xref: /openbsd-src/sys/kern/kern_sig.c (revision f2a19305cfc49ea4d1a5feb55cd6c283c6f1e031)
1 /*	$OpenBSD: kern_sig.c,v 1.327 2024/05/08 13:05:33 claudio Exp $	*/
2 /*	$NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Theo de Raadt. All rights reserved.
6  * Copyright (c) 1982, 1986, 1989, 1991, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
39  */
40 
41 #include <sys/param.h>
42 #include <sys/signalvar.h>
43 #include <sys/queue.h>
44 #include <sys/namei.h>
45 #include <sys/vnode.h>
46 #include <sys/event.h>
47 #include <sys/proc.h>
48 #include <sys/systm.h>
49 #include <sys/acct.h>
50 #include <sys/fcntl.h>
51 #include <sys/filedesc.h>
52 #include <sys/wait.h>
53 #include <sys/ktrace.h>
54 #include <sys/stat.h>
55 #include <sys/malloc.h>
56 #include <sys/pool.h>
57 #include <sys/sched.h>
58 #include <sys/user.h>
59 #include <sys/syslog.h>
60 #include <sys/ttycom.h>
61 #include <sys/pledge.h>
62 #include <sys/witness.h>
63 #include <sys/exec_elf.h>
64 
65 #include <sys/mount.h>
66 #include <sys/syscallargs.h>
67 
68 #include <uvm/uvm_extern.h>
69 #include <machine/tcb.h>
70 
71 int nosuidcoredump = 1;
72 
73 int	filt_sigattach(struct knote *kn);
74 void	filt_sigdetach(struct knote *kn);
75 int	filt_signal(struct knote *kn, long hint);
76 
77 const struct filterops sig_filtops = {
78 	.f_flags	= 0,
79 	.f_attach	= filt_sigattach,
80 	.f_detach	= filt_sigdetach,
81 	.f_event	= filt_signal,
82 };
83 
84 /*
85  * The array below categorizes the signals and their default actions.
86  */
87 const int sigprop[NSIG] = {
88 	0,			/* unused */
89 	SA_KILL,		/* SIGHUP */
90 	SA_KILL,		/* SIGINT */
91 	SA_KILL|SA_CORE,	/* SIGQUIT */
92 	SA_KILL|SA_CORE,	/* SIGILL */
93 	SA_KILL|SA_CORE,	/* SIGTRAP */
94 	SA_KILL|SA_CORE,	/* SIGABRT */
95 	SA_KILL|SA_CORE,	/* SIGEMT */
96 	SA_KILL|SA_CORE,	/* SIGFPE */
97 	SA_KILL,		/* SIGKILL */
98 	SA_KILL|SA_CORE,	/* SIGBUS */
99 	SA_KILL|SA_CORE,	/* SIGSEGV */
100 	SA_KILL|SA_CORE,	/* SIGSYS */
101 	SA_KILL,		/* SIGPIPE */
102 	SA_KILL,		/* SIGALRM */
103 	SA_KILL,		/* SIGTERM */
104 	SA_IGNORE,		/* SIGURG */
105 	SA_STOP,		/* SIGSTOP */
106 	SA_STOP|SA_TTYSTOP,	/* SIGTSTP */
107 	SA_IGNORE|SA_CONT,	/* SIGCONT */
108 	SA_IGNORE,		/* SIGCHLD */
109 	SA_STOP|SA_TTYSTOP,	/* SIGTTIN */
110 	SA_STOP|SA_TTYSTOP,	/* SIGTTOU */
111 	SA_IGNORE,		/* SIGIO */
112 	SA_KILL,		/* SIGXCPU */
113 	SA_KILL,		/* SIGXFSZ */
114 	SA_KILL,		/* SIGVTALRM */
115 	SA_KILL,		/* SIGPROF */
116 	SA_IGNORE,		/* SIGWINCH  */
117 	SA_IGNORE,		/* SIGINFO */
118 	SA_KILL,		/* SIGUSR1 */
119 	SA_KILL,		/* SIGUSR2 */
120 	SA_IGNORE,		/* SIGTHR */
121 };
122 
123 #define	CONTSIGMASK	(sigmask(SIGCONT))
124 #define	STOPSIGMASK	(sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
125 			    sigmask(SIGTTIN) | sigmask(SIGTTOU))
126 
127 void setsigvec(struct proc *, int, struct sigaction *);
128 
129 void proc_stop(struct proc *p, int);
130 void proc_stop_sweep(void *);
131 void *proc_stop_si;
132 
133 void setsigctx(struct proc *, int, struct sigctx *);
134 void postsig_done(struct proc *, int, sigset_t, int);
135 void postsig(struct proc *, int, struct sigctx *);
136 int cansignal(struct proc *, struct process *, int);
137 
138 struct pool sigacts_pool;	/* memory pool for sigacts structures */
139 
140 void sigio_del(struct sigiolst *);
141 void sigio_unlink(struct sigio_ref *, struct sigiolst *);
142 struct mutex sigio_lock = MUTEX_INITIALIZER(IPL_HIGH);
143 
144 /*
145  * Can thread p, send the signal signum to process qr?
146  */
147 int
148 cansignal(struct proc *p, struct process *qr, int signum)
149 {
150 	struct process *pr = p->p_p;
151 	struct ucred *uc = p->p_ucred;
152 	struct ucred *quc = qr->ps_ucred;
153 
154 	if (uc->cr_uid == 0)
155 		return (1);		/* root can always signal */
156 
157 	if (pr == qr)
158 		return (1);		/* process can always signal itself */
159 
160 	/* optimization: if the same creds then the tests below will pass */
161 	if (uc == quc)
162 		return (1);
163 
164 	if (signum == SIGCONT && qr->ps_session == pr->ps_session)
165 		return (1);		/* SIGCONT in session */
166 
167 	/*
168 	 * Using kill(), only certain signals can be sent to setugid
169 	 * child processes
170 	 */
171 	if (qr->ps_flags & PS_SUGID) {
172 		switch (signum) {
173 		case 0:
174 		case SIGKILL:
175 		case SIGINT:
176 		case SIGTERM:
177 		case SIGALRM:
178 		case SIGSTOP:
179 		case SIGTTIN:
180 		case SIGTTOU:
181 		case SIGTSTP:
182 		case SIGHUP:
183 		case SIGUSR1:
184 		case SIGUSR2:
185 			if (uc->cr_ruid == quc->cr_ruid ||
186 			    uc->cr_uid == quc->cr_ruid)
187 				return (1);
188 		}
189 		return (0);
190 	}
191 
192 	if (uc->cr_ruid == quc->cr_ruid ||
193 	    uc->cr_ruid == quc->cr_svuid ||
194 	    uc->cr_uid == quc->cr_ruid ||
195 	    uc->cr_uid == quc->cr_svuid)
196 		return (1);
197 	return (0);
198 }
199 
200 /*
201  * Initialize signal-related data structures.
202  */
203 void
204 signal_init(void)
205 {
206 	proc_stop_si = softintr_establish(IPL_SOFTCLOCK, proc_stop_sweep,
207 	    NULL);
208 	if (proc_stop_si == NULL)
209 		panic("signal_init failed to register softintr");
210 
211 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, IPL_NONE,
212 	    PR_WAITOK, "sigapl", NULL);
213 }
214 
215 /*
216  * Initialize a new sigaltstack structure.
217  */
218 void
219 sigstkinit(struct sigaltstack *ss)
220 {
221 	ss->ss_flags = SS_DISABLE;
222 	ss->ss_size = 0;
223 	ss->ss_sp = NULL;
224 }
225 
226 /*
227  * Create an initial sigacts structure, using the same signal state
228  * as pr.
229  */
230 struct sigacts *
231 sigactsinit(struct process *pr)
232 {
233 	struct sigacts *ps;
234 
235 	ps = pool_get(&sigacts_pool, PR_WAITOK);
236 	memcpy(ps, pr->ps_sigacts, sizeof(struct sigacts));
237 	return (ps);
238 }
239 
240 /*
241  * Release a sigacts structure.
242  */
243 void
244 sigactsfree(struct sigacts *ps)
245 {
246 	pool_put(&sigacts_pool, ps);
247 }
248 
249 int
250 sys_sigaction(struct proc *p, void *v, register_t *retval)
251 {
252 	struct sys_sigaction_args /* {
253 		syscallarg(int) signum;
254 		syscallarg(const struct sigaction *) nsa;
255 		syscallarg(struct sigaction *) osa;
256 	} */ *uap = v;
257 	struct sigaction vec;
258 #ifdef KTRACE
259 	struct sigaction ovec;
260 #endif
261 	struct sigaction *sa;
262 	const struct sigaction *nsa;
263 	struct sigaction *osa;
264 	struct sigacts *ps = p->p_p->ps_sigacts;
265 	int signum;
266 	int bit, error;
267 
268 	signum = SCARG(uap, signum);
269 	nsa = SCARG(uap, nsa);
270 	osa = SCARG(uap, osa);
271 
272 	if (signum <= 0 || signum >= NSIG ||
273 	    (nsa && (signum == SIGKILL || signum == SIGSTOP)))
274 		return (EINVAL);
275 	sa = &vec;
276 	if (osa) {
277 		mtx_enter(&p->p_p->ps_mtx);
278 		sa->sa_handler = ps->ps_sigact[signum];
279 		sa->sa_mask = ps->ps_catchmask[signum];
280 		bit = sigmask(signum);
281 		sa->sa_flags = 0;
282 		if ((ps->ps_sigonstack & bit) != 0)
283 			sa->sa_flags |= SA_ONSTACK;
284 		if ((ps->ps_sigintr & bit) == 0)
285 			sa->sa_flags |= SA_RESTART;
286 		if ((ps->ps_sigreset & bit) != 0)
287 			sa->sa_flags |= SA_RESETHAND;
288 		if ((ps->ps_siginfo & bit) != 0)
289 			sa->sa_flags |= SA_SIGINFO;
290 		if (signum == SIGCHLD) {
291 			if ((ps->ps_sigflags & SAS_NOCLDSTOP) != 0)
292 				sa->sa_flags |= SA_NOCLDSTOP;
293 			if ((ps->ps_sigflags & SAS_NOCLDWAIT) != 0)
294 				sa->sa_flags |= SA_NOCLDWAIT;
295 		}
296 		mtx_leave(&p->p_p->ps_mtx);
297 		if ((sa->sa_mask & bit) == 0)
298 			sa->sa_flags |= SA_NODEFER;
299 		sa->sa_mask &= ~bit;
300 		error = copyout(sa, osa, sizeof (vec));
301 		if (error)
302 			return (error);
303 #ifdef KTRACE
304 		if (KTRPOINT(p, KTR_STRUCT))
305 			ovec = vec;
306 #endif
307 	}
308 	if (nsa) {
309 		error = copyin(nsa, sa, sizeof (vec));
310 		if (error)
311 			return (error);
312 #ifdef KTRACE
313 		if (KTRPOINT(p, KTR_STRUCT))
314 			ktrsigaction(p, sa);
315 #endif
316 		setsigvec(p, signum, sa);
317 	}
318 #ifdef KTRACE
319 	if (osa && KTRPOINT(p, KTR_STRUCT))
320 		ktrsigaction(p, &ovec);
321 #endif
322 	return (0);
323 }
324 
325 void
326 setsigvec(struct proc *p, int signum, struct sigaction *sa)
327 {
328 	struct sigacts *ps = p->p_p->ps_sigacts;
329 	int bit;
330 
331 	bit = sigmask(signum);
332 
333 	mtx_enter(&p->p_p->ps_mtx);
334 	ps->ps_sigact[signum] = sa->sa_handler;
335 	if ((sa->sa_flags & SA_NODEFER) == 0)
336 		sa->sa_mask |= sigmask(signum);
337 	ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask;
338 	if (signum == SIGCHLD) {
339 		if (sa->sa_flags & SA_NOCLDSTOP)
340 			atomic_setbits_int(&ps->ps_sigflags, SAS_NOCLDSTOP);
341 		else
342 			atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDSTOP);
343 		/*
344 		 * If the SA_NOCLDWAIT flag is set or the handler
345 		 * is SIG_IGN we reparent the dying child to PID 1
346 		 * (init) which will reap the zombie.  Because we use
347 		 * init to do our dirty work we never set SAS_NOCLDWAIT
348 		 * for PID 1.
349 		 * XXX exit1 rework means this is unnecessary?
350 		 */
351 		if (initprocess->ps_sigacts != ps &&
352 		    ((sa->sa_flags & SA_NOCLDWAIT) ||
353 		    sa->sa_handler == SIG_IGN))
354 			atomic_setbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
355 		else
356 			atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
357 	}
358 	if ((sa->sa_flags & SA_RESETHAND) != 0)
359 		ps->ps_sigreset |= bit;
360 	else
361 		ps->ps_sigreset &= ~bit;
362 	if ((sa->sa_flags & SA_SIGINFO) != 0)
363 		ps->ps_siginfo |= bit;
364 	else
365 		ps->ps_siginfo &= ~bit;
366 	if ((sa->sa_flags & SA_RESTART) == 0)
367 		ps->ps_sigintr |= bit;
368 	else
369 		ps->ps_sigintr &= ~bit;
370 	if ((sa->sa_flags & SA_ONSTACK) != 0)
371 		ps->ps_sigonstack |= bit;
372 	else
373 		ps->ps_sigonstack &= ~bit;
374 	/*
375 	 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
376 	 * and for signals set to SIG_DFL where the default is to ignore.
377 	 * However, don't put SIGCONT in ps_sigignore,
378 	 * as we have to restart the process.
379 	 */
380 	if (sa->sa_handler == SIG_IGN ||
381 	    (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) {
382 		atomic_clearbits_int(&p->p_siglist, bit);
383 		atomic_clearbits_int(&p->p_p->ps_siglist, bit);
384 		if (signum != SIGCONT)
385 			ps->ps_sigignore |= bit;	/* easier in psignal */
386 		ps->ps_sigcatch &= ~bit;
387 	} else {
388 		ps->ps_sigignore &= ~bit;
389 		if (sa->sa_handler == SIG_DFL)
390 			ps->ps_sigcatch &= ~bit;
391 		else
392 			ps->ps_sigcatch |= bit;
393 	}
394 	mtx_leave(&p->p_p->ps_mtx);
395 }
396 
397 /*
398  * Initialize signal state for process 0;
399  * set to ignore signals that are ignored by default.
400  */
401 void
402 siginit(struct sigacts *ps)
403 {
404 	int i;
405 
406 	for (i = 0; i < NSIG; i++)
407 		if (sigprop[i] & SA_IGNORE && i != SIGCONT)
408 			ps->ps_sigignore |= sigmask(i);
409 	ps->ps_sigflags = SAS_NOCLDWAIT | SAS_NOCLDSTOP;
410 }
411 
412 /*
413  * Reset signals for an exec by the specified thread.
414  */
415 void
416 execsigs(struct proc *p)
417 {
418 	struct sigacts *ps;
419 	int nc, mask;
420 
421 	ps = p->p_p->ps_sigacts;
422 	mtx_enter(&p->p_p->ps_mtx);
423 
424 	/*
425 	 * Reset caught signals.  Held signals remain held
426 	 * through p_sigmask (unless they were caught,
427 	 * and are now ignored by default).
428 	 */
429 	while (ps->ps_sigcatch) {
430 		nc = ffs((long)ps->ps_sigcatch);
431 		mask = sigmask(nc);
432 		ps->ps_sigcatch &= ~mask;
433 		if (sigprop[nc] & SA_IGNORE) {
434 			if (nc != SIGCONT)
435 				ps->ps_sigignore |= mask;
436 			atomic_clearbits_int(&p->p_siglist, mask);
437 			atomic_clearbits_int(&p->p_p->ps_siglist, mask);
438 		}
439 		ps->ps_sigact[nc] = SIG_DFL;
440 	}
441 	/*
442 	 * Reset stack state to the user stack.
443 	 * Clear set of signals caught on the signal stack.
444 	 */
445 	sigstkinit(&p->p_sigstk);
446 	atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
447 	if (ps->ps_sigact[SIGCHLD] == SIG_IGN)
448 		ps->ps_sigact[SIGCHLD] = SIG_DFL;
449 	mtx_leave(&p->p_p->ps_mtx);
450 }
451 
452 /*
453  * Manipulate signal mask.
454  * Note that we receive new mask, not pointer,
455  * and return old mask as return value;
456  * the library stub does the rest.
457  */
458 int
459 sys_sigprocmask(struct proc *p, void *v, register_t *retval)
460 {
461 	struct sys_sigprocmask_args /* {
462 		syscallarg(int) how;
463 		syscallarg(sigset_t) mask;
464 	} */ *uap = v;
465 	int error = 0;
466 	sigset_t mask;
467 
468 	KASSERT(p == curproc);
469 
470 	*retval = p->p_sigmask;
471 	mask = SCARG(uap, mask) &~ sigcantmask;
472 
473 	switch (SCARG(uap, how)) {
474 	case SIG_BLOCK:
475 		SET(p->p_sigmask, mask);
476 		break;
477 	case SIG_UNBLOCK:
478 		CLR(p->p_sigmask, mask);
479 		break;
480 	case SIG_SETMASK:
481 		p->p_sigmask = mask;
482 		break;
483 	default:
484 		error = EINVAL;
485 		break;
486 	}
487 	return (error);
488 }
489 
490 int
491 sys_sigpending(struct proc *p, void *v, register_t *retval)
492 {
493 	*retval = p->p_siglist | p->p_p->ps_siglist;
494 	return (0);
495 }
496 
497 /*
498  * Temporarily replace calling proc's signal mask for the duration of a
499  * system call.  Original signal mask will be restored by userret().
500  */
501 void
502 dosigsuspend(struct proc *p, sigset_t newmask)
503 {
504 	KASSERT(p == curproc);
505 
506 	p->p_oldmask = p->p_sigmask;
507 	p->p_sigmask = newmask;
508 	atomic_setbits_int(&p->p_flag, P_SIGSUSPEND);
509 }
510 
511 /*
512  * Suspend thread until signal, providing mask to be set
513  * in the meantime.  Note nonstandard calling convention:
514  * libc stub passes mask, not pointer, to save a copyin.
515  */
516 int
517 sys_sigsuspend(struct proc *p, void *v, register_t *retval)
518 {
519 	struct sys_sigsuspend_args /* {
520 		syscallarg(int) mask;
521 	} */ *uap = v;
522 
523 	dosigsuspend(p, SCARG(uap, mask) &~ sigcantmask);
524 	while (tsleep_nsec(&nowake, PPAUSE|PCATCH, "sigsusp", INFSLP) == 0)
525 		continue;
526 	/* always return EINTR rather than ERESTART... */
527 	return (EINTR);
528 }
529 
530 int
531 sigonstack(size_t stack)
532 {
533 	const struct sigaltstack *ss = &curproc->p_sigstk;
534 
535 	return (ss->ss_flags & SS_DISABLE ? 0 :
536 	    (stack - (size_t)ss->ss_sp < ss->ss_size));
537 }
538 
539 int
540 sys_sigaltstack(struct proc *p, void *v, register_t *retval)
541 {
542 	struct sys_sigaltstack_args /* {
543 		syscallarg(const struct sigaltstack *) nss;
544 		syscallarg(struct sigaltstack *) oss;
545 	} */ *uap = v;
546 	struct sigaltstack ss;
547 	const struct sigaltstack *nss;
548 	struct sigaltstack *oss;
549 	int onstack = sigonstack(PROC_STACK(p));
550 	int error;
551 
552 	nss = SCARG(uap, nss);
553 	oss = SCARG(uap, oss);
554 
555 	if (oss != NULL) {
556 		ss = p->p_sigstk;
557 		if (onstack)
558 			ss.ss_flags |= SS_ONSTACK;
559 		if ((error = copyout(&ss, oss, sizeof(ss))))
560 			return (error);
561 	}
562 	if (nss == NULL)
563 		return (0);
564 	error = copyin(nss, &ss, sizeof(ss));
565 	if (error)
566 		return (error);
567 	if (onstack)
568 		return (EPERM);
569 	if (ss.ss_flags & ~SS_DISABLE)
570 		return (EINVAL);
571 	if (ss.ss_flags & SS_DISABLE) {
572 		p->p_sigstk.ss_flags = ss.ss_flags;
573 		return (0);
574 	}
575 	if (ss.ss_size < MINSIGSTKSZ)
576 		return (ENOMEM);
577 
578 	error = uvm_map_remap_as_stack(p, (vaddr_t)ss.ss_sp, ss.ss_size);
579 	if (error)
580 		return (error);
581 
582 	p->p_sigstk = ss;
583 	return (0);
584 }
585 
586 int
587 sys_kill(struct proc *cp, void *v, register_t *retval)
588 {
589 	struct sys_kill_args /* {
590 		syscallarg(int) pid;
591 		syscallarg(int) signum;
592 	} */ *uap = v;
593 	struct process *pr;
594 	int pid = SCARG(uap, pid);
595 	int signum = SCARG(uap, signum);
596 	int error;
597 	int zombie = 0;
598 
599 	if ((error = pledge_kill(cp, pid)) != 0)
600 		return (error);
601 	if (((u_int)signum) >= NSIG)
602 		return (EINVAL);
603 	if (pid > 0) {
604 		if ((pr = prfind(pid)) == NULL) {
605 			if ((pr = zombiefind(pid)) == NULL)
606 				return (ESRCH);
607 			else
608 				zombie = 1;
609 		}
610 		if (!cansignal(cp, pr, signum))
611 			return (EPERM);
612 
613 		/* kill single process */
614 		if (signum && !zombie)
615 			prsignal(pr, signum);
616 		return (0);
617 	}
618 	switch (pid) {
619 	case -1:		/* broadcast signal */
620 		return (killpg1(cp, signum, 0, 1));
621 	case 0:			/* signal own process group */
622 		return (killpg1(cp, signum, 0, 0));
623 	default:		/* negative explicit process group */
624 		return (killpg1(cp, signum, -pid, 0));
625 	}
626 }
627 
628 int
629 sys_thrkill(struct proc *cp, void *v, register_t *retval)
630 {
631 	struct sys_thrkill_args /* {
632 		syscallarg(pid_t) tid;
633 		syscallarg(int) signum;
634 		syscallarg(void *) tcb;
635 	} */ *uap = v;
636 	struct proc *p;
637 	int tid = SCARG(uap, tid);
638 	int signum = SCARG(uap, signum);
639 	void *tcb;
640 
641 	if (((u_int)signum) >= NSIG)
642 		return (EINVAL);
643 
644 	p = tid ? tfind_user(tid, cp->p_p) : cp;
645 	if (p == NULL)
646 		return (ESRCH);
647 
648 	/* optionally require the target thread to have the given tcb addr */
649 	tcb = SCARG(uap, tcb);
650 	if (tcb != NULL && tcb != TCB_GET(p))
651 		return (ESRCH);
652 
653 	if (signum)
654 		ptsignal(p, signum, STHREAD);
655 	return (0);
656 }
657 
658 /*
659  * Common code for kill process group/broadcast kill.
660  * cp is calling process.
661  */
662 int
663 killpg1(struct proc *cp, int signum, int pgid, int all)
664 {
665 	struct process *pr;
666 	struct pgrp *pgrp;
667 	int nfound = 0;
668 
669 	if (all) {
670 		/*
671 		 * broadcast
672 		 */
673 		LIST_FOREACH(pr, &allprocess, ps_list) {
674 			if (pr->ps_pid <= 1 ||
675 			    pr->ps_flags & (PS_SYSTEM | PS_NOBROADCASTKILL) ||
676 			    pr == cp->p_p || !cansignal(cp, pr, signum))
677 				continue;
678 			nfound++;
679 			if (signum)
680 				prsignal(pr, signum);
681 		}
682 	} else {
683 		if (pgid == 0)
684 			/*
685 			 * zero pgid means send to my process group.
686 			 */
687 			pgrp = cp->p_p->ps_pgrp;
688 		else {
689 			pgrp = pgfind(pgid);
690 			if (pgrp == NULL)
691 				return (ESRCH);
692 		}
693 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist) {
694 			if (pr->ps_pid <= 1 || pr->ps_flags & PS_SYSTEM ||
695 			    !cansignal(cp, pr, signum))
696 				continue;
697 			nfound++;
698 			if (signum)
699 				prsignal(pr, signum);
700 		}
701 	}
702 	return (nfound ? 0 : ESRCH);
703 }
704 
705 #define CANDELIVER(uid, euid, pr) \
706 	(euid == 0 || \
707 	(uid) == (pr)->ps_ucred->cr_ruid || \
708 	(uid) == (pr)->ps_ucred->cr_svuid || \
709 	(uid) == (pr)->ps_ucred->cr_uid || \
710 	(euid) == (pr)->ps_ucred->cr_ruid || \
711 	(euid) == (pr)->ps_ucred->cr_svuid || \
712 	(euid) == (pr)->ps_ucred->cr_uid)
713 
714 #define CANSIGIO(cr, pr) \
715 	CANDELIVER((cr)->cr_ruid, (cr)->cr_uid, (pr))
716 
717 /*
718  * Send a signal to a process group.  If checktty is 1,
719  * limit to members which have a controlling terminal.
720  */
721 void
722 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
723 {
724 	struct process *pr;
725 
726 	if (pgrp)
727 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
728 			if (checkctty == 0 || pr->ps_flags & PS_CONTROLT)
729 				prsignal(pr, signum);
730 }
731 
732 /*
733  * Send a SIGIO or SIGURG signal to a process or process group using stored
734  * credentials rather than those of the current process.
735  */
736 void
737 pgsigio(struct sigio_ref *sir, int sig, int checkctty)
738 {
739 	struct process *pr;
740 	struct sigio *sigio;
741 
742 	if (sir->sir_sigio == NULL)
743 		return;
744 
745 	KERNEL_LOCK();
746 	mtx_enter(&sigio_lock);
747 	sigio = sir->sir_sigio;
748 	if (sigio == NULL)
749 		goto out;
750 	if (sigio->sio_pgid > 0) {
751 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc))
752 			prsignal(sigio->sio_proc, sig);
753 	} else if (sigio->sio_pgid < 0) {
754 		LIST_FOREACH(pr, &sigio->sio_pgrp->pg_members, ps_pglist) {
755 			if (CANSIGIO(sigio->sio_ucred, pr) &&
756 			    (checkctty == 0 || (pr->ps_flags & PS_CONTROLT)))
757 				prsignal(pr, sig);
758 		}
759 	}
760 out:
761 	mtx_leave(&sigio_lock);
762 	KERNEL_UNLOCK();
763 }
764 
765 /*
766  * Recalculate the signal mask and reset the signal disposition after
767  * usermode frame for delivery is formed.
768  */
769 void
770 postsig_done(struct proc *p, int signum, sigset_t catchmask, int reset)
771 {
772 	p->p_ru.ru_nsignals++;
773 	SET(p->p_sigmask, catchmask);
774 	if (reset != 0) {
775 		sigset_t mask = sigmask(signum);
776 		struct sigacts *ps = p->p_p->ps_sigacts;
777 
778 		mtx_enter(&p->p_p->ps_mtx);
779 		ps->ps_sigcatch &= ~mask;
780 		if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
781 			ps->ps_sigignore |= mask;
782 		ps->ps_sigact[signum] = SIG_DFL;
783 		mtx_leave(&p->p_p->ps_mtx);
784 	}
785 }
786 
787 /*
788  * Send a signal caused by a trap to the current thread
789  * If it will be caught immediately, deliver it with correct code.
790  * Otherwise, post it normally.
791  */
792 void
793 trapsignal(struct proc *p, int signum, u_long trapno, int code,
794     union sigval sigval)
795 {
796 	struct process *pr = p->p_p;
797 	struct sigctx ctx;
798 	int mask;
799 
800 	switch (signum) {
801 	case SIGILL:
802 		if (code == ILL_BTCFI) {
803 			pr->ps_acflag |= ABTCFI;
804 			break;
805 		}
806 		/* FALLTHROUGH */
807 	case SIGBUS:
808 	case SIGSEGV:
809 		pr->ps_acflag |= ATRAP;
810 		break;
811 	}
812 
813 	mask = sigmask(signum);
814 	setsigctx(p, signum, &ctx);
815 	if ((pr->ps_flags & PS_TRACED) == 0 && ctx.sig_catch != 0 &&
816 	    (p->p_sigmask & mask) == 0) {
817 		siginfo_t si;
818 
819 		initsiginfo(&si, signum, trapno, code, sigval);
820 #ifdef KTRACE
821 		if (KTRPOINT(p, KTR_PSIG)) {
822 			ktrpsig(p, signum, ctx.sig_action,
823 			    p->p_sigmask, code, &si);
824 		}
825 #endif
826 		if (sendsig(ctx.sig_action, signum, p->p_sigmask, &si,
827 		    ctx.sig_info, ctx.sig_onstack)) {
828 			KERNEL_LOCK();
829 			sigexit(p, SIGILL);
830 			/* NOTREACHED */
831 		}
832 		postsig_done(p, signum, ctx.sig_catchmask, ctx.sig_reset);
833 	} else {
834 		p->p_sisig = signum;
835 		p->p_sitrapno = trapno;	/* XXX for core dump/debugger */
836 		p->p_sicode = code;
837 		p->p_sigval = sigval;
838 
839 		/*
840 		 * If traced, stop if signal is masked, and stay stopped
841 		 * until released by the debugger.  If our parent process
842 		 * is waiting for us, don't hang as we could deadlock.
843 		 */
844 		if (((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) &&
845 		    signum != SIGKILL && (p->p_sigmask & mask) != 0) {
846 			int s;
847 
848 			single_thread_set(p, SINGLE_SUSPEND | SINGLE_NOWAIT);
849 			pr->ps_xsig = signum;
850 
851 			SCHED_LOCK(s);
852 			proc_stop(p, 1);
853 			SCHED_UNLOCK(s);
854 
855 			signum = pr->ps_xsig;
856 			single_thread_clear(p, 0);
857 
858 			/*
859 			 * If we are no longer being traced, or the parent
860 			 * didn't give us a signal, skip sending the signal.
861 			 */
862 			if ((pr->ps_flags & PS_TRACED) == 0 ||
863 			    signum == 0)
864 				return;
865 
866 			/* update signal info */
867 			p->p_sisig = signum;
868 			mask = sigmask(signum);
869 		}
870 
871 		/*
872 		 * Signals like SIGBUS and SIGSEGV should not, when
873 		 * generated by the kernel, be ignorable or blockable.
874 		 * If it is and we're not being traced, then just kill
875 		 * the process.
876 		 * After vfs_shutdown(9), init(8) cannot receive signals
877 		 * because new code pages of the signal handler cannot be
878 		 * mapped from halted storage.  init(8) may not die or the
879 		 * kernel panics.  Better loop between signal handler and
880 		 * page fault trap until the machine is halted.
881 		 */
882 		if ((pr->ps_flags & PS_TRACED) == 0 &&
883 		    (sigprop[signum] & SA_KILL) &&
884 		    ((p->p_sigmask & mask) || ctx.sig_ignore) &&
885 		    pr->ps_pid != 1) {
886 			KERNEL_LOCK();
887 			sigexit(p, signum);
888 			/* NOTREACHED */
889 		}
890 		KERNEL_LOCK();
891 		ptsignal(p, signum, STHREAD);
892 		KERNEL_UNLOCK();
893 	}
894 }
895 
896 /*
897  * Send the signal to the process.  If the signal has an action, the action
898  * is usually performed by the target process rather than the caller; we add
899  * the signal to the set of pending signals for the process.
900  *
901  * Exceptions:
902  *   o When a stop signal is sent to a sleeping process that takes the
903  *     default action, the process is stopped without awakening it.
904  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
905  *     regardless of the signal action (eg, blocked or ignored).
906  *
907  * Other ignored signals are discarded immediately.
908  */
909 void
910 psignal(struct proc *p, int signum)
911 {
912 	ptsignal(p, signum, SPROCESS);
913 }
914 
915 /*
916  * type = SPROCESS	process signal, can be diverted (sigwait())
917  * type = STHREAD	thread signal, but should be propagated if unhandled
918  * type = SPROPAGATED	propagated to this thread, so don't propagate again
919  */
920 void
921 ptsignal(struct proc *p, int signum, enum signal_type type)
922 {
923 	int s, prop;
924 	sig_t action, altaction = SIG_DFL;
925 	sigset_t mask, sigmask;
926 	int *siglist;
927 	struct process *pr = p->p_p;
928 	struct proc *q;
929 	int wakeparent = 0;
930 
931 	KERNEL_ASSERT_LOCKED();
932 
933 #ifdef DIAGNOSTIC
934 	if ((u_int)signum >= NSIG || signum == 0)
935 		panic("psignal signal number");
936 #endif
937 
938 	/* Ignore signal if the target process is exiting */
939 	if (pr->ps_flags & PS_EXITING)
940 		return;
941 
942 	mask = sigmask(signum);
943 	sigmask = READ_ONCE(p->p_sigmask);
944 
945 	if (type == SPROCESS) {
946 		sigset_t tmpmask;
947 
948 		/* Accept SIGKILL to coredumping processes */
949 		if (pr->ps_flags & PS_COREDUMP && signum == SIGKILL) {
950 			atomic_setbits_int(&pr->ps_siglist, mask);
951 			return;
952 		}
953 
954 		/*
955 		 * If the current thread can process the signal
956 		 * immediately (it's unblocked) then have it take it.
957 		 */
958 		q = curproc;
959 		tmpmask = READ_ONCE(q->p_sigmask);
960 		if (q->p_p == pr && (q->p_flag & P_WEXIT) == 0 &&
961 		    (tmpmask & mask) == 0) {
962 			p = q;
963 			sigmask = tmpmask;
964 		} else {
965 			/*
966 			 * A process-wide signal can be diverted to a
967 			 * different thread that's in sigwait() for this
968 			 * signal.  If there isn't such a thread, then
969 			 * pick a thread that doesn't have it blocked so
970 			 * that the stop/kill consideration isn't
971 			 * delayed.  Otherwise, mark it pending on the
972 			 * main thread.
973 			 */
974 			TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
975 
976 				/* ignore exiting threads */
977 				if (q->p_flag & P_WEXIT)
978 					continue;
979 
980 				/* skip threads that have the signal blocked */
981 				tmpmask = READ_ONCE(q->p_sigmask);
982 				if ((tmpmask & mask) != 0)
983 					continue;
984 
985 				/* okay, could send to this thread */
986 				p = q;
987 				sigmask = tmpmask;
988 
989 				/*
990 				 * sigsuspend, sigwait, ppoll/pselect, etc?
991 				 * Definitely go to this thread, as it's
992 				 * already blocked in the kernel.
993 				 */
994 				if (q->p_flag & P_SIGSUSPEND)
995 					break;
996 			}
997 		}
998 	}
999 
1000 	if (type != SPROPAGATED)
1001 		knote_locked(&pr->ps_klist, NOTE_SIGNAL | signum);
1002 
1003 	prop = sigprop[signum];
1004 
1005 	/*
1006 	 * If proc is traced, always give parent a chance.
1007 	 */
1008 	if (pr->ps_flags & PS_TRACED) {
1009 		action = SIG_DFL;
1010 	} else {
1011 		sigset_t sigcatch, sigignore;
1012 
1013 		/*
1014 		 * If the signal is being ignored,
1015 		 * then we forget about it immediately.
1016 		 * (Note: we don't set SIGCONT in ps_sigignore,
1017 		 * and if it is set to SIG_IGN,
1018 		 * action will be SIG_DFL here.)
1019 		 */
1020 		mtx_enter(&pr->ps_mtx);
1021 		sigignore = pr->ps_sigacts->ps_sigignore;
1022 		sigcatch = pr->ps_sigacts->ps_sigcatch;
1023 		mtx_leave(&pr->ps_mtx);
1024 
1025 		if (sigignore & mask)
1026 			return;
1027 		if (sigmask & mask) {
1028 			action = SIG_HOLD;
1029 			if (sigcatch & mask)
1030 				altaction = SIG_CATCH;
1031 		} else if (sigcatch & mask) {
1032 			action = SIG_CATCH;
1033 		} else {
1034 			action = SIG_DFL;
1035 
1036 			if (prop & SA_KILL && pr->ps_nice > NZERO)
1037 				 pr->ps_nice = NZERO;
1038 
1039 			/*
1040 			 * If sending a tty stop signal to a member of an
1041 			 * orphaned process group, discard the signal here if
1042 			 * the action is default; don't stop the process below
1043 			 * if sleeping, and don't clear any pending SIGCONT.
1044 			 */
1045 			if (prop & SA_TTYSTOP && pr->ps_pgrp->pg_jobc == 0)
1046 				return;
1047 		}
1048 	}
1049 	/*
1050 	 * If delivered to process, mark as pending there.  Continue and stop
1051 	 * signals will be propagated to all threads.  So they are always
1052 	 * marked at thread level.
1053 	 */
1054 	siglist = (type == SPROCESS) ? &pr->ps_siglist : &p->p_siglist;
1055 	if (prop & (SA_CONT | SA_STOP))
1056 		siglist = &p->p_siglist;
1057 
1058 	/*
1059 	 * XXX delay processing of SA_STOP signals unless action == SIG_DFL?
1060 	 */
1061 	if (prop & (SA_CONT | SA_STOP) && type != SPROPAGATED)
1062 		TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)
1063 			if (q != p)
1064 				ptsignal(q, signum, SPROPAGATED);
1065 
1066 	SCHED_LOCK(s);
1067 
1068 	switch (p->p_stat) {
1069 
1070 	case SSLEEP:
1071 		/*
1072 		 * If process is sleeping uninterruptibly
1073 		 * we can't interrupt the sleep... the signal will
1074 		 * be noticed when the process returns through
1075 		 * trap() or syscall().
1076 		 */
1077 		if ((p->p_flag & P_SINTR) == 0)
1078 			goto out;
1079 		/*
1080 		 * Process is sleeping and traced... make it runnable
1081 		 * so it can discover the signal in cursig() and stop
1082 		 * for the parent.
1083 		 */
1084 		if (pr->ps_flags & PS_TRACED)
1085 			goto run;
1086 
1087 		/*
1088 		 * Recheck sigmask before waking up the process,
1089 		 * there is a chance that while sending the signal
1090 		 * the process changed sigmask and went to sleep.
1091 		 */
1092 		sigmask = READ_ONCE(p->p_sigmask);
1093 		if (sigmask & mask)
1094 			goto out;
1095 		else if (action == SIG_HOLD) {
1096 			/* signal got unmasked, get proper action */
1097 			action = altaction;
1098 
1099 			if (action == SIG_DFL) {
1100 				if (prop & SA_KILL && pr->ps_nice > NZERO)
1101 					 pr->ps_nice = NZERO;
1102 
1103 				/*
1104 				 * Discard tty stop signals sent to an
1105 				 * orphaned process group, see above.
1106 				 */
1107 				if (prop & SA_TTYSTOP &&
1108 				    pr->ps_pgrp->pg_jobc == 0) {
1109 					SCHED_UNLOCK(s);
1110 					return;
1111 				}
1112 			}
1113 		}
1114 
1115 		/*
1116 		 * If SIGCONT is default (or ignored) and process is
1117 		 * asleep, we are finished; the process should not
1118 		 * be awakened.
1119 		 */
1120 		if ((prop & SA_CONT) && action == SIG_DFL) {
1121 			mask = 0;
1122 			goto out;
1123 		}
1124 		/*
1125 		 * When a sleeping process receives a stop
1126 		 * signal, process immediately if possible.
1127 		 */
1128 		if ((prop & SA_STOP) && action == SIG_DFL) {
1129 			/*
1130 			 * If a child holding parent blocked,
1131 			 * stopping could cause deadlock.
1132 			 */
1133 			if (pr->ps_flags & PS_PPWAIT)
1134 				goto out;
1135 			mask = 0;
1136 			pr->ps_xsig = signum;
1137 			proc_stop(p, 0);
1138 			goto out;
1139 		}
1140 		/*
1141 		 * All other (caught or default) signals
1142 		 * cause the process to run.
1143 		 */
1144 		goto runfast;
1145 		/* NOTREACHED */
1146 
1147 	case SSTOP:
1148 		/*
1149 		 * If traced process is already stopped,
1150 		 * then no further action is necessary.
1151 		 */
1152 		if (pr->ps_flags & PS_TRACED)
1153 			goto out;
1154 
1155 		/*
1156 		 * Kill signal always sets processes running.
1157 		 */
1158 		if (signum == SIGKILL) {
1159 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1160 			goto runfast;
1161 		}
1162 
1163 		if (prop & SA_CONT) {
1164 			/*
1165 			 * If SIGCONT is default (or ignored), we continue the
1166 			 * process but don't leave the signal in p_siglist, as
1167 			 * it has no further action.  If SIGCONT is held, we
1168 			 * continue the process and leave the signal in
1169 			 * p_siglist.  If the process catches SIGCONT, let it
1170 			 * handle the signal itself.  If it isn't waiting on
1171 			 * an event, then it goes back to run state.
1172 			 * Otherwise, process goes back to sleep state.
1173 			 */
1174 			atomic_setbits_int(&p->p_flag, P_CONTINUED);
1175 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1176 			wakeparent = 1;
1177 			if (action == SIG_DFL)
1178 				mask = 0;
1179 			if (action == SIG_CATCH)
1180 				goto runfast;
1181 			if (p->p_wchan == NULL)
1182 				goto run;
1183 			atomic_clearbits_int(&p->p_flag, P_WSLEEP);
1184 			p->p_stat = SSLEEP;
1185 			goto out;
1186 		}
1187 
1188 		/*
1189 		 * Defer further processing for signals which are held,
1190 		 * except that stopped processes must be continued by SIGCONT.
1191 		 */
1192 		if (action == SIG_HOLD)
1193 			goto out;
1194 
1195 		if (prop & SA_STOP) {
1196 			/*
1197 			 * Already stopped, don't need to stop again.
1198 			 * (If we did the shell could get confused.)
1199 			 */
1200 			mask = 0;
1201 			goto out;
1202 		}
1203 
1204 		/*
1205 		 * If process is sleeping interruptibly, then simulate a
1206 		 * wakeup so that when it is continued, it will be made
1207 		 * runnable and can look at the signal.  But don't make
1208 		 * the process runnable, leave it stopped.
1209 		 */
1210 		if (p->p_flag & P_SINTR)
1211 			unsleep(p);
1212 		goto out;
1213 
1214 	case SONPROC:
1215 		if (action == SIG_HOLD)
1216 			goto out;
1217 
1218 		/* set siglist before issuing the ast */
1219 		atomic_setbits_int(siglist, mask);
1220 		mask = 0;
1221 		signotify(p);
1222 		/* FALLTHROUGH */
1223 	default:
1224 		/*
1225 		 * SRUN, SIDL, SDEAD do nothing with the signal,
1226 		 * other than kicking ourselves if we are running.
1227 		 * It will either never be noticed, or noticed very soon.
1228 		 */
1229 		goto out;
1230 	}
1231 	/* NOTREACHED */
1232 
1233 runfast:
1234 	/*
1235 	 * Raise priority to at least PUSER.
1236 	 */
1237 	if (p->p_usrpri > PUSER)
1238 		p->p_usrpri = PUSER;
1239 run:
1240 	unsleep(p);
1241 	setrunnable(p);
1242 out:
1243 	/* finally adjust siglist */
1244 	if (mask)
1245 		atomic_setbits_int(siglist, mask);
1246 	if (prop & SA_CONT) {
1247 		atomic_clearbits_int(siglist, STOPSIGMASK);
1248 	}
1249 	if (prop & SA_STOP) {
1250 		atomic_clearbits_int(siglist, CONTSIGMASK);
1251 		atomic_clearbits_int(&p->p_flag, P_CONTINUED);
1252 	}
1253 
1254 	SCHED_UNLOCK(s);
1255 	if (wakeparent)
1256 		wakeup(pr->ps_pptr);
1257 }
1258 
1259 /* fill the signal context which should be used by postsig() and issignal() */
1260 void
1261 setsigctx(struct proc *p, int signum, struct sigctx *sctx)
1262 {
1263 	struct sigacts *ps = p->p_p->ps_sigacts;
1264 	sigset_t mask;
1265 
1266 	mtx_enter(&p->p_p->ps_mtx);
1267 	mask = sigmask(signum);
1268 	sctx->sig_action = ps->ps_sigact[signum];
1269 	sctx->sig_catchmask = ps->ps_catchmask[signum];
1270 	sctx->sig_reset = (ps->ps_sigreset & mask) != 0;
1271 	sctx->sig_info = (ps->ps_siginfo & mask) != 0;
1272 	sctx->sig_intr = (ps->ps_sigintr & mask) != 0;
1273 	sctx->sig_onstack = (ps->ps_sigonstack & mask) != 0;
1274 	sctx->sig_ignore = (ps->ps_sigignore & mask) != 0;
1275 	sctx->sig_catch = (ps->ps_sigcatch & mask) != 0;
1276 	mtx_leave(&p->p_p->ps_mtx);
1277 }
1278 
1279 /*
1280  * Determine signal that should be delivered to process p, the current
1281  * process, 0 if none.
1282  *
1283  * If the current process has received a signal (should be caught or cause
1284  * termination, should interrupt current syscall), return the signal number.
1285  * Stop signals with default action are processed immediately, then cleared;
1286  * they aren't returned.  This is checked after each entry to the system for
1287  * a syscall or trap. The normal call sequence is
1288  *
1289  *	while (signum = cursig(curproc, &ctx))
1290  *		postsig(signum, &ctx);
1291  *
1292  * Assumes that if the P_SINTR flag is set, we're holding both the
1293  * kernel and scheduler locks.
1294  */
1295 int
1296 cursig(struct proc *p, struct sigctx *sctx)
1297 {
1298 	struct process *pr = p->p_p;
1299 	int signum, mask, prop;
1300 	sigset_t ps_siglist;
1301 	int s;
1302 
1303 	KASSERT(p == curproc);
1304 
1305 	for (;;) {
1306 		ps_siglist = READ_ONCE(pr->ps_siglist);
1307 		membar_consumer();
1308 		mask = SIGPENDING(p);
1309 		if (pr->ps_flags & PS_PPWAIT)
1310 			mask &= ~STOPSIGMASK;
1311 		if (mask == 0)	 	/* no signal to send */
1312 			return (0);
1313 		signum = ffs((long)mask);
1314 		mask = sigmask(signum);
1315 
1316 		/* take the signal! */
1317 		if (atomic_cas_uint(&pr->ps_siglist, ps_siglist,
1318 		    ps_siglist & ~mask) != ps_siglist) {
1319 			/* lost race taking the process signal, restart */
1320 			continue;
1321 		}
1322 		atomic_clearbits_int(&p->p_siglist, mask);
1323 		setsigctx(p, signum, sctx);
1324 
1325 		/*
1326 		 * We should see pending but ignored signals
1327 		 * only if PS_TRACED was on when they were posted.
1328 		 */
1329 		if (sctx->sig_ignore && (pr->ps_flags & PS_TRACED) == 0)
1330 			continue;
1331 
1332 		/*
1333 		 * If traced, always stop, and stay stopped until released
1334 		 * by the debugger.  If our parent process is waiting for
1335 		 * us, don't hang as we could deadlock.
1336 		 */
1337 		if (((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) &&
1338 		    signum != SIGKILL) {
1339 			single_thread_set(p, SINGLE_SUSPEND | SINGLE_NOWAIT);
1340 			pr->ps_xsig = signum;
1341 
1342 			SCHED_LOCK(s);
1343 			proc_stop(p, 1);
1344 			SCHED_UNLOCK(s);
1345 
1346 			/*
1347 			 * re-take the signal before releasing
1348 			 * the other threads. Must check the continue
1349 			 * conditions below and only take the signal if
1350 			 * those are not true.
1351 			 */
1352 			signum = pr->ps_xsig;
1353 			mask = sigmask(signum);
1354 			setsigctx(p, signum, sctx);
1355 			if (!((pr->ps_flags & PS_TRACED) == 0 ||
1356 			    signum == 0 ||
1357 			    (p->p_sigmask & mask) != 0)) {
1358 				atomic_clearbits_int(&p->p_siglist, mask);
1359 				atomic_clearbits_int(&pr->ps_siglist, mask);
1360 			}
1361 
1362 			single_thread_clear(p, 0);
1363 
1364 			/*
1365 			 * If we are no longer being traced, or the parent
1366 			 * didn't give us a signal, look for more signals.
1367 			 */
1368 			if ((pr->ps_flags & PS_TRACED) == 0 ||
1369 			    signum == 0)
1370 				continue;
1371 
1372 			/*
1373 			 * If the new signal is being masked, look for other
1374 			 * signals.
1375 			 */
1376 			if ((p->p_sigmask & mask) != 0)
1377 				continue;
1378 
1379 		}
1380 
1381 		prop = sigprop[signum];
1382 
1383 		/*
1384 		 * Decide whether the signal should be returned.
1385 		 * Return the signal's number, or fall through
1386 		 * to clear it from the pending mask.
1387 		 */
1388 		switch ((long)sctx->sig_action) {
1389 		case (long)SIG_DFL:
1390 			/*
1391 			 * Don't take default actions on system processes.
1392 			 */
1393 			if (pr->ps_pid <= 1) {
1394 #ifdef DIAGNOSTIC
1395 				/*
1396 				 * Are you sure you want to ignore SIGSEGV
1397 				 * in init? XXX
1398 				 */
1399 				printf("Process (pid %d) got signal"
1400 				    " %d\n", pr->ps_pid, signum);
1401 #endif
1402 				break;		/* == ignore */
1403 			}
1404 			/*
1405 			 * If there is a pending stop signal to process
1406 			 * with default action, stop here,
1407 			 * then clear the signal.  However,
1408 			 * if process is member of an orphaned
1409 			 * process group, ignore tty stop signals.
1410 			 */
1411 			if (prop & SA_STOP) {
1412 				if (pr->ps_flags & PS_TRACED ||
1413 		    		    (pr->ps_pgrp->pg_jobc == 0 &&
1414 				    prop & SA_TTYSTOP))
1415 					break;	/* == ignore */
1416 				pr->ps_xsig = signum;
1417 				SCHED_LOCK(s);
1418 				proc_stop(p, 1);
1419 				SCHED_UNLOCK(s);
1420 				break;
1421 			} else if (prop & SA_IGNORE) {
1422 				/*
1423 				 * Except for SIGCONT, shouldn't get here.
1424 				 * Default action is to ignore; drop it.
1425 				 */
1426 				break;		/* == ignore */
1427 			} else
1428 				goto keep;
1429 			/* NOTREACHED */
1430 		case (long)SIG_IGN:
1431 			/*
1432 			 * Masking above should prevent us ever trying
1433 			 * to take action on an ignored signal other
1434 			 * than SIGCONT, unless process is traced.
1435 			 */
1436 			if ((prop & SA_CONT) == 0 &&
1437 			    (pr->ps_flags & PS_TRACED) == 0)
1438 				printf("%s\n", __func__);
1439 			break;		/* == ignore */
1440 		default:
1441 			/*
1442 			 * This signal has an action, let
1443 			 * postsig() process it.
1444 			 */
1445 			goto keep;
1446 		}
1447 	}
1448 	/* NOTREACHED */
1449 
1450 keep:
1451 	atomic_setbits_int(&p->p_siglist, mask); /*leave the signal for later */
1452 	return (signum);
1453 }
1454 
1455 /*
1456  * Put the argument process into the stopped state and notify the parent
1457  * via wakeup.  Signals are handled elsewhere.  The process must not be
1458  * on the run queue.
1459  */
1460 void
1461 proc_stop(struct proc *p, int sw)
1462 {
1463 	struct process *pr = p->p_p;
1464 
1465 #ifdef MULTIPROCESSOR
1466 	SCHED_ASSERT_LOCKED();
1467 #endif
1468 	/* do not stop exiting procs */
1469 	if (ISSET(p->p_flag, P_WEXIT))
1470 		return;
1471 
1472 	p->p_stat = SSTOP;
1473 	atomic_clearbits_int(&pr->ps_flags, PS_WAITED);
1474 	atomic_setbits_int(&pr->ps_flags, PS_STOPPED);
1475 	atomic_setbits_int(&p->p_flag, P_SUSPSIG);
1476 	/*
1477 	 * We need this soft interrupt to be handled fast.
1478 	 * Extra calls to softclock don't hurt.
1479 	 */
1480 	softintr_schedule(proc_stop_si);
1481 	if (sw)
1482 		mi_switch();
1483 }
1484 
1485 /*
1486  * Called from a soft interrupt to send signals to the parents of stopped
1487  * processes.
1488  * We can't do this in proc_stop because it's called with nasty locks held
1489  * and we would need recursive scheduler lock to deal with that.
1490  */
1491 void
1492 proc_stop_sweep(void *v)
1493 {
1494 	struct process *pr;
1495 
1496 	LIST_FOREACH(pr, &allprocess, ps_list) {
1497 		if ((pr->ps_flags & PS_STOPPED) == 0)
1498 			continue;
1499 		atomic_clearbits_int(&pr->ps_flags, PS_STOPPED);
1500 
1501 		if ((pr->ps_pptr->ps_sigacts->ps_sigflags & SAS_NOCLDSTOP) == 0)
1502 			prsignal(pr->ps_pptr, SIGCHLD);
1503 		wakeup(pr->ps_pptr);
1504 	}
1505 }
1506 
1507 /*
1508  * Take the action for the specified signal
1509  * from the current set of pending signals.
1510  */
1511 void
1512 postsig(struct proc *p, int signum, struct sigctx *sctx)
1513 {
1514 	u_long trapno;
1515 	int mask, returnmask;
1516 	siginfo_t si;
1517 	union sigval sigval;
1518 	int code;
1519 
1520 	KASSERT(signum != 0);
1521 
1522 	mask = sigmask(signum);
1523 	atomic_clearbits_int(&p->p_siglist, mask);
1524 	sigval.sival_ptr = NULL;
1525 
1526 	if (p->p_sisig != signum) {
1527 		trapno = 0;
1528 		code = SI_USER;
1529 		sigval.sival_ptr = NULL;
1530 	} else {
1531 		trapno = p->p_sitrapno;
1532 		code = p->p_sicode;
1533 		sigval = p->p_sigval;
1534 	}
1535 	initsiginfo(&si, signum, trapno, code, sigval);
1536 
1537 #ifdef KTRACE
1538 	if (KTRPOINT(p, KTR_PSIG)) {
1539 		ktrpsig(p, signum, sctx->sig_action, p->p_flag & P_SIGSUSPEND ?
1540 		    p->p_oldmask : p->p_sigmask, code, &si);
1541 	}
1542 #endif
1543 	if (sctx->sig_action == SIG_DFL) {
1544 		/*
1545 		 * Default action, where the default is to kill
1546 		 * the process.  (Other cases were ignored above.)
1547 		 */
1548 		KERNEL_LOCK();
1549 		sigexit(p, signum);
1550 		/* NOTREACHED */
1551 	} else {
1552 		/*
1553 		 * If we get here, the signal must be caught.
1554 		 */
1555 #ifdef DIAGNOSTIC
1556 		if (sctx->sig_action == SIG_IGN || (p->p_sigmask & mask))
1557 			panic("postsig action");
1558 #endif
1559 		/*
1560 		 * Set the new mask value and also defer further
1561 		 * occurrences of this signal.
1562 		 *
1563 		 * Special case: user has done a sigpause.  Here the
1564 		 * current mask is not of interest, but rather the
1565 		 * mask from before the sigpause is what we want
1566 		 * restored after the signal processing is completed.
1567 		 */
1568 		if (p->p_flag & P_SIGSUSPEND) {
1569 			atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1570 			returnmask = p->p_oldmask;
1571 		} else {
1572 			returnmask = p->p_sigmask;
1573 		}
1574 		if (p->p_sisig == signum) {
1575 			p->p_sisig = 0;
1576 			p->p_sitrapno = 0;
1577 			p->p_sicode = SI_USER;
1578 			p->p_sigval.sival_ptr = NULL;
1579 		}
1580 
1581 		if (sendsig(sctx->sig_action, signum, returnmask, &si,
1582 		    sctx->sig_info, sctx->sig_onstack)) {
1583 			KERNEL_LOCK();
1584 			sigexit(p, SIGILL);
1585 			/* NOTREACHED */
1586 		}
1587 		postsig_done(p, signum, sctx->sig_catchmask, sctx->sig_reset);
1588 	}
1589 }
1590 
1591 /*
1592  * Force the current process to exit with the specified signal, dumping core
1593  * if appropriate.  We bypass the normal tests for masked and caught signals,
1594  * allowing unrecoverable failures to terminate the process without changing
1595  * signal state.  Mark the accounting record with the signal termination.
1596  * If dumping core, save the signal number for the debugger.  Calls exit and
1597  * does not return.
1598  */
1599 void
1600 sigexit(struct proc *p, int signum)
1601 {
1602 	/* Mark process as going away */
1603 	atomic_setbits_int(&p->p_flag, P_WEXIT);
1604 
1605 	p->p_p->ps_acflag |= AXSIG;
1606 	if (sigprop[signum] & SA_CORE) {
1607 		p->p_sisig = signum;
1608 
1609 		/* if there are other threads, pause them */
1610 		if (P_HASSIBLING(p))
1611 			single_thread_set(p, SINGLE_UNWIND);
1612 
1613 		if (coredump(p) == 0)
1614 			signum |= WCOREFLAG;
1615 	}
1616 	exit1(p, 0, signum, EXIT_NORMAL);
1617 	/* NOTREACHED */
1618 }
1619 
1620 /*
1621  * Send uncatchable SIGABRT for coredump.
1622  */
1623 void
1624 sigabort(struct proc *p)
1625 {
1626 	struct sigaction sa;
1627 
1628 	KASSERT(p == curproc || panicstr || db_active);
1629 
1630 	memset(&sa, 0, sizeof sa);
1631 	sa.sa_handler = SIG_DFL;
1632 	setsigvec(p, SIGABRT, &sa);
1633 	CLR(p->p_sigmask, sigmask(SIGABRT));
1634 	psignal(p, SIGABRT);
1635 }
1636 
1637 /*
1638  * Return 1 if `sig', a given signal, is ignored or masked for `p', a given
1639  * thread, and 0 otherwise.
1640  */
1641 int
1642 sigismasked(struct proc *p, int sig)
1643 {
1644 	struct process *pr = p->p_p;
1645 	int rv;
1646 
1647 	KASSERT(p == curproc);
1648 
1649 	mtx_enter(&pr->ps_mtx);
1650 	rv = (pr->ps_sigacts->ps_sigignore & sigmask(sig)) ||
1651 	    (p->p_sigmask & sigmask(sig));
1652 	mtx_leave(&pr->ps_mtx);
1653 
1654 	return !!rv;
1655 }
1656 
1657 struct coredump_iostate {
1658 	struct proc *io_proc;
1659 	struct vnode *io_vp;
1660 	struct ucred *io_cred;
1661 	off_t io_offset;
1662 };
1663 
1664 /*
1665  * Dump core, into a file named "progname.core", unless the process was
1666  * setuid/setgid.
1667  */
1668 int
1669 coredump(struct proc *p)
1670 {
1671 #ifdef SMALL_KERNEL
1672 	return EPERM;
1673 #else
1674 	struct process *pr = p->p_p;
1675 	struct vnode *vp;
1676 	struct ucred *cred = p->p_ucred;
1677 	struct vmspace *vm = p->p_vmspace;
1678 	struct nameidata nd;
1679 	struct vattr vattr;
1680 	struct coredump_iostate	io;
1681 	int error, len, incrash = 0;
1682 	char *name;
1683 	const char *dir = "/var/crash";
1684 
1685 	atomic_setbits_int(&pr->ps_flags, PS_COREDUMP);
1686 
1687 #ifdef PMAP_CHECK_COPYIN
1688 	/* disable copyin checks, so we can write out text sections if needed */
1689 	p->p_vmspace->vm_map.check_copyin_count = 0;
1690 #endif
1691 
1692 	/* Don't dump if will exceed file size limit. */
1693 	if (USPACE + ptoa(vm->vm_dsize + vm->vm_ssize) >= lim_cur(RLIMIT_CORE))
1694 		return (EFBIG);
1695 
1696 	name = pool_get(&namei_pool, PR_WAITOK);
1697 
1698 	/*
1699 	 * If the process has inconsistent uids, nosuidcoredump
1700 	 * determines coredump placement policy.
1701 	 */
1702 	if (((pr->ps_flags & PS_SUGID) && (error = suser(p))) ||
1703 	   ((pr->ps_flags & PS_SUGID) && nosuidcoredump)) {
1704 		if (nosuidcoredump == 3) {
1705 			/*
1706 			 * If the program directory does not exist, dumps of
1707 			 * that core will silently fail.
1708 			 */
1709 			len = snprintf(name, MAXPATHLEN, "%s/%s/%u.core",
1710 			    dir, pr->ps_comm, pr->ps_pid);
1711 			incrash = KERNELPATH;
1712 		} else if (nosuidcoredump == 2) {
1713 			len = snprintf(name, MAXPATHLEN, "%s/%s.core",
1714 			    dir, pr->ps_comm);
1715 			incrash = KERNELPATH;
1716 		} else {
1717 			pool_put(&namei_pool, name);
1718 			return (EPERM);
1719 		}
1720 	} else
1721 		len = snprintf(name, MAXPATHLEN, "%s.core", pr->ps_comm);
1722 
1723 	if (len >= MAXPATHLEN) {
1724 		pool_put(&namei_pool, name);
1725 		return (EACCES);
1726 	}
1727 
1728 	/*
1729 	 * Control the UID used to write out.  The normal case uses
1730 	 * the real UID.  If the sugid case is going to write into the
1731 	 * controlled directory, we do so as root.
1732 	 */
1733 	if (incrash == 0) {
1734 		cred = crdup(cred);
1735 		cred->cr_uid = cred->cr_ruid;
1736 		cred->cr_gid = cred->cr_rgid;
1737 	} else {
1738 		if (p->p_fd->fd_rdir) {
1739 			vrele(p->p_fd->fd_rdir);
1740 			p->p_fd->fd_rdir = NULL;
1741 		}
1742 		p->p_ucred = crdup(p->p_ucred);
1743 		crfree(cred);
1744 		cred = p->p_ucred;
1745 		crhold(cred);
1746 		cred->cr_uid = 0;
1747 		cred->cr_gid = 0;
1748 	}
1749 
1750 	/* incrash should be 0 or KERNELPATH only */
1751 	NDINIT(&nd, 0, BYPASSUNVEIL | incrash, UIO_SYSSPACE, name, p);
1752 
1753 	error = vn_open(&nd, O_CREAT | FWRITE | O_NOFOLLOW | O_NONBLOCK,
1754 	    S_IRUSR | S_IWUSR);
1755 
1756 	if (error)
1757 		goto out;
1758 
1759 	/*
1760 	 * Don't dump to non-regular files, files with links, or files
1761 	 * owned by someone else.
1762 	 */
1763 	vp = nd.ni_vp;
1764 	if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) {
1765 		VOP_UNLOCK(vp);
1766 		vn_close(vp, FWRITE, cred, p);
1767 		goto out;
1768 	}
1769 	if (vp->v_type != VREG || vattr.va_nlink != 1 ||
1770 	    vattr.va_mode & ((VREAD | VWRITE) >> 3 | (VREAD | VWRITE) >> 6) ||
1771 	    vattr.va_uid != cred->cr_uid) {
1772 		error = EACCES;
1773 		VOP_UNLOCK(vp);
1774 		vn_close(vp, FWRITE, cred, p);
1775 		goto out;
1776 	}
1777 	VATTR_NULL(&vattr);
1778 	vattr.va_size = 0;
1779 	VOP_SETATTR(vp, &vattr, cred, p);
1780 	pr->ps_acflag |= ACORE;
1781 
1782 	io.io_proc = p;
1783 	io.io_vp = vp;
1784 	io.io_cred = cred;
1785 	io.io_offset = 0;
1786 	VOP_UNLOCK(vp);
1787 	vref(vp);
1788 	error = vn_close(vp, FWRITE, cred, p);
1789 	if (error == 0)
1790 		error = coredump_elf(p, &io);
1791 	vrele(vp);
1792 out:
1793 	crfree(cred);
1794 	pool_put(&namei_pool, name);
1795 	return (error);
1796 #endif
1797 }
1798 
1799 #ifndef SMALL_KERNEL
1800 int
1801 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len,
1802     int isvnode)
1803 {
1804 	struct coredump_iostate *io = cookie;
1805 	off_t coffset = 0;
1806 	size_t csize;
1807 	int chunk, error;
1808 
1809 	csize = len;
1810 	do {
1811 		if (sigmask(SIGKILL) &
1812 		    (io->io_proc->p_siglist | io->io_proc->p_p->ps_siglist))
1813 			return (EINTR);
1814 
1815 		/* Rest of the loop sleeps with lock held, so... */
1816 		yield();
1817 
1818 		chunk = MIN(csize, MAXPHYS);
1819 		error = vn_rdwr(UIO_WRITE, io->io_vp,
1820 		    (caddr_t)data + coffset, chunk,
1821 		    io->io_offset + coffset, segflg,
1822 		    IO_UNIT, io->io_cred, NULL, io->io_proc);
1823 		if (error && (error != EFAULT || !isvnode)) {
1824 			struct process *pr = io->io_proc->p_p;
1825 
1826 			if (error == ENOSPC)
1827 				log(LOG_ERR,
1828 				    "coredump of %s(%d) failed, filesystem full\n",
1829 				    pr->ps_comm, pr->ps_pid);
1830 			else
1831 				log(LOG_ERR,
1832 				    "coredump of %s(%d), write failed: errno %d\n",
1833 				    pr->ps_comm, pr->ps_pid, error);
1834 			return (error);
1835 		}
1836 
1837 		coffset += chunk;
1838 		csize -= chunk;
1839 	} while (csize > 0);
1840 
1841 	io->io_offset += len;
1842 	return (0);
1843 }
1844 
1845 void
1846 coredump_unmap(void *cookie, vaddr_t start, vaddr_t end)
1847 {
1848 	struct coredump_iostate *io = cookie;
1849 
1850 	uvm_unmap(&io->io_proc->p_vmspace->vm_map, start, end);
1851 }
1852 
1853 #endif	/* !SMALL_KERNEL */
1854 
1855 /*
1856  * Nonexistent system call-- signal process (may want to handle it).
1857  * Flag error in case process won't see signal immediately (blocked or ignored).
1858  */
1859 int
1860 sys_nosys(struct proc *p, void *v, register_t *retval)
1861 {
1862 	ptsignal(p, SIGSYS, STHREAD);
1863 	return (ENOSYS);
1864 }
1865 
1866 int
1867 sys___thrsigdivert(struct proc *p, void *v, register_t *retval)
1868 {
1869 	struct sys___thrsigdivert_args /* {
1870 		syscallarg(sigset_t) sigmask;
1871 		syscallarg(siginfo_t *) info;
1872 		syscallarg(const struct timespec *) timeout;
1873 	} */ *uap = v;
1874 	struct sigctx ctx;
1875 	sigset_t mask = SCARG(uap, sigmask) &~ sigcantmask;
1876 	siginfo_t si;
1877 	uint64_t nsecs = INFSLP;
1878 	int timeinvalid = 0;
1879 	int error = 0;
1880 
1881 	memset(&si, 0, sizeof(si));
1882 
1883 	if (SCARG(uap, timeout) != NULL) {
1884 		struct timespec ts;
1885 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))) != 0)
1886 			return (error);
1887 #ifdef KTRACE
1888 		if (KTRPOINT(p, KTR_STRUCT))
1889 			ktrreltimespec(p, &ts);
1890 #endif
1891 		if (!timespecisvalid(&ts))
1892 			timeinvalid = 1;
1893 		else
1894 			nsecs = TIMESPEC_TO_NSEC(&ts);
1895 	}
1896 
1897 	dosigsuspend(p, p->p_sigmask &~ mask);
1898 	for (;;) {
1899 		si.si_signo = cursig(p, &ctx);
1900 		if (si.si_signo != 0) {
1901 			sigset_t smask = sigmask(si.si_signo);
1902 			if (smask & mask) {
1903 				atomic_clearbits_int(&p->p_siglist, smask);
1904 				error = 0;
1905 				break;
1906 			}
1907 		}
1908 
1909 		/* per-POSIX, delay this error until after the above */
1910 		if (timeinvalid)
1911 			error = EINVAL;
1912 		/* per-POSIX, return immediately if timeout is zero-valued */
1913 		if (nsecs == 0)
1914 			error = EAGAIN;
1915 
1916 		if (error != 0)
1917 			break;
1918 
1919 		error = tsleep_nsec(&nowake, PPAUSE|PCATCH, "sigwait", nsecs);
1920 	}
1921 
1922 	if (error == 0) {
1923 		*retval = si.si_signo;
1924 		if (SCARG(uap, info) != NULL) {
1925 			error = copyout(&si, SCARG(uap, info), sizeof(si));
1926 #ifdef KTRACE
1927 			if (error == 0 && KTRPOINT(p, KTR_STRUCT))
1928 				ktrsiginfo(p, &si);
1929 #endif
1930 		}
1931 	} else if (error == ERESTART && SCARG(uap, timeout) != NULL) {
1932 		/*
1933 		 * Restarting is wrong if there's a timeout, as it'll be
1934 		 * for the same interval again
1935 		 */
1936 		error = EINTR;
1937 	}
1938 
1939 	return (error);
1940 }
1941 
1942 void
1943 initsiginfo(siginfo_t *si, int sig, u_long trapno, int code, union sigval val)
1944 {
1945 	memset(si, 0, sizeof(*si));
1946 
1947 	si->si_signo = sig;
1948 	si->si_code = code;
1949 	if (code == SI_USER) {
1950 		si->si_value = val;
1951 	} else {
1952 		switch (sig) {
1953 		case SIGSEGV:
1954 		case SIGILL:
1955 		case SIGBUS:
1956 		case SIGFPE:
1957 			si->si_addr = val.sival_ptr;
1958 			si->si_trapno = trapno;
1959 			break;
1960 		case SIGXFSZ:
1961 			break;
1962 		}
1963 	}
1964 }
1965 
1966 int
1967 filt_sigattach(struct knote *kn)
1968 {
1969 	struct process *pr = curproc->p_p;
1970 	int s;
1971 
1972 	if (kn->kn_id >= NSIG)
1973 		return EINVAL;
1974 
1975 	kn->kn_ptr.p_process = pr;
1976 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
1977 
1978 	s = splhigh();
1979 	klist_insert_locked(&pr->ps_klist, kn);
1980 	splx(s);
1981 
1982 	return (0);
1983 }
1984 
1985 void
1986 filt_sigdetach(struct knote *kn)
1987 {
1988 	struct process *pr = kn->kn_ptr.p_process;
1989 	int s;
1990 
1991 	s = splhigh();
1992 	klist_remove_locked(&pr->ps_klist, kn);
1993 	splx(s);
1994 }
1995 
1996 /*
1997  * signal knotes are shared with proc knotes, so we apply a mask to
1998  * the hint in order to differentiate them from process hints.  This
1999  * could be avoided by using a signal-specific knote list, but probably
2000  * isn't worth the trouble.
2001  */
2002 int
2003 filt_signal(struct knote *kn, long hint)
2004 {
2005 
2006 	if (hint & NOTE_SIGNAL) {
2007 		hint &= ~NOTE_SIGNAL;
2008 
2009 		if (kn->kn_id == hint)
2010 			kn->kn_data++;
2011 	}
2012 	return (kn->kn_data != 0);
2013 }
2014 
2015 void
2016 userret(struct proc *p)
2017 {
2018 	struct sigctx ctx;
2019 	int signum;
2020 
2021 	if (p->p_flag & P_SUSPSINGLE)
2022 		single_thread_check(p, 0);
2023 
2024 	/* send SIGPROF or SIGVTALRM if their timers interrupted this thread */
2025 	if (p->p_flag & P_PROFPEND) {
2026 		atomic_clearbits_int(&p->p_flag, P_PROFPEND);
2027 		KERNEL_LOCK();
2028 		psignal(p, SIGPROF);
2029 		KERNEL_UNLOCK();
2030 	}
2031 	if (p->p_flag & P_ALRMPEND) {
2032 		atomic_clearbits_int(&p->p_flag, P_ALRMPEND);
2033 		KERNEL_LOCK();
2034 		psignal(p, SIGVTALRM);
2035 		KERNEL_UNLOCK();
2036 	}
2037 
2038 	if (SIGPENDING(p) != 0) {
2039 		while ((signum = cursig(p, &ctx)) != 0)
2040 			postsig(p, signum, &ctx);
2041 	}
2042 
2043 	/*
2044 	 * If P_SIGSUSPEND is still set here, then we still need to restore
2045 	 * the original sigmask before returning to userspace.  Also, this
2046 	 * might unmask some pending signals, so we need to check a second
2047 	 * time for signals to post.
2048 	 */
2049 	if (p->p_flag & P_SIGSUSPEND) {
2050 		p->p_sigmask = p->p_oldmask;
2051 		atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
2052 
2053 		while ((signum = cursig(p, &ctx)) != 0)
2054 			postsig(p, signum, &ctx);
2055 	}
2056 
2057 	WITNESS_WARN(WARN_PANIC, NULL, "userret: returning");
2058 
2059 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
2060 }
2061 
2062 int
2063 single_thread_check_locked(struct proc *p, int deep, int s)
2064 {
2065 	struct process *pr = p->p_p;
2066 
2067 	SCHED_ASSERT_LOCKED();
2068 
2069 	if (pr->ps_single == NULL || pr->ps_single == p)
2070 		return (0);
2071 
2072 	do {
2073 		/* if we're in deep, we need to unwind to the edge */
2074 		if (deep) {
2075 			if (pr->ps_flags & PS_SINGLEUNWIND)
2076 				return (ERESTART);
2077 			if (pr->ps_flags & PS_SINGLEEXIT)
2078 				return (EINTR);
2079 		}
2080 
2081 		if (atomic_dec_int_nv(&pr->ps_singlecount) == 0)
2082 			wakeup(&pr->ps_singlecount);
2083 
2084 		if (pr->ps_flags & PS_SINGLEEXIT) {
2085 			SCHED_UNLOCK(s);
2086 			KERNEL_LOCK();
2087 			exit1(p, 0, 0, EXIT_THREAD_NOCHECK);
2088 			/* NOTREACHED */
2089 		}
2090 
2091 		/* not exiting and don't need to unwind, so suspend */
2092 		p->p_stat = SSTOP;
2093 		mi_switch();
2094 	} while (pr->ps_single != NULL);
2095 
2096 	return (0);
2097 }
2098 
2099 int
2100 single_thread_check(struct proc *p, int deep)
2101 {
2102 	int s, error;
2103 
2104 	SCHED_LOCK(s);
2105 	error = single_thread_check_locked(p, deep, s);
2106 	SCHED_UNLOCK(s);
2107 
2108 	return error;
2109 }
2110 
2111 /*
2112  * Stop other threads in the process.  The mode controls how and
2113  * where the other threads should stop:
2114  *  - SINGLE_SUSPEND: stop wherever they are, will later be released (via
2115  *    single_thread_clear())
2116  *  - SINGLE_UNWIND: just unwind to kernel boundary, will be told to exit
2117  *    (by setting to SINGLE_EXIT) or released as with SINGLE_SUSPEND
2118  *  - SINGLE_EXIT: unwind to kernel boundary and exit
2119  */
2120 int
2121 single_thread_set(struct proc *p, int flags)
2122 {
2123 	struct process *pr = p->p_p;
2124 	struct proc *q;
2125 	int error, s, mode = flags & SINGLE_MASK;
2126 
2127 	KASSERT(curproc == p);
2128 
2129 	SCHED_LOCK(s);
2130 	error = single_thread_check_locked(p, flags & SINGLE_DEEP, s);
2131 	if (error) {
2132 		SCHED_UNLOCK(s);
2133 		return error;
2134 	}
2135 
2136 	switch (mode) {
2137 	case SINGLE_SUSPEND:
2138 		break;
2139 	case SINGLE_UNWIND:
2140 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
2141 		break;
2142 	case SINGLE_EXIT:
2143 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEEXIT);
2144 		atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
2145 		break;
2146 #ifdef DIAGNOSTIC
2147 	default:
2148 		panic("single_thread_mode = %d", mode);
2149 #endif
2150 	}
2151 	pr->ps_singlecount = 0;
2152 	membar_producer();
2153 	pr->ps_single = p;
2154 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2155 		if (q == p)
2156 			continue;
2157 		if (q->p_flag & P_WEXIT) {
2158 			if (mode == SINGLE_EXIT) {
2159 				if (q->p_stat == SSTOP) {
2160 					unsleep(q);
2161 					setrunnable(q);
2162 					atomic_inc_int(&pr->ps_singlecount);
2163 				}
2164 			}
2165 			continue;
2166 		}
2167 		atomic_setbits_int(&q->p_flag, P_SUSPSINGLE);
2168 		switch (q->p_stat) {
2169 		case SIDL:
2170 		case SRUN:
2171 			atomic_inc_int(&pr->ps_singlecount);
2172 			break;
2173 		case SSLEEP:
2174 			/* if it's not interruptible, then just have to wait */
2175 			if (q->p_flag & P_SINTR) {
2176 				/* merely need to suspend?  just stop it */
2177 				if (mode == SINGLE_SUSPEND) {
2178 					q->p_stat = SSTOP;
2179 					break;
2180 				}
2181 				/* need to unwind or exit, so wake it */
2182 				unsleep(q);
2183 				setrunnable(q);
2184 			}
2185 			atomic_inc_int(&pr->ps_singlecount);
2186 			break;
2187 		case SSTOP:
2188 			if (mode == SINGLE_EXIT) {
2189 				unsleep(q);
2190 				setrunnable(q);
2191 				atomic_inc_int(&pr->ps_singlecount);
2192 			}
2193 			break;
2194 		case SDEAD:
2195 			break;
2196 		case SONPROC:
2197 			atomic_inc_int(&pr->ps_singlecount);
2198 			signotify(q);
2199 			break;
2200 		}
2201 	}
2202 	SCHED_UNLOCK(s);
2203 
2204 	if ((flags & SINGLE_NOWAIT) == 0)
2205 		single_thread_wait(pr, 1);
2206 
2207 	return 0;
2208 }
2209 
2210 /*
2211  * Wait for other threads to stop. If recheck is false then the function
2212  * returns non-zero if the caller needs to restart the check else 0 is
2213  * returned. If recheck is true the return value is always 0.
2214  */
2215 int
2216 single_thread_wait(struct process *pr, int recheck)
2217 {
2218 	int wait;
2219 
2220 	/* wait until they're all suspended */
2221 	wait = pr->ps_singlecount > 0;
2222 	while (wait) {
2223 		sleep_setup(&pr->ps_singlecount, PWAIT, "suspend");
2224 		wait = pr->ps_singlecount > 0;
2225 		sleep_finish(0, wait);
2226 		if (!recheck)
2227 			break;
2228 	}
2229 
2230 	return wait;
2231 }
2232 
2233 void
2234 single_thread_clear(struct proc *p, int flag)
2235 {
2236 	struct process *pr = p->p_p;
2237 	struct proc *q;
2238 	int s;
2239 
2240 	KASSERT(pr->ps_single == p);
2241 	KASSERT(curproc == p);
2242 
2243 	SCHED_LOCK(s);
2244 	pr->ps_single = NULL;
2245 	atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND | PS_SINGLEEXIT);
2246 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2247 		if (q == p || (q->p_flag & P_SUSPSINGLE) == 0)
2248 			continue;
2249 		atomic_clearbits_int(&q->p_flag, P_SUSPSINGLE);
2250 
2251 		/*
2252 		 * if the thread was only stopped for single threading
2253 		 * then clearing that either makes it runnable or puts
2254 		 * it back into some sleep queue
2255 		 */
2256 		if (q->p_stat == SSTOP && (q->p_flag & flag) == 0) {
2257 			if (q->p_wchan == NULL)
2258 				setrunnable(q);
2259 			else {
2260 				atomic_clearbits_int(&q->p_flag, P_WSLEEP);
2261 				q->p_stat = SSLEEP;
2262 			}
2263 		}
2264 	}
2265 	SCHED_UNLOCK(s);
2266 }
2267 
2268 void
2269 sigio_del(struct sigiolst *rmlist)
2270 {
2271 	struct sigio *sigio;
2272 
2273 	while ((sigio = LIST_FIRST(rmlist)) != NULL) {
2274 		LIST_REMOVE(sigio, sio_pgsigio);
2275 		crfree(sigio->sio_ucred);
2276 		free(sigio, M_SIGIO, sizeof(*sigio));
2277 	}
2278 }
2279 
2280 void
2281 sigio_unlink(struct sigio_ref *sir, struct sigiolst *rmlist)
2282 {
2283 	struct sigio *sigio;
2284 
2285 	MUTEX_ASSERT_LOCKED(&sigio_lock);
2286 
2287 	sigio = sir->sir_sigio;
2288 	if (sigio != NULL) {
2289 		KASSERT(sigio->sio_myref == sir);
2290 		sir->sir_sigio = NULL;
2291 
2292 		if (sigio->sio_pgid > 0)
2293 			sigio->sio_proc = NULL;
2294 		else
2295 			sigio->sio_pgrp = NULL;
2296 		LIST_REMOVE(sigio, sio_pgsigio);
2297 
2298 		LIST_INSERT_HEAD(rmlist, sigio, sio_pgsigio);
2299 	}
2300 }
2301 
2302 void
2303 sigio_free(struct sigio_ref *sir)
2304 {
2305 	struct sigiolst rmlist;
2306 
2307 	if (sir->sir_sigio == NULL)
2308 		return;
2309 
2310 	LIST_INIT(&rmlist);
2311 
2312 	mtx_enter(&sigio_lock);
2313 	sigio_unlink(sir, &rmlist);
2314 	mtx_leave(&sigio_lock);
2315 
2316 	sigio_del(&rmlist);
2317 }
2318 
2319 void
2320 sigio_freelist(struct sigiolst *sigiolst)
2321 {
2322 	struct sigiolst rmlist;
2323 	struct sigio *sigio;
2324 
2325 	if (LIST_EMPTY(sigiolst))
2326 		return;
2327 
2328 	LIST_INIT(&rmlist);
2329 
2330 	mtx_enter(&sigio_lock);
2331 	while ((sigio = LIST_FIRST(sigiolst)) != NULL)
2332 		sigio_unlink(sigio->sio_myref, &rmlist);
2333 	mtx_leave(&sigio_lock);
2334 
2335 	sigio_del(&rmlist);
2336 }
2337 
2338 int
2339 sigio_setown(struct sigio_ref *sir, u_long cmd, caddr_t data)
2340 {
2341 	struct sigiolst rmlist;
2342 	struct proc *p = curproc;
2343 	struct pgrp *pgrp = NULL;
2344 	struct process *pr = NULL;
2345 	struct sigio *sigio;
2346 	int error;
2347 	pid_t pgid = *(int *)data;
2348 
2349 	if (pgid == 0) {
2350 		sigio_free(sir);
2351 		return (0);
2352 	}
2353 
2354 	if (cmd == TIOCSPGRP) {
2355 		if (pgid < 0)
2356 			return (EINVAL);
2357 		pgid = -pgid;
2358 	}
2359 
2360 	sigio = malloc(sizeof(*sigio), M_SIGIO, M_WAITOK);
2361 	sigio->sio_pgid = pgid;
2362 	sigio->sio_ucred = crhold(p->p_ucred);
2363 	sigio->sio_myref = sir;
2364 
2365 	LIST_INIT(&rmlist);
2366 
2367 	/*
2368 	 * The kernel lock, and not sleeping between prfind()/pgfind() and
2369 	 * linking of the sigio ensure that the process or process group does
2370 	 * not disappear unexpectedly.
2371 	 */
2372 	KERNEL_LOCK();
2373 	mtx_enter(&sigio_lock);
2374 
2375 	if (pgid > 0) {
2376 		pr = prfind(pgid);
2377 		if (pr == NULL) {
2378 			error = ESRCH;
2379 			goto fail;
2380 		}
2381 
2382 		/*
2383 		 * Policy - Don't allow a process to FSETOWN a process
2384 		 * in another session.
2385 		 *
2386 		 * Remove this test to allow maximum flexibility or
2387 		 * restrict FSETOWN to the current process or process
2388 		 * group for maximum safety.
2389 		 */
2390 		if (pr->ps_session != p->p_p->ps_session) {
2391 			error = EPERM;
2392 			goto fail;
2393 		}
2394 
2395 		if ((pr->ps_flags & PS_EXITING) != 0) {
2396 			error = ESRCH;
2397 			goto fail;
2398 		}
2399 	} else /* if (pgid < 0) */ {
2400 		pgrp = pgfind(-pgid);
2401 		if (pgrp == NULL) {
2402 			error = ESRCH;
2403 			goto fail;
2404 		}
2405 
2406 		/*
2407 		 * Policy - Don't allow a process to FSETOWN a process
2408 		 * in another session.
2409 		 *
2410 		 * Remove this test to allow maximum flexibility or
2411 		 * restrict FSETOWN to the current process or process
2412 		 * group for maximum safety.
2413 		 */
2414 		if (pgrp->pg_session != p->p_p->ps_session) {
2415 			error = EPERM;
2416 			goto fail;
2417 		}
2418 	}
2419 
2420 	if (pgid > 0) {
2421 		sigio->sio_proc = pr;
2422 		LIST_INSERT_HEAD(&pr->ps_sigiolst, sigio, sio_pgsigio);
2423 	} else {
2424 		sigio->sio_pgrp = pgrp;
2425 		LIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
2426 	}
2427 
2428 	sigio_unlink(sir, &rmlist);
2429 	sir->sir_sigio = sigio;
2430 
2431 	mtx_leave(&sigio_lock);
2432 	KERNEL_UNLOCK();
2433 
2434 	sigio_del(&rmlist);
2435 
2436 	return (0);
2437 
2438 fail:
2439 	mtx_leave(&sigio_lock);
2440 	KERNEL_UNLOCK();
2441 
2442 	crfree(sigio->sio_ucred);
2443 	free(sigio, M_SIGIO, sizeof(*sigio));
2444 
2445 	return (error);
2446 }
2447 
2448 void
2449 sigio_getown(struct sigio_ref *sir, u_long cmd, caddr_t data)
2450 {
2451 	struct sigio *sigio;
2452 	pid_t pgid = 0;
2453 
2454 	mtx_enter(&sigio_lock);
2455 	sigio = sir->sir_sigio;
2456 	if (sigio != NULL)
2457 		pgid = sigio->sio_pgid;
2458 	mtx_leave(&sigio_lock);
2459 
2460 	if (cmd == TIOCGPGRP)
2461 		pgid = -pgid;
2462 
2463 	*(int *)data = pgid;
2464 }
2465 
2466 void
2467 sigio_copy(struct sigio_ref *dst, struct sigio_ref *src)
2468 {
2469 	struct sigiolst rmlist;
2470 	struct sigio *newsigio, *sigio;
2471 
2472 	sigio_free(dst);
2473 
2474 	if (src->sir_sigio == NULL)
2475 		return;
2476 
2477 	newsigio = malloc(sizeof(*newsigio), M_SIGIO, M_WAITOK);
2478 	LIST_INIT(&rmlist);
2479 
2480 	mtx_enter(&sigio_lock);
2481 
2482 	sigio = src->sir_sigio;
2483 	if (sigio == NULL) {
2484 		mtx_leave(&sigio_lock);
2485 		free(newsigio, M_SIGIO, sizeof(*newsigio));
2486 		return;
2487 	}
2488 
2489 	newsigio->sio_pgid = sigio->sio_pgid;
2490 	newsigio->sio_ucred = crhold(sigio->sio_ucred);
2491 	newsigio->sio_myref = dst;
2492 	if (newsigio->sio_pgid > 0) {
2493 		newsigio->sio_proc = sigio->sio_proc;
2494 		LIST_INSERT_HEAD(&newsigio->sio_proc->ps_sigiolst, newsigio,
2495 		    sio_pgsigio);
2496 	} else {
2497 		newsigio->sio_pgrp = sigio->sio_pgrp;
2498 		LIST_INSERT_HEAD(&newsigio->sio_pgrp->pg_sigiolst, newsigio,
2499 		    sio_pgsigio);
2500 	}
2501 
2502 	sigio_unlink(dst, &rmlist);
2503 	dst->sir_sigio = newsigio;
2504 
2505 	mtx_leave(&sigio_lock);
2506 
2507 	sigio_del(&rmlist);
2508 }
2509