xref: /openbsd-src/sys/kern/kern_sig.c (revision fb8aa7497fded39583f40e800732f9c046411717)
1 /*	$OpenBSD: kern_sig.c,v 1.200 2016/06/27 19:55:02 jca Exp $	*/
2 /*	$NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Theo de Raadt. All rights reserved.
6  * Copyright (c) 1982, 1986, 1989, 1991, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
39  */
40 
41 #define	SIGPROP		/* include signal properties table */
42 #include <sys/param.h>
43 #include <sys/signalvar.h>
44 #include <sys/resourcevar.h>
45 #include <sys/queue.h>
46 #include <sys/namei.h>
47 #include <sys/vnode.h>
48 #include <sys/event.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/acct.h>
52 #include <sys/file.h>
53 #include <sys/filedesc.h>
54 #include <sys/kernel.h>
55 #include <sys/wait.h>
56 #include <sys/ktrace.h>
57 #include <sys/stat.h>
58 #include <sys/core.h>
59 #include <sys/malloc.h>
60 #include <sys/pool.h>
61 #include <sys/ptrace.h>
62 #include <sys/sched.h>
63 #include <sys/user.h>
64 #include <sys/syslog.h>
65 #include <sys/pledge.h>
66 
67 #include <sys/mount.h>
68 #include <sys/syscallargs.h>
69 
70 #include <uvm/uvm_extern.h>
71 
72 #ifdef  __HAVE_MD_TCB
73 # include <machine/tcb.h>
74 #endif
75 
76 int	filt_sigattach(struct knote *kn);
77 void	filt_sigdetach(struct knote *kn);
78 int	filt_signal(struct knote *kn, long hint);
79 
80 struct filterops sig_filtops =
81 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
82 
83 void proc_stop(struct proc *p, int);
84 void proc_stop_sweep(void *);
85 struct timeout proc_stop_to;
86 
87 int cansignal(struct proc *, struct process *, int);
88 
89 struct pool sigacts_pool;	/* memory pool for sigacts structures */
90 
91 /*
92  * Can thread p, send the signal signum to process qr?
93  */
94 int
95 cansignal(struct proc *p, struct process *qr, int signum)
96 {
97 	struct process *pr = p->p_p;
98 	struct ucred *uc = p->p_ucred;
99 	struct ucred *quc = qr->ps_ucred;
100 
101 	if (uc->cr_uid == 0)
102 		return (1);		/* root can always signal */
103 
104 	if (pr == qr)
105 		return (1);		/* process can always signal itself */
106 
107 	/* optimization: if the same creds then the tests below will pass */
108 	if (uc == quc)
109 		return (1);
110 
111 	if (signum == SIGCONT && qr->ps_session == pr->ps_session)
112 		return (1);		/* SIGCONT in session */
113 
114 	/*
115 	 * Using kill(), only certain signals can be sent to setugid
116 	 * child processes
117 	 */
118 	if (qr->ps_flags & PS_SUGID) {
119 		switch (signum) {
120 		case 0:
121 		case SIGKILL:
122 		case SIGINT:
123 		case SIGTERM:
124 		case SIGALRM:
125 		case SIGSTOP:
126 		case SIGTTIN:
127 		case SIGTTOU:
128 		case SIGTSTP:
129 		case SIGHUP:
130 		case SIGUSR1:
131 		case SIGUSR2:
132 			if (uc->cr_ruid == quc->cr_ruid ||
133 			    uc->cr_uid == quc->cr_ruid)
134 				return (1);
135 		}
136 		return (0);
137 	}
138 
139 	if (uc->cr_ruid == quc->cr_ruid ||
140 	    uc->cr_ruid == quc->cr_svuid ||
141 	    uc->cr_uid == quc->cr_ruid ||
142 	    uc->cr_uid == quc->cr_svuid)
143 		return (1);
144 	return (0);
145 }
146 
147 /*
148  * Initialize signal-related data structures.
149  */
150 void
151 signal_init(void)
152 {
153 	timeout_set(&proc_stop_to, proc_stop_sweep, NULL);
154 
155 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, PR_WAITOK,
156 	    "sigapl", NULL);
157 }
158 
159 /*
160  * Create an initial sigacts structure, using the same signal state
161  * as p.
162  */
163 struct sigacts *
164 sigactsinit(struct process *pr)
165 {
166 	struct sigacts *ps;
167 
168 	ps = pool_get(&sigacts_pool, PR_WAITOK);
169 	memcpy(ps, pr->ps_sigacts, sizeof(struct sigacts));
170 	ps->ps_refcnt = 1;
171 	return (ps);
172 }
173 
174 /*
175  * Share a sigacts structure.
176  */
177 struct sigacts *
178 sigactsshare(struct process *pr)
179 {
180 	struct sigacts *ps = pr->ps_sigacts;
181 
182 	ps->ps_refcnt++;
183 	return ps;
184 }
185 
186 /*
187  * Initialize a new sigaltstack structure.
188  */
189 void
190 sigstkinit(struct sigaltstack *ss)
191 {
192 	ss->ss_flags = SS_DISABLE;
193 	ss->ss_size = 0;
194 	ss->ss_sp = 0;
195 }
196 
197 /*
198  * Make this process not share its sigacts, maintaining all
199  * signal state.
200  */
201 void
202 sigactsunshare(struct process *pr)
203 {
204 	struct sigacts *newps;
205 
206 	if (pr->ps_sigacts->ps_refcnt == 1)
207 		return;
208 
209 	newps = sigactsinit(pr);
210 	sigactsfree(pr);
211 	pr->ps_sigacts = newps;
212 }
213 
214 /*
215  * Release a sigacts structure.
216  */
217 void
218 sigactsfree(struct process *pr)
219 {
220 	struct sigacts *ps = pr->ps_sigacts;
221 
222 	if (--ps->ps_refcnt > 0)
223 		return;
224 
225 	pr->ps_sigacts = NULL;
226 
227 	pool_put(&sigacts_pool, ps);
228 }
229 
230 int
231 sys_sigaction(struct proc *p, void *v, register_t *retval)
232 {
233 	struct sys_sigaction_args /* {
234 		syscallarg(int) signum;
235 		syscallarg(const struct sigaction *) nsa;
236 		syscallarg(struct sigaction *) osa;
237 	} */ *uap = v;
238 	struct sigaction vec;
239 #ifdef KTRACE
240 	struct sigaction ovec;
241 #endif
242 	struct sigaction *sa;
243 	const struct sigaction *nsa;
244 	struct sigaction *osa;
245 	struct sigacts *ps = p->p_p->ps_sigacts;
246 	int signum;
247 	int bit, error;
248 
249 	signum = SCARG(uap, signum);
250 	nsa = SCARG(uap, nsa);
251 	osa = SCARG(uap, osa);
252 
253 	if (signum <= 0 || signum >= NSIG ||
254 	    (nsa && (signum == SIGKILL || signum == SIGSTOP)))
255 		return (EINVAL);
256 	sa = &vec;
257 	if (osa) {
258 		sa->sa_handler = ps->ps_sigact[signum];
259 		sa->sa_mask = ps->ps_catchmask[signum];
260 		bit = sigmask(signum);
261 		sa->sa_flags = 0;
262 		if ((ps->ps_sigonstack & bit) != 0)
263 			sa->sa_flags |= SA_ONSTACK;
264 		if ((ps->ps_sigintr & bit) == 0)
265 			sa->sa_flags |= SA_RESTART;
266 		if ((ps->ps_sigreset & bit) != 0)
267 			sa->sa_flags |= SA_RESETHAND;
268 		if ((ps->ps_siginfo & bit) != 0)
269 			sa->sa_flags |= SA_SIGINFO;
270 		if (signum == SIGCHLD) {
271 			if ((ps->ps_flags & SAS_NOCLDSTOP) != 0)
272 				sa->sa_flags |= SA_NOCLDSTOP;
273 			if ((ps->ps_flags & SAS_NOCLDWAIT) != 0)
274 				sa->sa_flags |= SA_NOCLDWAIT;
275 		}
276 		if ((sa->sa_mask & bit) == 0)
277 			sa->sa_flags |= SA_NODEFER;
278 		sa->sa_mask &= ~bit;
279 		error = copyout(sa, osa, sizeof (vec));
280 		if (error)
281 			return (error);
282 #ifdef KTRACE
283 		if (KTRPOINT(p, KTR_STRUCT))
284 			ovec = vec;
285 #endif
286 	}
287 	if (nsa) {
288 		error = copyin(nsa, sa, sizeof (vec));
289 		if (error)
290 			return (error);
291 #ifdef KTRACE
292 		if (KTRPOINT(p, KTR_STRUCT))
293 			ktrsigaction(p, sa);
294 #endif
295 		setsigvec(p, signum, sa);
296 	}
297 #ifdef KTRACE
298 	if (osa && KTRPOINT(p, KTR_STRUCT))
299 		ktrsigaction(p, &ovec);
300 #endif
301 	return (0);
302 }
303 
304 void
305 setsigvec(struct proc *p, int signum, struct sigaction *sa)
306 {
307 	struct sigacts *ps = p->p_p->ps_sigacts;
308 	int bit;
309 	int s;
310 
311 	bit = sigmask(signum);
312 	/*
313 	 * Change setting atomically.
314 	 */
315 	s = splhigh();
316 	ps->ps_sigact[signum] = sa->sa_handler;
317 	if ((sa->sa_flags & SA_NODEFER) == 0)
318 		sa->sa_mask |= sigmask(signum);
319 	ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask;
320 	if (signum == SIGCHLD) {
321 		if (sa->sa_flags & SA_NOCLDSTOP)
322 			atomic_setbits_int(&ps->ps_flags, SAS_NOCLDSTOP);
323 		else
324 			atomic_clearbits_int(&ps->ps_flags, SAS_NOCLDSTOP);
325 		/*
326 		 * If the SA_NOCLDWAIT flag is set or the handler
327 		 * is SIG_IGN we reparent the dying child to PID 1
328 		 * (init) which will reap the zombie.  Because we use
329 		 * init to do our dirty work we never set SAS_NOCLDWAIT
330 		 * for PID 1.
331 		 * XXX exit1 rework means this is unnecessary?
332 		 */
333 		if (initprocess->ps_sigacts != ps &&
334 		    ((sa->sa_flags & SA_NOCLDWAIT) ||
335 		    sa->sa_handler == SIG_IGN))
336 			atomic_setbits_int(&ps->ps_flags, SAS_NOCLDWAIT);
337 		else
338 			atomic_clearbits_int(&ps->ps_flags, SAS_NOCLDWAIT);
339 	}
340 	if ((sa->sa_flags & SA_RESETHAND) != 0)
341 		ps->ps_sigreset |= bit;
342 	else
343 		ps->ps_sigreset &= ~bit;
344 	if ((sa->sa_flags & SA_SIGINFO) != 0)
345 		ps->ps_siginfo |= bit;
346 	else
347 		ps->ps_siginfo &= ~bit;
348 	if ((sa->sa_flags & SA_RESTART) == 0)
349 		ps->ps_sigintr |= bit;
350 	else
351 		ps->ps_sigintr &= ~bit;
352 	if ((sa->sa_flags & SA_ONSTACK) != 0)
353 		ps->ps_sigonstack |= bit;
354 	else
355 		ps->ps_sigonstack &= ~bit;
356 	/*
357 	 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
358 	 * and for signals set to SIG_DFL where the default is to ignore.
359 	 * However, don't put SIGCONT in ps_sigignore,
360 	 * as we have to restart the process.
361 	 */
362 	if (sa->sa_handler == SIG_IGN ||
363 	    (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) {
364 		atomic_clearbits_int(&p->p_siglist, bit);
365 		if (signum != SIGCONT)
366 			ps->ps_sigignore |= bit;	/* easier in psignal */
367 		ps->ps_sigcatch &= ~bit;
368 	} else {
369 		ps->ps_sigignore &= ~bit;
370 		if (sa->sa_handler == SIG_DFL)
371 			ps->ps_sigcatch &= ~bit;
372 		else
373 			ps->ps_sigcatch |= bit;
374 	}
375 	splx(s);
376 }
377 
378 /*
379  * Initialize signal state for process 0;
380  * set to ignore signals that are ignored by default.
381  */
382 void
383 siginit(struct process *pr)
384 {
385 	struct sigacts *ps = pr->ps_sigacts;
386 	int i;
387 
388 	for (i = 0; i < NSIG; i++)
389 		if (sigprop[i] & SA_IGNORE && i != SIGCONT)
390 			ps->ps_sigignore |= sigmask(i);
391 	ps->ps_flags = SAS_NOCLDWAIT | SAS_NOCLDSTOP;
392 }
393 
394 /*
395  * Reset signals for an exec by the specified thread.
396  */
397 void
398 execsigs(struct proc *p)
399 {
400 	struct sigacts *ps;
401 	int nc, mask;
402 
403 	sigactsunshare(p->p_p);
404 	ps = p->p_p->ps_sigacts;
405 
406 	/*
407 	 * Reset caught signals.  Held signals remain held
408 	 * through p_sigmask (unless they were caught,
409 	 * and are now ignored by default).
410 	 */
411 	while (ps->ps_sigcatch) {
412 		nc = ffs((long)ps->ps_sigcatch);
413 		mask = sigmask(nc);
414 		ps->ps_sigcatch &= ~mask;
415 		if (sigprop[nc] & SA_IGNORE) {
416 			if (nc != SIGCONT)
417 				ps->ps_sigignore |= mask;
418 			atomic_clearbits_int(&p->p_siglist, mask);
419 		}
420 		ps->ps_sigact[nc] = SIG_DFL;
421 	}
422 	/*
423 	 * Reset stack state to the user stack.
424 	 * Clear set of signals caught on the signal stack.
425 	 */
426 	sigstkinit(&p->p_sigstk);
427 	ps->ps_flags &= ~SAS_NOCLDWAIT;
428 	if (ps->ps_sigact[SIGCHLD] == SIG_IGN)
429 		ps->ps_sigact[SIGCHLD] = SIG_DFL;
430 }
431 
432 /*
433  * Manipulate signal mask.
434  * Note that we receive new mask, not pointer,
435  * and return old mask as return value;
436  * the library stub does the rest.
437  */
438 int
439 sys_sigprocmask(struct proc *p, void *v, register_t *retval)
440 {
441 	struct sys_sigprocmask_args /* {
442 		syscallarg(int) how;
443 		syscallarg(sigset_t) mask;
444 	} */ *uap = v;
445 	int error = 0;
446 	sigset_t mask;
447 
448 	*retval = p->p_sigmask;
449 	mask = SCARG(uap, mask) &~ sigcantmask;
450 
451 	switch (SCARG(uap, how)) {
452 	case SIG_BLOCK:
453 		atomic_setbits_int(&p->p_sigmask, mask);
454 		break;
455 	case SIG_UNBLOCK:
456 		atomic_clearbits_int(&p->p_sigmask, mask);
457 		break;
458 	case SIG_SETMASK:
459 		p->p_sigmask = mask;
460 		break;
461 	default:
462 		error = EINVAL;
463 		break;
464 	}
465 	return (error);
466 }
467 
468 int
469 sys_sigpending(struct proc *p, void *v, register_t *retval)
470 {
471 
472 	*retval = p->p_siglist;
473 	return (0);
474 }
475 
476 /*
477  * Temporarily replace calling proc's signal mask for the duration of a
478  * system call.  Original signal mask will be restored by userret().
479  */
480 void
481 dosigsuspend(struct proc *p, sigset_t newmask)
482 {
483 	KASSERT(p == curproc);
484 
485 	p->p_oldmask = p->p_sigmask;
486 	atomic_setbits_int(&p->p_flag, P_SIGSUSPEND);
487 	p->p_sigmask = newmask;
488 }
489 
490 /*
491  * Suspend process until signal, providing mask to be set
492  * in the meantime.  Note nonstandard calling convention:
493  * libc stub passes mask, not pointer, to save a copyin.
494  */
495 int
496 sys_sigsuspend(struct proc *p, void *v, register_t *retval)
497 {
498 	struct sys_sigsuspend_args /* {
499 		syscallarg(int) mask;
500 	} */ *uap = v;
501 	struct process *pr = p->p_p;
502 	struct sigacts *ps = pr->ps_sigacts;
503 
504 	dosigsuspend(p, SCARG(uap, mask) &~ sigcantmask);
505 	while (tsleep(ps, PPAUSE|PCATCH, "pause", 0) == 0)
506 		/* void */;
507 	/* always return EINTR rather than ERESTART... */
508 	return (EINTR);
509 }
510 
511 int
512 sigonstack(size_t stack)
513 {
514 	const struct sigaltstack *ss = &curproc->p_sigstk;
515 
516 	return (ss->ss_flags & SS_DISABLE ? 0 :
517 	    (stack - (size_t)ss->ss_sp < ss->ss_size));
518 }
519 
520 int
521 sys_sigaltstack(struct proc *p, void *v, register_t *retval)
522 {
523 	struct sys_sigaltstack_args /* {
524 		syscallarg(const struct sigaltstack *) nss;
525 		syscallarg(struct sigaltstack *) oss;
526 	} */ *uap = v;
527 	struct sigaltstack ss;
528 	const struct sigaltstack *nss;
529 	struct sigaltstack *oss;
530 	int onstack = sigonstack(PROC_STACK(p));
531 	int error;
532 
533 	nss = SCARG(uap, nss);
534 	oss = SCARG(uap, oss);
535 
536 	if (oss != NULL) {
537 		ss = p->p_sigstk;
538 		if (onstack)
539 			ss.ss_flags |= SS_ONSTACK;
540 		if ((error = copyout(&ss, oss, sizeof(ss))))
541 			return (error);
542 	}
543 	if (nss == NULL)
544 		return (0);
545 	error = copyin(nss, &ss, sizeof(ss));
546 	if (error)
547 		return (error);
548 	if (onstack)
549 		return (EPERM);
550 	if (ss.ss_flags & ~SS_DISABLE)
551 		return (EINVAL);
552 	if (ss.ss_flags & SS_DISABLE) {
553 		p->p_sigstk.ss_flags = ss.ss_flags;
554 		return (0);
555 	}
556 	if (ss.ss_size < MINSIGSTKSZ)
557 		return (ENOMEM);
558 	p->p_sigstk = ss;
559 	return (0);
560 }
561 
562 int
563 sys_o58_kill(struct proc *cp, void *v, register_t *retval)
564 {
565 	struct sys_o58_kill_args /* {
566 		syscallarg(int) pid;
567 		syscallarg(int) signum;
568 	} */ *uap = v;
569 	struct proc *p;
570 	int pid = SCARG(uap, pid);
571 	int signum = SCARG(uap, signum);
572 	int error;
573 
574 	if (pid <= THREAD_PID_OFFSET && (error = pledge_kill(cp, pid)) != 0)
575 		return (error);
576 	if (((u_int)signum) >= NSIG)
577 		return (EINVAL);
578 	if (pid > 0) {
579 		enum signal_type type = SPROCESS;
580 
581 		/*
582 		 * If the target pid is > THREAD_PID_OFFSET then this
583 		 * must be a kill of another thread in the same process.
584 		 * Otherwise, this is a process kill and the target must
585 		 * be a main thread.
586 		 */
587 		if (pid > THREAD_PID_OFFSET) {
588 			if ((p = pfind(pid - THREAD_PID_OFFSET)) == NULL)
589 				return (ESRCH);
590 			if (p->p_p != cp->p_p)
591 				return (ESRCH);
592 			type = STHREAD;
593 		} else {
594 			/* XXX use prfind() */
595 			if ((p = pfind(pid)) == NULL)
596 				return (ESRCH);
597 			if (p->p_flag & P_THREAD)
598 				return (ESRCH);
599 			if (!cansignal(cp, p->p_p, signum))
600 				return (EPERM);
601 		}
602 
603 		/* kill single process or thread */
604 		if (signum)
605 			ptsignal(p, signum, type);
606 		return (0);
607 	}
608 	switch (pid) {
609 	case -1:		/* broadcast signal */
610 		return (killpg1(cp, signum, 0, 1));
611 	case 0:			/* signal own process group */
612 		return (killpg1(cp, signum, 0, 0));
613 	default:		/* negative explicit process group */
614 		return (killpg1(cp, signum, -pid, 0));
615 	}
616 	/* NOTREACHED */
617 }
618 
619 int
620 sys_kill(struct proc *cp, void *v, register_t *retval)
621 {
622 	struct sys_kill_args /* {
623 		syscallarg(int) pid;
624 		syscallarg(int) signum;
625 	} */ *uap = v;
626 	struct process *pr;
627 	int pid = SCARG(uap, pid);
628 	int signum = SCARG(uap, signum);
629 	int error;
630 	int zombie = 0;
631 
632 	if ((error = pledge_kill(cp, pid)) != 0)
633 		return (error);
634 	if (((u_int)signum) >= NSIG)
635 		return (EINVAL);
636 	if (pid > 0) {
637 		if ((pr = prfind(pid)) == NULL) {
638 			if ((pr = zombiefind(pid)) == NULL)
639 				return (ESRCH);
640 			else
641 				zombie = 1;
642 		}
643 		if (!cansignal(cp, pr, signum))
644 			return (EPERM);
645 
646 		/* kill single process */
647 		if (signum && !zombie)
648 			prsignal(pr, signum);
649 		return (0);
650 	}
651 	switch (pid) {
652 	case -1:		/* broadcast signal */
653 		return (killpg1(cp, signum, 0, 1));
654 	case 0:			/* signal own process group */
655 		return (killpg1(cp, signum, 0, 0));
656 	default:		/* negative explicit process group */
657 		return (killpg1(cp, signum, -pid, 0));
658 	}
659 }
660 
661 int
662 sys_thrkill(struct proc *cp, void *v, register_t *retval)
663 {
664 	struct sys_thrkill_args /* {
665 		syscallarg(pid_t) tid;
666 		syscallarg(int) signum;
667 		syscallarg(void *) tcb;
668 	} */ *uap = v;
669 	struct proc *p;
670 	int tid = SCARG(uap, tid);
671 	int signum = SCARG(uap, signum);
672 	void *tcb;
673 
674 	if (((u_int)signum) >= NSIG)
675 		return (EINVAL);
676 	if (tid > THREAD_PID_OFFSET) {
677 		if ((p = pfind(tid - THREAD_PID_OFFSET)) == NULL)
678 			return (ESRCH);
679 
680 		/* can only kill threads in the same process */
681 		if (p->p_p != cp->p_p)
682 			return (ESRCH);
683 	} else if (tid == 0)
684 		p = cp;
685 	else
686 		return (EINVAL);
687 
688 	/* optionally require the target thread to have the given tcb addr */
689 	tcb = SCARG(uap, tcb);
690 	if (tcb != NULL && tcb != TCB_GET(p))
691 		return (ESRCH);
692 
693 	if (signum)
694 		ptsignal(p, signum, STHREAD);
695 	return (0);
696 }
697 
698 /*
699  * Common code for kill process group/broadcast kill.
700  * cp is calling process.
701  */
702 int
703 killpg1(struct proc *cp, int signum, int pgid, int all)
704 {
705 	struct process *pr;
706 	struct pgrp *pgrp;
707 	int nfound = 0;
708 
709 	if (all)
710 		/*
711 		 * broadcast
712 		 */
713 		LIST_FOREACH(pr, &allprocess, ps_list) {
714 			if (pr->ps_pid <= 1 ||
715 			    pr->ps_flags & (PS_SYSTEM | PS_NOBROADCASTKILL) ||
716 			    pr == cp->p_p || !cansignal(cp, pr, signum))
717 				continue;
718 			nfound++;
719 			if (signum)
720 				prsignal(pr, signum);
721 		}
722 	else {
723 		if (pgid == 0)
724 			/*
725 			 * zero pgid means send to my process group.
726 			 */
727 			pgrp = cp->p_p->ps_pgrp;
728 		else {
729 			pgrp = pgfind(pgid);
730 			if (pgrp == NULL)
731 				return (ESRCH);
732 		}
733 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist) {
734 			if (pr->ps_pid <= 1 || pr->ps_flags & PS_SYSTEM ||
735 			    !cansignal(cp, pr, signum))
736 				continue;
737 			nfound++;
738 			if (signum)
739 				prsignal(pr, signum);
740 		}
741 	}
742 	return (nfound ? 0 : ESRCH);
743 }
744 
745 #define CANDELIVER(uid, euid, pr) \
746 	(euid == 0 || \
747 	(uid) == (pr)->ps_ucred->cr_ruid || \
748 	(uid) == (pr)->ps_ucred->cr_svuid || \
749 	(uid) == (pr)->ps_ucred->cr_uid || \
750 	(euid) == (pr)->ps_ucred->cr_ruid || \
751 	(euid) == (pr)->ps_ucred->cr_svuid || \
752 	(euid) == (pr)->ps_ucred->cr_uid)
753 
754 /*
755  * Deliver signum to pgid, but first check uid/euid against each
756  * process and see if it is permitted.
757  */
758 void
759 csignal(pid_t pgid, int signum, uid_t uid, uid_t euid)
760 {
761 	struct pgrp *pgrp;
762 	struct process *pr;
763 
764 	if (pgid == 0)
765 		return;
766 	if (pgid < 0) {
767 		pgid = -pgid;
768 		if ((pgrp = pgfind(pgid)) == NULL)
769 			return;
770 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
771 			if (CANDELIVER(uid, euid, pr))
772 				prsignal(pr, signum);
773 	} else {
774 		if ((pr = prfind(pgid)) == NULL)
775 			return;
776 		if (CANDELIVER(uid, euid, pr))
777 			prsignal(pr, signum);
778 	}
779 }
780 
781 /*
782  * Send a signal to a process group.
783  */
784 void
785 gsignal(int pgid, int signum)
786 {
787 	struct pgrp *pgrp;
788 
789 	if (pgid && (pgrp = pgfind(pgid)))
790 		pgsignal(pgrp, signum, 0);
791 }
792 
793 /*
794  * Send a signal to a process group.  If checktty is 1,
795  * limit to members which have a controlling terminal.
796  */
797 void
798 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
799 {
800 	struct process *pr;
801 
802 	if (pgrp)
803 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
804 			if (checkctty == 0 || pr->ps_flags & PS_CONTROLT)
805 				prsignal(pr, signum);
806 }
807 
808 /*
809  * Send a signal caused by a trap to the current process.
810  * If it will be caught immediately, deliver it with correct code.
811  * Otherwise, post it normally.
812  */
813 void
814 trapsignal(struct proc *p, int signum, u_long trapno, int code,
815     union sigval sigval)
816 {
817 	struct process *pr = p->p_p;
818 	struct sigacts *ps = pr->ps_sigacts;
819 	int mask;
820 
821 	mask = sigmask(signum);
822 	if ((pr->ps_flags & PS_TRACED) == 0 &&
823 	    (ps->ps_sigcatch & mask) != 0 &&
824 	    (p->p_sigmask & mask) == 0) {
825 #ifdef KTRACE
826 		if (KTRPOINT(p, KTR_PSIG)) {
827 			siginfo_t si;
828 
829 			initsiginfo(&si, signum, trapno, code, sigval);
830 			ktrpsig(p, signum, ps->ps_sigact[signum],
831 			    p->p_sigmask, code, &si);
832 		}
833 #endif
834 		p->p_ru.ru_nsignals++;
835 		(*pr->ps_emul->e_sendsig)(ps->ps_sigact[signum], signum,
836 		    p->p_sigmask, trapno, code, sigval);
837 		atomic_setbits_int(&p->p_sigmask, ps->ps_catchmask[signum]);
838 		if ((ps->ps_sigreset & mask) != 0) {
839 			ps->ps_sigcatch &= ~mask;
840 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
841 				ps->ps_sigignore |= mask;
842 			ps->ps_sigact[signum] = SIG_DFL;
843 		}
844 	} else {
845 		p->p_sisig = signum;
846 		p->p_sitrapno = trapno;	/* XXX for core dump/debugger */
847 		p->p_sicode = code;
848 		p->p_sigval = sigval;
849 
850 		/*
851 		 * Signals like SIGBUS and SIGSEGV should not, when
852 		 * generated by the kernel, be ignorable or blockable.
853 		 * If it is and we're not being traced, then just kill
854 		 * the process.
855 		 */
856 		if ((pr->ps_flags & PS_TRACED) == 0 &&
857 		    (sigprop[signum] & SA_KILL) &&
858 		    ((p->p_sigmask & mask) || (ps->ps_sigignore & mask)))
859 			sigexit(p, signum);
860 		ptsignal(p, signum, STHREAD);
861 	}
862 }
863 
864 /*
865  * Send the signal to the process.  If the signal has an action, the action
866  * is usually performed by the target process rather than the caller; we add
867  * the signal to the set of pending signals for the process.
868  *
869  * Exceptions:
870  *   o When a stop signal is sent to a sleeping process that takes the
871  *     default action, the process is stopped without awakening it.
872  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
873  *     regardless of the signal action (eg, blocked or ignored).
874  *
875  * Other ignored signals are discarded immediately.
876  */
877 void
878 psignal(struct proc *p, int signum)
879 {
880 	ptsignal(p, signum, SPROCESS);
881 }
882 
883 /*
884  * type = SPROCESS	process signal, can be diverted (sigwait())
885  *	XXX if blocked in all threads, mark as pending in struct process
886  * type = STHREAD	thread signal, but should be propagated if unhandled
887  * type = SPROPAGATED	propagated to this thread, so don't propagate again
888  */
889 void
890 ptsignal(struct proc *p, int signum, enum signal_type type)
891 {
892 	int s, prop;
893 	sig_t action;
894 	int mask;
895 	struct process *pr = p->p_p;
896 	struct proc *q;
897 	int wakeparent = 0;
898 
899 #ifdef DIAGNOSTIC
900 	if ((u_int)signum >= NSIG || signum == 0)
901 		panic("psignal signal number");
902 #endif
903 
904 	/* Ignore signal if the target process is exiting */
905 	if (pr->ps_flags & PS_EXITING)
906 		return;
907 
908 	mask = sigmask(signum);
909 
910 	if (type == SPROCESS) {
911 		/* Accept SIGKILL to coredumping processes */
912 		if (pr->ps_flags & PS_COREDUMP && signum == SIGKILL) {
913 			if (pr->ps_single != NULL)
914 				p = pr->ps_single;
915 			atomic_setbits_int(&p->p_siglist, mask);
916 			return;
917 		}
918 
919 		/*
920 		 * If the current thread can process the signal
921 		 * immediately (it's unblocked) then have it take it.
922 		 */
923 		q = curproc;
924 		if (q != NULL && q->p_p == pr && (q->p_flag & P_WEXIT) == 0 &&
925 		    (q->p_sigmask & mask) == 0)
926 			p = q;
927 		else {
928 			/*
929 			 * A process-wide signal can be diverted to a
930 			 * different thread that's in sigwait() for this
931 			 * signal.  If there isn't such a thread, then
932 			 * pick a thread that doesn't have it blocked so
933 			 * that the stop/kill consideration isn't
934 			 * delayed.  Otherwise, mark it pending on the
935 			 * main thread.
936 			 */
937 			TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
938 				/* ignore exiting threads */
939 				if (q->p_flag & P_WEXIT)
940 					continue;
941 
942 				/* skip threads that have the signal blocked */
943 				if ((q->p_sigmask & mask) != 0)
944 					continue;
945 
946 				/* okay, could send to this thread */
947 				p = q;
948 
949 				/*
950 				 * sigsuspend, sigwait, ppoll/pselect, etc?
951 				 * Definitely go to this thread, as it's
952 				 * already blocked in the kernel.
953 				 */
954 				if (q->p_flag & P_SIGSUSPEND)
955 					break;
956 			}
957 		}
958 	}
959 
960 	if (type != SPROPAGATED)
961 		KNOTE(&pr->ps_klist, NOTE_SIGNAL | signum);
962 
963 	prop = sigprop[signum];
964 
965 	/*
966 	 * If proc is traced, always give parent a chance.
967 	 */
968 	if (pr->ps_flags & PS_TRACED) {
969 		action = SIG_DFL;
970 		atomic_setbits_int(&p->p_siglist, mask);
971 	} else {
972 		/*
973 		 * If the signal is being ignored,
974 		 * then we forget about it immediately.
975 		 * (Note: we don't set SIGCONT in ps_sigignore,
976 		 * and if it is set to SIG_IGN,
977 		 * action will be SIG_DFL here.)
978 		 */
979 		if (pr->ps_sigacts->ps_sigignore & mask)
980 			return;
981 		if (p->p_sigmask & mask) {
982 			action = SIG_HOLD;
983 		} else if (pr->ps_sigacts->ps_sigcatch & mask) {
984 			action = SIG_CATCH;
985 		} else {
986 			action = SIG_DFL;
987 
988 			if (prop & SA_KILL && pr->ps_nice > NZERO)
989 				 pr->ps_nice = NZERO;
990 
991 			/*
992 			 * If sending a tty stop signal to a member of an
993 			 * orphaned process group, discard the signal here if
994 			 * the action is default; don't stop the process below
995 			 * if sleeping, and don't clear any pending SIGCONT.
996 			 */
997 			if (prop & SA_TTYSTOP && pr->ps_pgrp->pg_jobc == 0)
998 				return;
999 		}
1000 
1001 		atomic_setbits_int(&p->p_siglist, mask);
1002 	}
1003 
1004 	if (prop & SA_CONT)
1005 		atomic_clearbits_int(&p->p_siglist, stopsigmask);
1006 
1007 	if (prop & SA_STOP) {
1008 		atomic_clearbits_int(&p->p_siglist, contsigmask);
1009 		atomic_clearbits_int(&p->p_flag, P_CONTINUED);
1010 	}
1011 
1012 	/*
1013 	 * XXX delay processing of SA_STOP signals unless action == SIG_DFL?
1014 	 */
1015 	if (prop & (SA_CONT | SA_STOP) && type != SPROPAGATED)
1016 		TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)
1017 			if (q != p)
1018 				ptsignal(q, signum, SPROPAGATED);
1019 
1020 	/*
1021 	 * Defer further processing for signals which are held,
1022 	 * except that stopped processes must be continued by SIGCONT.
1023 	 */
1024 	if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
1025 		return;
1026 
1027 	SCHED_LOCK(s);
1028 
1029 	switch (p->p_stat) {
1030 
1031 	case SSLEEP:
1032 		/*
1033 		 * If process is sleeping uninterruptibly
1034 		 * we can't interrupt the sleep... the signal will
1035 		 * be noticed when the process returns through
1036 		 * trap() or syscall().
1037 		 */
1038 		if ((p->p_flag & P_SINTR) == 0)
1039 			goto out;
1040 		/*
1041 		 * Process is sleeping and traced... make it runnable
1042 		 * so it can discover the signal in issignal() and stop
1043 		 * for the parent.
1044 		 */
1045 		if (pr->ps_flags & PS_TRACED)
1046 			goto run;
1047 		/*
1048 		 * If SIGCONT is default (or ignored) and process is
1049 		 * asleep, we are finished; the process should not
1050 		 * be awakened.
1051 		 */
1052 		if ((prop & SA_CONT) && action == SIG_DFL) {
1053 			atomic_clearbits_int(&p->p_siglist, mask);
1054 			goto out;
1055 		}
1056 		/*
1057 		 * When a sleeping process receives a stop
1058 		 * signal, process immediately if possible.
1059 		 */
1060 		if ((prop & SA_STOP) && action == SIG_DFL) {
1061 			/*
1062 			 * If a child holding parent blocked,
1063 			 * stopping could cause deadlock.
1064 			 */
1065 			if (pr->ps_flags & PS_PPWAIT)
1066 				goto out;
1067 			atomic_clearbits_int(&p->p_siglist, mask);
1068 			p->p_xstat = signum;
1069 			proc_stop(p, 0);
1070 			goto out;
1071 		}
1072 		/*
1073 		 * All other (caught or default) signals
1074 		 * cause the process to run.
1075 		 */
1076 		goto runfast;
1077 		/*NOTREACHED*/
1078 
1079 	case SSTOP:
1080 		/*
1081 		 * If traced process is already stopped,
1082 		 * then no further action is necessary.
1083 		 */
1084 		if (pr->ps_flags & PS_TRACED)
1085 			goto out;
1086 
1087 		/*
1088 		 * Kill signal always sets processes running.
1089 		 */
1090 		if (signum == SIGKILL) {
1091 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1092 			goto runfast;
1093 		}
1094 
1095 		if (prop & SA_CONT) {
1096 			/*
1097 			 * If SIGCONT is default (or ignored), we continue the
1098 			 * process but don't leave the signal in p_siglist, as
1099 			 * it has no further action.  If SIGCONT is held, we
1100 			 * continue the process and leave the signal in
1101 			 * p_siglist.  If the process catches SIGCONT, let it
1102 			 * handle the signal itself.  If it isn't waiting on
1103 			 * an event, then it goes back to run state.
1104 			 * Otherwise, process goes back to sleep state.
1105 			 */
1106 			atomic_setbits_int(&p->p_flag, P_CONTINUED);
1107 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1108 			wakeparent = 1;
1109 			if (action == SIG_DFL)
1110 				atomic_clearbits_int(&p->p_siglist, mask);
1111 			if (action == SIG_CATCH)
1112 				goto runfast;
1113 			if (p->p_wchan == 0)
1114 				goto run;
1115 			p->p_stat = SSLEEP;
1116 			goto out;
1117 		}
1118 
1119 		if (prop & SA_STOP) {
1120 			/*
1121 			 * Already stopped, don't need to stop again.
1122 			 * (If we did the shell could get confused.)
1123 			 */
1124 			atomic_clearbits_int(&p->p_siglist, mask);
1125 			goto out;
1126 		}
1127 
1128 		/*
1129 		 * If process is sleeping interruptibly, then simulate a
1130 		 * wakeup so that when it is continued, it will be made
1131 		 * runnable and can look at the signal.  But don't make
1132 		 * the process runnable, leave it stopped.
1133 		 */
1134 		if (p->p_wchan && p->p_flag & P_SINTR)
1135 			unsleep(p);
1136 		goto out;
1137 
1138 	case SONPROC:
1139 		signotify(p);
1140 		/* FALLTHROUGH */
1141 	default:
1142 		/*
1143 		 * SRUN, SIDL, SDEAD do nothing with the signal,
1144 		 * other than kicking ourselves if we are running.
1145 		 * It will either never be noticed, or noticed very soon.
1146 		 */
1147 		goto out;
1148 	}
1149 	/*NOTREACHED*/
1150 
1151 runfast:
1152 	/*
1153 	 * Raise priority to at least PUSER.
1154 	 */
1155 	if (p->p_priority > PUSER)
1156 		p->p_priority = PUSER;
1157 run:
1158 	setrunnable(p);
1159 out:
1160 	SCHED_UNLOCK(s);
1161 	if (wakeparent)
1162 		wakeup(pr->ps_pptr);
1163 }
1164 
1165 /*
1166  * If the current process has received a signal (should be caught or cause
1167  * termination, should interrupt current syscall), return the signal number.
1168  * Stop signals with default action are processed immediately, then cleared;
1169  * they aren't returned.  This is checked after each entry to the system for
1170  * a syscall or trap (though this can usually be done without calling issignal
1171  * by checking the pending signal masks in the CURSIG macro.) The normal call
1172  * sequence is
1173  *
1174  *	while (signum = CURSIG(curproc))
1175  *		postsig(signum);
1176  *
1177  * Assumes that if the P_SINTR flag is set, we're holding both the
1178  * kernel and scheduler locks.
1179  */
1180 int
1181 issignal(struct proc *p)
1182 {
1183 	struct process *pr = p->p_p;
1184 	int signum, mask, prop;
1185 	int dolock = (p->p_flag & P_SINTR) == 0;
1186 	int s;
1187 
1188 	for (;;) {
1189 		mask = p->p_siglist & ~p->p_sigmask;
1190 		if (pr->ps_flags & PS_PPWAIT)
1191 			mask &= ~stopsigmask;
1192 		if (mask == 0)	 	/* no signal to send */
1193 			return (0);
1194 		signum = ffs((long)mask);
1195 		mask = sigmask(signum);
1196 		atomic_clearbits_int(&p->p_siglist, mask);
1197 
1198 		/*
1199 		 * We should see pending but ignored signals
1200 		 * only if PS_TRACED was on when they were posted.
1201 		 */
1202 		if (mask & pr->ps_sigacts->ps_sigignore &&
1203 		    (pr->ps_flags & PS_TRACED) == 0)
1204 			continue;
1205 
1206 		if ((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) {
1207 			/*
1208 			 * If traced, always stop, and stay
1209 			 * stopped until released by the debugger.
1210 			 */
1211 			p->p_xstat = signum;
1212 
1213 			if (dolock)
1214 				KERNEL_LOCK();
1215 			single_thread_set(p, SINGLE_PTRACE, 0);
1216 			if (dolock)
1217 				KERNEL_UNLOCK();
1218 
1219 			if (dolock)
1220 				SCHED_LOCK(s);
1221 			proc_stop(p, 1);
1222 			if (dolock)
1223 				SCHED_UNLOCK(s);
1224 
1225 			if (dolock)
1226 				KERNEL_LOCK();
1227 			single_thread_clear(p, 0);
1228 			if (dolock)
1229 				KERNEL_UNLOCK();
1230 
1231 			/*
1232 			 * If we are no longer being traced, or the parent
1233 			 * didn't give us a signal, look for more signals.
1234 			 */
1235 			if ((pr->ps_flags & PS_TRACED) == 0 || p->p_xstat == 0)
1236 				continue;
1237 
1238 			/*
1239 			 * If the new signal is being masked, look for other
1240 			 * signals.
1241 			 */
1242 			signum = p->p_xstat;
1243 			mask = sigmask(signum);
1244 			if ((p->p_sigmask & mask) != 0)
1245 				continue;
1246 
1247 			/* take the signal! */
1248 			atomic_clearbits_int(&p->p_siglist, mask);
1249 		}
1250 
1251 		prop = sigprop[signum];
1252 
1253 		/*
1254 		 * Decide whether the signal should be returned.
1255 		 * Return the signal's number, or fall through
1256 		 * to clear it from the pending mask.
1257 		 */
1258 		switch ((long)pr->ps_sigacts->ps_sigact[signum]) {
1259 		case (long)SIG_DFL:
1260 			/*
1261 			 * Don't take default actions on system processes.
1262 			 */
1263 			if (p->p_pid <= 1) {
1264 #ifdef DIAGNOSTIC
1265 				/*
1266 				 * Are you sure you want to ignore SIGSEGV
1267 				 * in init? XXX
1268 				 */
1269 				printf("Process (pid %d) got signal %d\n",
1270 				    p->p_pid, signum);
1271 #endif
1272 				break;		/* == ignore */
1273 			}
1274 			/*
1275 			 * If there is a pending stop signal to process
1276 			 * with default action, stop here,
1277 			 * then clear the signal.  However,
1278 			 * if process is member of an orphaned
1279 			 * process group, ignore tty stop signals.
1280 			 */
1281 			if (prop & SA_STOP) {
1282 				if (pr->ps_flags & PS_TRACED ||
1283 		    		    (pr->ps_pgrp->pg_jobc == 0 &&
1284 				    prop & SA_TTYSTOP))
1285 					break;	/* == ignore */
1286 				p->p_xstat = signum;
1287 				if (dolock)
1288 					SCHED_LOCK(s);
1289 				proc_stop(p, 1);
1290 				if (dolock)
1291 					SCHED_UNLOCK(s);
1292 				break;
1293 			} else if (prop & SA_IGNORE) {
1294 				/*
1295 				 * Except for SIGCONT, shouldn't get here.
1296 				 * Default action is to ignore; drop it.
1297 				 */
1298 				break;		/* == ignore */
1299 			} else
1300 				goto keep;
1301 			/*NOTREACHED*/
1302 		case (long)SIG_IGN:
1303 			/*
1304 			 * Masking above should prevent us ever trying
1305 			 * to take action on an ignored signal other
1306 			 * than SIGCONT, unless process is traced.
1307 			 */
1308 			if ((prop & SA_CONT) == 0 &&
1309 			    (pr->ps_flags & PS_TRACED) == 0)
1310 				printf("issignal\n");
1311 			break;		/* == ignore */
1312 		default:
1313 			/*
1314 			 * This signal has an action, let
1315 			 * postsig() process it.
1316 			 */
1317 			goto keep;
1318 		}
1319 	}
1320 	/* NOTREACHED */
1321 
1322 keep:
1323 	atomic_setbits_int(&p->p_siglist, mask); /*leave the signal for later */
1324 	return (signum);
1325 }
1326 
1327 /*
1328  * Put the argument process into the stopped state and notify the parent
1329  * via wakeup.  Signals are handled elsewhere.  The process must not be
1330  * on the run queue.
1331  */
1332 void
1333 proc_stop(struct proc *p, int sw)
1334 {
1335 	struct process *pr = p->p_p;
1336 	extern void *softclock_si;
1337 
1338 #ifdef MULTIPROCESSOR
1339 	SCHED_ASSERT_LOCKED();
1340 #endif
1341 
1342 	p->p_stat = SSTOP;
1343 	atomic_clearbits_int(&pr->ps_flags, PS_WAITED);
1344 	atomic_setbits_int(&pr->ps_flags, PS_STOPPED);
1345 	atomic_setbits_int(&p->p_flag, P_SUSPSIG);
1346 	if (!timeout_pending(&proc_stop_to)) {
1347 		timeout_add(&proc_stop_to, 0);
1348 		/*
1349 		 * We need this soft interrupt to be handled fast.
1350 		 * Extra calls to softclock don't hurt.
1351 		 */
1352                 softintr_schedule(softclock_si);
1353 	}
1354 	if (sw)
1355 		mi_switch();
1356 }
1357 
1358 /*
1359  * Called from a timeout to send signals to the parents of stopped processes.
1360  * We can't do this in proc_stop because it's called with nasty locks held
1361  * and we would need recursive scheduler lock to deal with that.
1362  */
1363 void
1364 proc_stop_sweep(void *v)
1365 {
1366 	struct process *pr;
1367 
1368 	LIST_FOREACH(pr, &allprocess, ps_list) {
1369 		if ((pr->ps_flags & PS_STOPPED) == 0)
1370 			continue;
1371 		atomic_clearbits_int(&pr->ps_flags, PS_STOPPED);
1372 
1373 		if ((pr->ps_pptr->ps_sigacts->ps_flags & SAS_NOCLDSTOP) == 0)
1374 			prsignal(pr->ps_pptr, SIGCHLD);
1375 		wakeup(pr->ps_pptr);
1376 	}
1377 }
1378 
1379 /*
1380  * Take the action for the specified signal
1381  * from the current set of pending signals.
1382  */
1383 void
1384 postsig(int signum)
1385 {
1386 	struct proc *p = curproc;
1387 	struct process *pr = p->p_p;
1388 	struct sigacts *ps = pr->ps_sigacts;
1389 	sig_t action;
1390 	u_long trapno;
1391 	int mask, returnmask;
1392 	union sigval sigval;
1393 	int s, code;
1394 
1395 #ifdef DIAGNOSTIC
1396 	if (signum == 0)
1397 		panic("postsig");
1398 #endif
1399 
1400 	KERNEL_LOCK();
1401 
1402 	mask = sigmask(signum);
1403 	atomic_clearbits_int(&p->p_siglist, mask);
1404 	action = ps->ps_sigact[signum];
1405 	sigval.sival_ptr = 0;
1406 
1407 	if (p->p_sisig != signum) {
1408 		trapno = 0;
1409 		code = SI_USER;
1410 		sigval.sival_ptr = 0;
1411 	} else {
1412 		trapno = p->p_sitrapno;
1413 		code = p->p_sicode;
1414 		sigval = p->p_sigval;
1415 	}
1416 
1417 #ifdef KTRACE
1418 	if (KTRPOINT(p, KTR_PSIG)) {
1419 		siginfo_t si;
1420 
1421 		initsiginfo(&si, signum, trapno, code, sigval);
1422 		ktrpsig(p, signum, action, p->p_flag & P_SIGSUSPEND ?
1423 		    p->p_oldmask : p->p_sigmask, code, &si);
1424 	}
1425 #endif
1426 	if (action == SIG_DFL) {
1427 		/*
1428 		 * Default action, where the default is to kill
1429 		 * the process.  (Other cases were ignored above.)
1430 		 */
1431 		sigexit(p, signum);
1432 		/* NOTREACHED */
1433 	} else {
1434 		/*
1435 		 * If we get here, the signal must be caught.
1436 		 */
1437 #ifdef DIAGNOSTIC
1438 		if (action == SIG_IGN || (p->p_sigmask & mask))
1439 			panic("postsig action");
1440 #endif
1441 		/*
1442 		 * Set the new mask value and also defer further
1443 		 * occurrences of this signal.
1444 		 *
1445 		 * Special case: user has done a sigpause.  Here the
1446 		 * current mask is not of interest, but rather the
1447 		 * mask from before the sigpause is what we want
1448 		 * restored after the signal processing is completed.
1449 		 */
1450 #ifdef MULTIPROCESSOR
1451 		s = splsched();
1452 #else
1453 		s = splhigh();
1454 #endif
1455 		if (p->p_flag & P_SIGSUSPEND) {
1456 			atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1457 			returnmask = p->p_oldmask;
1458 		} else {
1459 			returnmask = p->p_sigmask;
1460 		}
1461 		atomic_setbits_int(&p->p_sigmask, ps->ps_catchmask[signum]);
1462 		if ((ps->ps_sigreset & mask) != 0) {
1463 			ps->ps_sigcatch &= ~mask;
1464 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1465 				ps->ps_sigignore |= mask;
1466 			ps->ps_sigact[signum] = SIG_DFL;
1467 		}
1468 		splx(s);
1469 		p->p_ru.ru_nsignals++;
1470 		if (p->p_sisig == signum) {
1471 			p->p_sisig = 0;
1472 			p->p_sitrapno = 0;
1473 			p->p_sicode = SI_USER;
1474 			p->p_sigval.sival_ptr = NULL;
1475 		}
1476 
1477 		(*pr->ps_emul->e_sendsig)(action, signum, returnmask, trapno,
1478 		    code, sigval);
1479 	}
1480 
1481 	KERNEL_UNLOCK();
1482 }
1483 
1484 /*
1485  * Force the current process to exit with the specified signal, dumping core
1486  * if appropriate.  We bypass the normal tests for masked and caught signals,
1487  * allowing unrecoverable failures to terminate the process without changing
1488  * signal state.  Mark the accounting record with the signal termination.
1489  * If dumping core, save the signal number for the debugger.  Calls exit and
1490  * does not return.
1491  */
1492 void
1493 sigexit(struct proc *p, int signum)
1494 {
1495 	/* Mark process as going away */
1496 	atomic_setbits_int(&p->p_flag, P_WEXIT);
1497 
1498 	p->p_p->ps_acflag |= AXSIG;
1499 	if (sigprop[signum] & SA_CORE) {
1500 		p->p_sisig = signum;
1501 
1502 		/* if there are other threads, pause them */
1503 		if (P_HASSIBLING(p))
1504 			single_thread_set(p, SINGLE_SUSPEND, 0);
1505 
1506 		if (coredump(p) == 0)
1507 			signum |= WCOREFLAG;
1508 	}
1509 	exit1(p, W_EXITCODE(0, signum), EXIT_NORMAL);
1510 	/* NOTREACHED */
1511 }
1512 
1513 int nosuidcoredump = 1;
1514 
1515 struct coredump_iostate {
1516 	struct proc *io_proc;
1517 	struct vnode *io_vp;
1518 	struct ucred *io_cred;
1519 	off_t io_offset;
1520 };
1521 
1522 /*
1523  * Dump core, into a file named "progname.core", unless the process was
1524  * setuid/setgid.
1525  */
1526 int
1527 coredump(struct proc *p)
1528 {
1529 #ifdef SMALL_KERNEL
1530 	return EPERM;
1531 #else
1532 	struct process *pr = p->p_p;
1533 	struct vnode *vp;
1534 	struct ucred *cred = p->p_ucred;
1535 	struct vmspace *vm = p->p_vmspace;
1536 	struct nameidata nd;
1537 	struct vattr vattr;
1538 	struct coredump_iostate	io;
1539 	int error, len, incrash = 0;
1540 	char name[MAXPATHLEN];
1541 	const char *dir = "/var/crash";
1542 
1543 	if (pr->ps_emul->e_coredump == NULL)
1544 		return (EINVAL);
1545 
1546 	pr->ps_flags |= PS_COREDUMP;
1547 
1548 	/*
1549 	 * If the process has inconsistant uids, nosuidcoredump
1550 	 * determines coredump placement policy.
1551 	 */
1552 	if (((pr->ps_flags & PS_SUGID) && (error = suser(p, 0))) ||
1553 	   ((pr->ps_flags & PS_SUGID) && nosuidcoredump)) {
1554 		if (nosuidcoredump == 3 || nosuidcoredump == 2)
1555 			incrash = 1;
1556 		else
1557 			return (EPERM);
1558 	}
1559 
1560 	/* Don't dump if will exceed file size limit. */
1561 	if (USPACE + ptoa(vm->vm_dsize + vm->vm_ssize) >=
1562 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
1563 		return (EFBIG);
1564 
1565 	if (incrash && nosuidcoredump == 3) {
1566 		/*
1567 		 * If the program directory does not exist, dumps of
1568 		 * that core will silently fail.
1569 		 */
1570 		len = snprintf(name, sizeof(name), "%s/%s/%u.core",
1571 		    dir, p->p_comm, p->p_pid);
1572 	} else if (incrash && nosuidcoredump == 2)
1573 		len = snprintf(name, sizeof(name), "%s/%s.core",
1574 		    dir, p->p_comm);
1575 	else
1576 		len = snprintf(name, sizeof(name), "%s.core", p->p_comm);
1577 	if (len >= sizeof(name))
1578 		return (EACCES);
1579 
1580 	/*
1581 	 * Control the UID used to write out.  The normal case uses
1582 	 * the real UID.  If the sugid case is going to write into the
1583 	 * controlled directory, we do so as root.
1584 	 */
1585 	if (incrash == 0) {
1586 		cred = crdup(cred);
1587 		cred->cr_uid = cred->cr_ruid;
1588 		cred->cr_gid = cred->cr_rgid;
1589 	} else {
1590 		if (p->p_fd->fd_rdir) {
1591 			vrele(p->p_fd->fd_rdir);
1592 			p->p_fd->fd_rdir = NULL;
1593 		}
1594 		p->p_ucred = crdup(p->p_ucred);
1595 		crfree(cred);
1596 		cred = p->p_ucred;
1597 		crhold(cred);
1598 		cred->cr_uid = 0;
1599 		cred->cr_gid = 0;
1600 	}
1601 
1602 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
1603 
1604 	error = vn_open(&nd, O_CREAT | FWRITE | O_NOFOLLOW, S_IRUSR | S_IWUSR);
1605 
1606 	if (error)
1607 		goto out;
1608 
1609 	/*
1610 	 * Don't dump to non-regular files, files with links, or files
1611 	 * owned by someone else.
1612 	 */
1613 	vp = nd.ni_vp;
1614 	if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) {
1615 		VOP_UNLOCK(vp, p);
1616 		vn_close(vp, FWRITE, cred, p);
1617 		goto out;
1618 	}
1619 	if (vp->v_type != VREG || vattr.va_nlink != 1 ||
1620 	    vattr.va_mode & ((VREAD | VWRITE) >> 3 | (VREAD | VWRITE) >> 6) ||
1621 	    vattr.va_uid != cred->cr_uid) {
1622 		error = EACCES;
1623 		VOP_UNLOCK(vp, p);
1624 		vn_close(vp, FWRITE, cred, p);
1625 		goto out;
1626 	}
1627 	VATTR_NULL(&vattr);
1628 	vattr.va_size = 0;
1629 	VOP_SETATTR(vp, &vattr, cred, p);
1630 	pr->ps_acflag |= ACORE;
1631 
1632 	io.io_proc = p;
1633 	io.io_vp = vp;
1634 	io.io_cred = cred;
1635 	io.io_offset = 0;
1636 	VOP_UNLOCK(vp, p);
1637 	vref(vp);
1638 	error = vn_close(vp, FWRITE, cred, p);
1639 	if (error == 0)
1640 		error = (*pr->ps_emul->e_coredump)(p, &io);
1641 	vrele(vp);
1642 out:
1643 	crfree(cred);
1644 	return (error);
1645 #endif
1646 }
1647 
1648 #ifndef SMALL_KERNEL
1649 int
1650 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
1651 {
1652 	struct coredump_iostate *io = cookie;
1653 	off_t coffset = 0;
1654 	size_t csize;
1655 	int chunk, error;
1656 
1657 	csize = len;
1658 	do {
1659 		if (io->io_proc->p_siglist & sigmask(SIGKILL))
1660 			return (EINTR);
1661 
1662 		/* Rest of the loop sleeps with lock held, so... */
1663 		yield();
1664 
1665 		chunk = MIN(csize, MAXPHYS);
1666 		error = vn_rdwr(UIO_WRITE, io->io_vp,
1667 		    (caddr_t)data + coffset, chunk,
1668 		    io->io_offset + coffset, segflg,
1669 		    IO_UNIT, io->io_cred, NULL, io->io_proc);
1670 		if (error) {
1671 			if (error == ENOSPC)
1672 				log(LOG_ERR, "coredump of %s(%d) failed, filesystem full\n",
1673 				    io->io_proc->p_comm, io->io_proc->p_pid);
1674 			else
1675 				log(LOG_ERR, "coredump of %s(%d), write failed: errno %d\n",
1676 				    io->io_proc->p_comm, io->io_proc->p_pid, error);
1677 			return (error);
1678 		}
1679 
1680 		coffset += chunk;
1681 		csize -= chunk;
1682 	} while (csize > 0);
1683 
1684 	io->io_offset += len;
1685 	return (0);
1686 }
1687 
1688 void
1689 coredump_unmap(void *cookie, vaddr_t start, vaddr_t end)
1690 {
1691 	struct coredump_iostate *io = cookie;
1692 
1693 	uvm_unmap(&io->io_proc->p_vmspace->vm_map, start, end);
1694 }
1695 
1696 #endif	/* !SMALL_KERNEL */
1697 
1698 /*
1699  * Nonexistent system call-- signal process (may want to handle it).
1700  * Flag error in case process won't see signal immediately (blocked or ignored).
1701  */
1702 int
1703 sys_nosys(struct proc *p, void *v, register_t *retval)
1704 {
1705 
1706 	ptsignal(p, SIGSYS, STHREAD);
1707 	return (ENOSYS);
1708 }
1709 
1710 int
1711 sys___thrsigdivert(struct proc *p, void *v, register_t *retval)
1712 {
1713 	static int sigwaitsleep;
1714 	struct sys___thrsigdivert_args /* {
1715 		syscallarg(sigset_t) sigmask;
1716 		syscallarg(siginfo_t *) info;
1717 		syscallarg(const struct timespec *) timeout;
1718 	} */ *uap = v;
1719 	struct process *pr = p->p_p;
1720 	sigset_t *m;
1721 	sigset_t mask = SCARG(uap, sigmask) &~ sigcantmask;
1722 	siginfo_t si;
1723 	long long to_ticks = 0;
1724 	int timeinvalid = 0;
1725 	int error = 0;
1726 
1727 	memset(&si, 0, sizeof(si));
1728 
1729 	if (SCARG(uap, timeout) != NULL) {
1730 		struct timespec ts;
1731 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))) != 0)
1732 			return (error);
1733 #ifdef KTRACE
1734 		if (KTRPOINT(p, KTR_STRUCT))
1735 			ktrreltimespec(p, &ts);
1736 #endif
1737 		if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
1738 			timeinvalid = 1;
1739 		else {
1740 			to_ticks = (long long)hz * ts.tv_sec +
1741 			    ts.tv_nsec / (tick * 1000);
1742 			if (to_ticks > INT_MAX)
1743 				to_ticks = INT_MAX;
1744 			if (to_ticks == 0 && ts.tv_nsec)
1745 				to_ticks = 1;
1746 		}
1747 	}
1748 
1749 	dosigsuspend(p, p->p_sigmask &~ mask);
1750 	for (;;) {
1751 		si.si_signo = CURSIG(p);
1752 		if (si.si_signo != 0) {
1753 			sigset_t smask = sigmask(si.si_signo);
1754 			if (smask & mask) {
1755 				if (p->p_siglist & smask)
1756 					m = &p->p_siglist;
1757 				else if (pr->ps_mainproc->p_siglist & smask)
1758 					m = &pr->ps_mainproc->p_siglist;
1759 				else {
1760 					/* signal got eaten by someone else? */
1761 					continue;
1762 				}
1763 				atomic_clearbits_int(m, smask);
1764 				error = 0;
1765 				break;
1766 			}
1767 		}
1768 
1769 		/* per-POSIX, delay this error until after the above */
1770 		if (timeinvalid)
1771 			error = EINVAL;
1772 
1773 		if (SCARG(uap, timeout) != NULL && to_ticks == 0)
1774 			error = EAGAIN;
1775 
1776 		if (error != 0)
1777 			break;
1778 
1779 		error = tsleep(&sigwaitsleep, PPAUSE|PCATCH, "sigwait",
1780 		    (int)to_ticks);
1781 	}
1782 
1783 	if (error == 0) {
1784 		*retval = si.si_signo;
1785 		if (SCARG(uap, info) != NULL)
1786 			error = copyout(&si, SCARG(uap, info), sizeof(si));
1787 	} else if (error == ERESTART && SCARG(uap, timeout) != NULL) {
1788 		/*
1789 		 * Restarting is wrong if there's a timeout, as it'll be
1790 		 * for the same interval again
1791 		 */
1792 		error = EINTR;
1793 	}
1794 
1795 	return (error);
1796 }
1797 
1798 void
1799 initsiginfo(siginfo_t *si, int sig, u_long trapno, int code, union sigval val)
1800 {
1801 	memset(si, 0, sizeof(*si));
1802 
1803 	si->si_signo = sig;
1804 	si->si_code = code;
1805 	if (code == SI_USER) {
1806 		si->si_value = val;
1807 	} else {
1808 		switch (sig) {
1809 		case SIGSEGV:
1810 		case SIGILL:
1811 		case SIGBUS:
1812 		case SIGFPE:
1813 			si->si_addr = val.sival_ptr;
1814 			si->si_trapno = trapno;
1815 			break;
1816 		case SIGXFSZ:
1817 			break;
1818 		}
1819 	}
1820 }
1821 
1822 int
1823 filt_sigattach(struct knote *kn)
1824 {
1825 	struct process *pr = curproc->p_p;
1826 
1827 	kn->kn_ptr.p_process = pr;
1828 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
1829 
1830 	/* XXX lock the proc here while adding to the list? */
1831 	SLIST_INSERT_HEAD(&pr->ps_klist, kn, kn_selnext);
1832 
1833 	return (0);
1834 }
1835 
1836 void
1837 filt_sigdetach(struct knote *kn)
1838 {
1839 	struct process *pr = kn->kn_ptr.p_process;
1840 
1841 	SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
1842 }
1843 
1844 /*
1845  * signal knotes are shared with proc knotes, so we apply a mask to
1846  * the hint in order to differentiate them from process hints.  This
1847  * could be avoided by using a signal-specific knote list, but probably
1848  * isn't worth the trouble.
1849  */
1850 int
1851 filt_signal(struct knote *kn, long hint)
1852 {
1853 
1854 	if (hint & NOTE_SIGNAL) {
1855 		hint &= ~NOTE_SIGNAL;
1856 
1857 		if (kn->kn_id == hint)
1858 			kn->kn_data++;
1859 	}
1860 	return (kn->kn_data != 0);
1861 }
1862 
1863 void
1864 userret(struct proc *p)
1865 {
1866 	int sig;
1867 
1868 	/* send SIGPROF or SIGVTALRM if their timers interrupted this thread */
1869 	if (p->p_flag & P_PROFPEND) {
1870 		atomic_clearbits_int(&p->p_flag, P_PROFPEND);
1871 		KERNEL_LOCK();
1872 		psignal(p, SIGPROF);
1873 		KERNEL_UNLOCK();
1874 	}
1875 	if (p->p_flag & P_ALRMPEND) {
1876 		atomic_clearbits_int(&p->p_flag, P_ALRMPEND);
1877 		KERNEL_LOCK();
1878 		psignal(p, SIGVTALRM);
1879 		KERNEL_UNLOCK();
1880 	}
1881 
1882 	while ((sig = CURSIG(p)) != 0)
1883 		postsig(sig);
1884 
1885 	/*
1886 	 * If P_SIGSUSPEND is still set here, then we still need to restore
1887 	 * the original sigmask before returning to userspace.  Also, this
1888 	 * might unmask some pending signals, so we need to check a second
1889 	 * time for signals to post.
1890 	 */
1891 	if (p->p_flag & P_SIGSUSPEND) {
1892 		atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1893 		p->p_sigmask = p->p_oldmask;
1894 
1895 		while ((sig = CURSIG(p)) != 0)
1896 			postsig(sig);
1897 	}
1898 
1899 	if (p->p_flag & P_SUSPSINGLE) {
1900 		KERNEL_LOCK();
1901 		single_thread_check(p, 0);
1902 		KERNEL_UNLOCK();
1903 	}
1904 
1905 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_priority = p->p_usrpri;
1906 }
1907 
1908 int
1909 single_thread_check(struct proc *p, int deep)
1910 {
1911 	struct process *pr = p->p_p;
1912 
1913 	if (pr->ps_single != NULL && pr->ps_single != p) {
1914 		do {
1915 			int s;
1916 
1917 			/* if we're in deep, we need to unwind to the edge */
1918 			if (deep) {
1919 				if (pr->ps_flags & PS_SINGLEUNWIND)
1920 					return (ERESTART);
1921 				if (pr->ps_flags & PS_SINGLEEXIT)
1922 					return (EINTR);
1923 			}
1924 
1925 			if (--pr->ps_singlecount == 0)
1926 				wakeup(&pr->ps_singlecount);
1927 			if (pr->ps_flags & PS_SINGLEEXIT)
1928 				exit1(p, 0, EXIT_THREAD_NOCHECK);
1929 
1930 			/* not exiting and don't need to unwind, so suspend */
1931 			SCHED_LOCK(s);
1932 			p->p_stat = SSTOP;
1933 			mi_switch();
1934 			SCHED_UNLOCK(s);
1935 		} while (pr->ps_single != NULL);
1936 	}
1937 
1938 	return (0);
1939 }
1940 
1941 /*
1942  * Stop other threads in the process.  The mode controls how and
1943  * where the other threads should stop:
1944  *  - SINGLE_SUSPEND: stop wherever they are, will later either be told to exit
1945  *    (by setting to SINGLE_EXIT) or be released (via single_thread_clear())
1946  *  - SINGLE_PTRACE: stop wherever they are, will wait for them to stop
1947  *    later (via single_thread_wait()) and released as with SINGLE_SUSPEND
1948  *  - SINGLE_UNWIND: just unwind to kernel boundary, will be told to exit
1949  *    or released as with SINGLE_SUSPEND
1950  *  - SINGLE_EXIT: unwind to kernel boundary and exit
1951  */
1952 int
1953 single_thread_set(struct proc *p, enum single_thread_mode mode, int deep)
1954 {
1955 	struct process *pr = p->p_p;
1956 	struct proc *q;
1957 	int error;
1958 
1959 	KERNEL_ASSERT_LOCKED();
1960 
1961 	if ((error = single_thread_check(p, deep)))
1962 		return error;
1963 
1964 	switch (mode) {
1965 	case SINGLE_SUSPEND:
1966 	case SINGLE_PTRACE:
1967 		break;
1968 	case SINGLE_UNWIND:
1969 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
1970 		break;
1971 	case SINGLE_EXIT:
1972 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEEXIT);
1973 		atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
1974 		break;
1975 #ifdef DIAGNOSTIC
1976 	default:
1977 		panic("single_thread_mode = %d", mode);
1978 #endif
1979 	}
1980 	pr->ps_single = p;
1981 	pr->ps_singlecount = 0;
1982 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
1983 		int s;
1984 
1985 		if (q == p)
1986 			continue;
1987 		if (q->p_flag & P_WEXIT) {
1988 			if (mode == SINGLE_EXIT) {
1989 				SCHED_LOCK(s);
1990 				if (q->p_stat == SSTOP) {
1991 					setrunnable(q);
1992 					pr->ps_singlecount++;
1993 				}
1994 				SCHED_UNLOCK(s);
1995 			}
1996 			continue;
1997 		}
1998 		SCHED_LOCK(s);
1999 		atomic_setbits_int(&q->p_flag, P_SUSPSINGLE);
2000 		switch (q->p_stat) {
2001 		case SIDL:
2002 		case SRUN:
2003 			pr->ps_singlecount++;
2004 			break;
2005 		case SSLEEP:
2006 			/* if it's not interruptible, then just have to wait */
2007 			if (q->p_flag & P_SINTR) {
2008 				/* merely need to suspend?  just stop it */
2009 				if (mode == SINGLE_SUSPEND ||
2010 				    mode == SINGLE_PTRACE) {
2011 					q->p_stat = SSTOP;
2012 					break;
2013 				}
2014 				/* need to unwind or exit, so wake it */
2015 				setrunnable(q);
2016 			}
2017 			pr->ps_singlecount++;
2018 			break;
2019 		case SSTOP:
2020 			if (mode == SINGLE_EXIT) {
2021 				setrunnable(q);
2022 				pr->ps_singlecount++;
2023 			}
2024 			break;
2025 		case SDEAD:
2026 			break;
2027 		case SONPROC:
2028 			pr->ps_singlecount++;
2029 			signotify(q);
2030 			break;
2031 		}
2032 		SCHED_UNLOCK(s);
2033 	}
2034 
2035 	if (mode != SINGLE_PTRACE)
2036 		single_thread_wait(pr);
2037 
2038 	return 0;
2039 }
2040 
2041 void
2042 single_thread_wait(struct process *pr)
2043 {
2044 	/* wait until they're all suspended */
2045 	while (pr->ps_singlecount > 0)
2046 		tsleep(&pr->ps_singlecount, PUSER, "suspend", 0);
2047 }
2048 
2049 void
2050 single_thread_clear(struct proc *p, int flag)
2051 {
2052 	struct process *pr = p->p_p;
2053 	struct proc *q;
2054 
2055 	KASSERT(pr->ps_single == p);
2056 	KERNEL_ASSERT_LOCKED();
2057 
2058 	pr->ps_single = NULL;
2059 	atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND | PS_SINGLEEXIT);
2060 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2061 		int s;
2062 
2063 		if (q == p || (q->p_flag & P_SUSPSINGLE) == 0)
2064 			continue;
2065 		atomic_clearbits_int(&q->p_flag, P_SUSPSINGLE);
2066 
2067 		/*
2068 		 * if the thread was only stopped for single threading
2069 		 * then clearing that either makes it runnable or puts
2070 		 * it back into some sleep queue
2071 		 */
2072 		SCHED_LOCK(s);
2073 		if (q->p_stat == SSTOP && (q->p_flag & flag) == 0) {
2074 			if (q->p_wchan == 0)
2075 				setrunnable(q);
2076 			else
2077 				q->p_stat = SSLEEP;
2078 		}
2079 		SCHED_UNLOCK(s);
2080 	}
2081 }
2082