi_switch();
689 	splx(s);
690 }
691 
692 
693 /*
694  * Must be called at splstatclock() or higher.
695  */
696 void
697 mi_switch()
698 {
699 	register struct proc *p = curproc;	/* XXX */
700 	register struct rlimit *rlim;
701 	register long s, u;
702 	struct timeval tv;
703 
704 	/*
705 	 * Compute the amount of time during which the current
706 	 * process was running, and add that to its total so far.
707 	 */
708 	microtime(&tv);
709 	u = p->p_rtime.tv_usec + (tv.tv_usec - runtime.tv_usec);
710 	s = p->p_rtime.tv_sec + (tv.tv_sec - runtime.tv_sec);
711 	if (u < 0) {
712 		u += 1000000;
713 		s--;
714 	} else if (u >= 1000000) {
715 		u -= 1000000;
716 		s++;
717 	}
718 	p->p_rtime.tv_usec = u;
719 	p->p_rtime.tv_sec = s;
720 
721 	/*
722 	 * Check if the process exceeds its cpu resource allocation.
723 	 * If over max, kill it.  In any case, if it has run for more
724 	 * than 10 minutes, reduce priority to give others a chance.
725 	 */
726 	rlim = &p->p_rlimit[RLIMIT_CPU];
727 	if (s >= rlim->rlim_cur) {
728 		if (s >= rlim->rlim_max)
729 			psignal(p, SIGKILL);
730 		else {
731 			psignal(p, SIGXCPU);
732 			if (rlim->rlim_cur < rlim->rlim_max)
733 				rlim->rlim_cur += 5;
734 		}
735 	}
736 	if (s > 10 * 60 && p->p_ucred->cr_uid && p->p_nice == NZERO) {
737 		p->p_nice = NZERO + 4;
738 		resetpriority(p);
739 	}
740 
741 
742 	/*
743 	 * Process is about to yield the CPU; clear the appropriate
744 	 * scheduling flags.
745 	 */
746 	p->p_schedflags &= ~PSCHED_SWITCHCLEAR;
747 
748 	/*
749 	 * Pick a new current process and record its start time.
750 	 */
751 	uvmexp.swtch++;
752 	cpu_switch(p);
753 	microtime(&runtime);
754 }
755 
756 /*
757  * Initialize the (doubly-linked) run queues
758  * to be empty.
759  */
760 void
761 rqinit()
762 {
763 	register int i;
764 
765 	for (i = 0; i < NQS; i++)
766 		qs[i].ph_link = qs[i].ph_rlink = (struct proc *)&qs[i];
767 }
768 
769 /*
770  * Change process state to be runnable,
771  * placing it on the run queue if it is in memory,
772  * and awakening the swapper if it isn't in memory.
773  */
774 void
775 setrunnable(p)
776 	register struct proc *p;
777 {
778 	register int s;
779 
780 	s = splhigh();
781 	switch (p->p_stat) {
782 	case 0:
783 	case SRUN:
784 	case SZOMB:
785 	case SDEAD:
786 	default:
787 		panic("setrunnable");
788 	case SSTOP:
789 		/*
790 		 * If we're being traced (possibly because someone attached us
791 		 * while we were stopped), check for a signal from the debugger.
792 		 */
793 		if ((p->p_flag & P_TRACED) != 0 && p->p_xstat != 0)
794 			p->p_siglist |= sigmask(p->p_xstat);
795 	case SSLEEP:
796 		unsleep(p);		/* e.g. when sending signals */
797 		break;
798 	case SIDL:
799 		break;
800 	}
801 	p->p_stat = SRUN;
802 	if (p->p_flag & P_INMEM)
803 		setrunqueue(p);
804 	splx(s);
805 	if (p->p_slptime > 1)
806 		updatepri(p);
807 	p->p_slptime = 0;
808 	if ((p->p_flag & P_INMEM) == 0)
809 		wakeup((caddr_t)&proc0);
810 	else if (p->p_priority < curpriority)
811 		need_resched();
812 }
813 
814 /*
815  * Compute the priority of a process when running in user mode.
816  * Arrange to reschedule if the resulting priority is better
817  * than that of the current process.
818  */
819 void
820 resetpriority(p)
821 	register struct proc *p;
822 {
823 	register unsigned int newpriority;
824 
825 	newpriority = PUSER + p->p_estcpu + NICE_WEIGHT * (p->p_nice - NZERO);
826 	newpriority = min(newpriority, MAXPRI);
827 	p->p_usrpri = newpriority;
828 	if (newpriority < curpriority)
829 		need_resched();
830 }
831 
832 /*
833  * We adjust the priority of the current process.  The priority of a process
834  * gets worse as it accumulates CPU time.  The cpu usage estimator (p_estcpu)
835  * is increased here.  The formula for computing priorities (in kern_synch.c)
836  * will compute a different value each time p_estcpu increases. This can
837  * cause a switch, but unless the priority crosses a PPQ boundary the actual
838  * queue will not change.  The cpu usage estimator ramps up quite quickly
839  * when the process is running (linearly), and decays away exponentially, at
840  * a rate which is proportionally slower when the system is busy.  The basic
841  * principle is that the system will 90% forget that the process used a lot
842  * of CPU time in 5 * loadav seconds.  This causes the system to favor
843  * processes which haven't run much recently, and to round-robin among other
844  * processes.
845  */
846 
847 void
848 schedclock(p)
849 	struct proc *p;
850 {
851 	p->p_estcpu = ESTCPULIM(p->p_estcpu + 1);
852 	resetpriority(p);
853 	if (p->p_priority >= PUSER)
854 		p->p_priority = p->p_usrpri;
855 }
856 
857 #ifdef DDB
858 #include <machine/db_machdep.h>
859 
860 #include <ddb/db_interface.h>
861 #include <ddb/db_output.h>
862 
863 void
864 db_show_all_procs(addr, haddr, count, modif)
865 	db_expr_t addr;
866 	int haddr;
867 	db_expr_t count;
868 	char *modif;
869 {
870 	char *mode;
871 	int doingzomb = 0;
872 	struct proc *p, *pp;
873 
874 	if (modif[0] == 0)
875 		modif[0] = 'n';			/* default == normal mode */
876 
877 	mode = "mawn";
878 	while (*mode && *mode != modif[0])
879 		mode++;
880 	if (*mode == 0 || *mode == 'm') {
881 		db_printf("usage: show all procs [/a] [/n] [/w]\n");
882 		db_printf("\t/a == show process address info\n");
883 		db_printf("\t/n == show normal process info [default]\n");
884 		db_printf("\t/w == show process wait/emul info\n");
885 		return;
886 	}
887 
888 	p = LIST_FIRST(&allproc);
889 
890 	switch (*mode) {
891 
892 	case 'a':
893 		db_printf("  PID  %-10s  %18s  %18s  %18s\n",
894 		    "COMMAND", "STRUCT PROC *", "UAREA *", "VMSPACE/VM_MAP");
895 		break;
896 	case 'n':
897 		db_printf("  PID  %5s  %5s  %5s  S  %10s  %-9s  %-16s\n",
898 		    "PPID", "PGRP", "UID", "FLAGS", "WAIT", "COMMAND");
899 		break;
900 	case 'w':
901 		db_printf("  PID  %-16s  %-8s  %18s  %s\n",
902 		    "COMMAND", "EMUL", "WAIT-CHANNEL", "WAIT-MSG");
903 		break;
904 	}
905 
906 	while (p != 0) {
907 		pp = p->p_pptr;
908 		if (p->p_stat) {
909 
910 			db_printf("%c%5d  ", p == curproc ? '*' : ' ',
911 				p->p_pid);
912 
913 			switch (*mode) {
914 
915 			case 'a':
916 				db_printf("%-10.10s  %18p  %18p  %18p\n",
917 				    p->p_comm, p, p->p_addr, p->p_vmspace);
918 				break;
919 
920 			case 'n':
921 				db_printf("%5d  %5d  %5d  %d  %#10x  "
922 				    "%-9.9s  %-16s\n",
923 				    pp ? pp->p_pid : -1, p->p_pgrp->pg_id,
924 				    p->p_cred->p_ruid, p->p_stat, p->p_flag,
925 				    (p->p_wchan && p->p_wmesg) ?
926 					p->p_wmesg : "", p->p_comm);
927 				break;
928 
929 			case 'w':
930 				db_printf("%-16s  %-8s  %18p  %s\n", p->p_comm,
931 				    p->p_emul->e_name, p->p_wchan,
932 				    (p->p_wchan && p->p_wmesg) ?
933 					p->p_wmesg : "");
934 				break;
935 
936 			}
937 		}
938 		p = LIST_NEXT(p, p_list);
939 		if (p == 0 && doingzomb == 0) {
940 			doingzomb = 1;
941 			p = LIST_FIRST(&zombproc);
942 		}
943 	}
944 }
945 #endif
946