xref: /openbsd-src/sys/kern/kern_sig.c (revision e165cac938b05211a6cba493f95905bf8eacf546)
1 /*	$OpenBSD: kern_sig.c,v 1.210 2017/04/14 15:11:31 bluhm Exp $	*/
2 /*	$NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Theo de Raadt. All rights reserved.
6  * Copyright (c) 1982, 1986, 1989, 1991, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
39  */
40 
41 #define	SIGPROP		/* include signal properties table */
42 #include <sys/param.h>
43 #include <sys/signalvar.h>
44 #include <sys/resourcevar.h>
45 #include <sys/queue.h>
46 #include <sys/namei.h>
47 #include <sys/vnode.h>
48 #include <sys/event.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/acct.h>
52 #include <sys/file.h>
53 #include <sys/filedesc.h>
54 #include <sys/kernel.h>
55 #include <sys/wait.h>
56 #include <sys/ktrace.h>
57 #include <sys/stat.h>
58 #include <sys/core.h>
59 #include <sys/malloc.h>
60 #include <sys/pool.h>
61 #include <sys/ptrace.h>
62 #include <sys/sched.h>
63 #include <sys/user.h>
64 #include <sys/syslog.h>
65 #include <sys/pledge.h>
66 
67 #include <sys/mount.h>
68 #include <sys/syscallargs.h>
69 
70 #include <uvm/uvm_extern.h>
71 #include <machine/tcb.h>
72 
73 int	filt_sigattach(struct knote *kn);
74 void	filt_sigdetach(struct knote *kn);
75 int	filt_signal(struct knote *kn, long hint);
76 
77 struct filterops sig_filtops =
78 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
79 
80 void proc_stop(struct proc *p, int);
81 void proc_stop_sweep(void *);
82 struct timeout proc_stop_to;
83 
84 int cansignal(struct proc *, struct process *, int);
85 
86 struct pool sigacts_pool;	/* memory pool for sigacts structures */
87 
88 /*
89  * Can thread p, send the signal signum to process qr?
90  */
91 int
92 cansignal(struct proc *p, struct process *qr, int signum)
93 {
94 	struct process *pr = p->p_p;
95 	struct ucred *uc = p->p_ucred;
96 	struct ucred *quc = qr->ps_ucred;
97 
98 	if (uc->cr_uid == 0)
99 		return (1);		/* root can always signal */
100 
101 	if (pr == qr)
102 		return (1);		/* process can always signal itself */
103 
104 	/* optimization: if the same creds then the tests below will pass */
105 	if (uc == quc)
106 		return (1);
107 
108 	if (signum == SIGCONT && qr->ps_session == pr->ps_session)
109 		return (1);		/* SIGCONT in session */
110 
111 	/*
112 	 * Using kill(), only certain signals can be sent to setugid
113 	 * child processes
114 	 */
115 	if (qr->ps_flags & PS_SUGID) {
116 		switch (signum) {
117 		case 0:
118 		case SIGKILL:
119 		case SIGINT:
120 		case SIGTERM:
121 		case SIGALRM:
122 		case SIGSTOP:
123 		case SIGTTIN:
124 		case SIGTTOU:
125 		case SIGTSTP:
126 		case SIGHUP:
127 		case SIGUSR1:
128 		case SIGUSR2:
129 			if (uc->cr_ruid == quc->cr_ruid ||
130 			    uc->cr_uid == quc->cr_ruid)
131 				return (1);
132 		}
133 		return (0);
134 	}
135 
136 	if (uc->cr_ruid == quc->cr_ruid ||
137 	    uc->cr_ruid == quc->cr_svuid ||
138 	    uc->cr_uid == quc->cr_ruid ||
139 	    uc->cr_uid == quc->cr_svuid)
140 		return (1);
141 	return (0);
142 }
143 
144 /*
145  * Initialize signal-related data structures.
146  */
147 void
148 signal_init(void)
149 {
150 	timeout_set(&proc_stop_to, proc_stop_sweep, NULL);
151 
152 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, IPL_NONE,
153 	    PR_WAITOK, "sigapl", NULL);
154 }
155 
156 /*
157  * Create an initial sigacts structure, using the same signal state
158  * as p.
159  */
160 struct sigacts *
161 sigactsinit(struct process *pr)
162 {
163 	struct sigacts *ps;
164 
165 	ps = pool_get(&sigacts_pool, PR_WAITOK);
166 	memcpy(ps, pr->ps_sigacts, sizeof(struct sigacts));
167 	ps->ps_refcnt = 1;
168 	return (ps);
169 }
170 
171 /*
172  * Share a sigacts structure.
173  */
174 struct sigacts *
175 sigactsshare(struct process *pr)
176 {
177 	struct sigacts *ps = pr->ps_sigacts;
178 
179 	ps->ps_refcnt++;
180 	return ps;
181 }
182 
183 /*
184  * Initialize a new sigaltstack structure.
185  */
186 void
187 sigstkinit(struct sigaltstack *ss)
188 {
189 	ss->ss_flags = SS_DISABLE;
190 	ss->ss_size = 0;
191 	ss->ss_sp = 0;
192 }
193 
194 /*
195  * Make this process not share its sigacts, maintaining all
196  * signal state.
197  */
198 void
199 sigactsunshare(struct process *pr)
200 {
201 	struct sigacts *newps;
202 
203 	if (pr->ps_sigacts->ps_refcnt == 1)
204 		return;
205 
206 	newps = sigactsinit(pr);
207 	sigactsfree(pr);
208 	pr->ps_sigacts = newps;
209 }
210 
211 /*
212  * Release a sigacts structure.
213  */
214 void
215 sigactsfree(struct process *pr)
216 {
217 	struct sigacts *ps = pr->ps_sigacts;
218 
219 	if (--ps->ps_refcnt > 0)
220 		return;
221 
222 	pr->ps_sigacts = NULL;
223 
224 	pool_put(&sigacts_pool, ps);
225 }
226 
227 int
228 sys_sigaction(struct proc *p, void *v, register_t *retval)
229 {
230 	struct sys_sigaction_args /* {
231 		syscallarg(int) signum;
232 		syscallarg(const struct sigaction *) nsa;
233 		syscallarg(struct sigaction *) osa;
234 	} */ *uap = v;
235 	struct sigaction vec;
236 #ifdef KTRACE
237 	struct sigaction ovec;
238 #endif
239 	struct sigaction *sa;
240 	const struct sigaction *nsa;
241 	struct sigaction *osa;
242 	struct sigacts *ps = p->p_p->ps_sigacts;
243 	int signum;
244 	int bit, error;
245 
246 	signum = SCARG(uap, signum);
247 	nsa = SCARG(uap, nsa);
248 	osa = SCARG(uap, osa);
249 
250 	if (signum <= 0 || signum >= NSIG ||
251 	    (nsa && (signum == SIGKILL || signum == SIGSTOP)))
252 		return (EINVAL);
253 	sa = &vec;
254 	if (osa) {
255 		sa->sa_handler = ps->ps_sigact[signum];
256 		sa->sa_mask = ps->ps_catchmask[signum];
257 		bit = sigmask(signum);
258 		sa->sa_flags = 0;
259 		if ((ps->ps_sigonstack & bit) != 0)
260 			sa->sa_flags |= SA_ONSTACK;
261 		if ((ps->ps_sigintr & bit) == 0)
262 			sa->sa_flags |= SA_RESTART;
263 		if ((ps->ps_sigreset & bit) != 0)
264 			sa->sa_flags |= SA_RESETHAND;
265 		if ((ps->ps_siginfo & bit) != 0)
266 			sa->sa_flags |= SA_SIGINFO;
267 		if (signum == SIGCHLD) {
268 			if ((ps->ps_flags & SAS_NOCLDSTOP) != 0)
269 				sa->sa_flags |= SA_NOCLDSTOP;
270 			if ((ps->ps_flags & SAS_NOCLDWAIT) != 0)
271 				sa->sa_flags |= SA_NOCLDWAIT;
272 		}
273 		if ((sa->sa_mask & bit) == 0)
274 			sa->sa_flags |= SA_NODEFER;
275 		sa->sa_mask &= ~bit;
276 		error = copyout(sa, osa, sizeof (vec));
277 		if (error)
278 			return (error);
279 #ifdef KTRACE
280 		if (KTRPOINT(p, KTR_STRUCT))
281 			ovec = vec;
282 #endif
283 	}
284 	if (nsa) {
285 		error = copyin(nsa, sa, sizeof (vec));
286 		if (error)
287 			return (error);
288 #ifdef KTRACE
289 		if (KTRPOINT(p, KTR_STRUCT))
290 			ktrsigaction(p, sa);
291 #endif
292 		setsigvec(p, signum, sa);
293 	}
294 #ifdef KTRACE
295 	if (osa && KTRPOINT(p, KTR_STRUCT))
296 		ktrsigaction(p, &ovec);
297 #endif
298 	return (0);
299 }
300 
301 void
302 setsigvec(struct proc *p, int signum, struct sigaction *sa)
303 {
304 	struct sigacts *ps = p->p_p->ps_sigacts;
305 	int bit;
306 	int s;
307 
308 	bit = sigmask(signum);
309 	/*
310 	 * Change setting atomically.
311 	 */
312 	s = splhigh();
313 	ps->ps_sigact[signum] = sa->sa_handler;
314 	if ((sa->sa_flags & SA_NODEFER) == 0)
315 		sa->sa_mask |= sigmask(signum);
316 	ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask;
317 	if (signum == SIGCHLD) {
318 		if (sa->sa_flags & SA_NOCLDSTOP)
319 			atomic_setbits_int(&ps->ps_flags, SAS_NOCLDSTOP);
320 		else
321 			atomic_clearbits_int(&ps->ps_flags, SAS_NOCLDSTOP);
322 		/*
323 		 * If the SA_NOCLDWAIT flag is set or the handler
324 		 * is SIG_IGN we reparent the dying child to PID 1
325 		 * (init) which will reap the zombie.  Because we use
326 		 * init to do our dirty work we never set SAS_NOCLDWAIT
327 		 * for PID 1.
328 		 * XXX exit1 rework means this is unnecessary?
329 		 */
330 		if (initprocess->ps_sigacts != ps &&
331 		    ((sa->sa_flags & SA_NOCLDWAIT) ||
332 		    sa->sa_handler == SIG_IGN))
333 			atomic_setbits_int(&ps->ps_flags, SAS_NOCLDWAIT);
334 		else
335 			atomic_clearbits_int(&ps->ps_flags, SAS_NOCLDWAIT);
336 	}
337 	if ((sa->sa_flags & SA_RESETHAND) != 0)
338 		ps->ps_sigreset |= bit;
339 	else
340 		ps->ps_sigreset &= ~bit;
341 	if ((sa->sa_flags & SA_SIGINFO) != 0)
342 		ps->ps_siginfo |= bit;
343 	else
344 		ps->ps_siginfo &= ~bit;
345 	if ((sa->sa_flags & SA_RESTART) == 0)
346 		ps->ps_sigintr |= bit;
347 	else
348 		ps->ps_sigintr &= ~bit;
349 	if ((sa->sa_flags & SA_ONSTACK) != 0)
350 		ps->ps_sigonstack |= bit;
351 	else
352 		ps->ps_sigonstack &= ~bit;
353 	/*
354 	 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
355 	 * and for signals set to SIG_DFL where the default is to ignore.
356 	 * However, don't put SIGCONT in ps_sigignore,
357 	 * as we have to restart the process.
358 	 */
359 	if (sa->sa_handler == SIG_IGN ||
360 	    (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) {
361 		atomic_clearbits_int(&p->p_siglist, bit);
362 		if (signum != SIGCONT)
363 			ps->ps_sigignore |= bit;	/* easier in psignal */
364 		ps->ps_sigcatch &= ~bit;
365 	} else {
366 		ps->ps_sigignore &= ~bit;
367 		if (sa->sa_handler == SIG_DFL)
368 			ps->ps_sigcatch &= ~bit;
369 		else
370 			ps->ps_sigcatch |= bit;
371 	}
372 	splx(s);
373 }
374 
375 /*
376  * Initialize signal state for process 0;
377  * set to ignore signals that are ignored by default.
378  */
379 void
380 siginit(struct process *pr)
381 {
382 	struct sigacts *ps = pr->ps_sigacts;
383 	int i;
384 
385 	for (i = 0; i < NSIG; i++)
386 		if (sigprop[i] & SA_IGNORE && i != SIGCONT)
387 			ps->ps_sigignore |= sigmask(i);
388 	ps->ps_flags = SAS_NOCLDWAIT | SAS_NOCLDSTOP;
389 }
390 
391 /*
392  * Reset signals for an exec by the specified thread.
393  */
394 void
395 execsigs(struct proc *p)
396 {
397 	struct sigacts *ps;
398 	int nc, mask;
399 
400 	sigactsunshare(p->p_p);
401 	ps = p->p_p->ps_sigacts;
402 
403 	/*
404 	 * Reset caught signals.  Held signals remain held
405 	 * through p_sigmask (unless they were caught,
406 	 * and are now ignored by default).
407 	 */
408 	while (ps->ps_sigcatch) {
409 		nc = ffs((long)ps->ps_sigcatch);
410 		mask = sigmask(nc);
411 		ps->ps_sigcatch &= ~mask;
412 		if (sigprop[nc] & SA_IGNORE) {
413 			if (nc != SIGCONT)
414 				ps->ps_sigignore |= mask;
415 			atomic_clearbits_int(&p->p_siglist, mask);
416 		}
417 		ps->ps_sigact[nc] = SIG_DFL;
418 	}
419 	/*
420 	 * Reset stack state to the user stack.
421 	 * Clear set of signals caught on the signal stack.
422 	 */
423 	sigstkinit(&p->p_sigstk);
424 	ps->ps_flags &= ~SAS_NOCLDWAIT;
425 	if (ps->ps_sigact[SIGCHLD] == SIG_IGN)
426 		ps->ps_sigact[SIGCHLD] = SIG_DFL;
427 }
428 
429 /*
430  * Manipulate signal mask.
431  * Note that we receive new mask, not pointer,
432  * and return old mask as return value;
433  * the library stub does the rest.
434  */
435 int
436 sys_sigprocmask(struct proc *p, void *v, register_t *retval)
437 {
438 	struct sys_sigprocmask_args /* {
439 		syscallarg(int) how;
440 		syscallarg(sigset_t) mask;
441 	} */ *uap = v;
442 	int error = 0;
443 	sigset_t mask;
444 
445 	*retval = p->p_sigmask;
446 	mask = SCARG(uap, mask) &~ sigcantmask;
447 
448 	switch (SCARG(uap, how)) {
449 	case SIG_BLOCK:
450 		atomic_setbits_int(&p->p_sigmask, mask);
451 		break;
452 	case SIG_UNBLOCK:
453 		atomic_clearbits_int(&p->p_sigmask, mask);
454 		break;
455 	case SIG_SETMASK:
456 		p->p_sigmask = mask;
457 		break;
458 	default:
459 		error = EINVAL;
460 		break;
461 	}
462 	return (error);
463 }
464 
465 int
466 sys_sigpending(struct proc *p, void *v, register_t *retval)
467 {
468 
469 	*retval = p->p_siglist;
470 	return (0);
471 }
472 
473 /*
474  * Temporarily replace calling proc's signal mask for the duration of a
475  * system call.  Original signal mask will be restored by userret().
476  */
477 void
478 dosigsuspend(struct proc *p, sigset_t newmask)
479 {
480 	KASSERT(p == curproc);
481 
482 	p->p_oldmask = p->p_sigmask;
483 	atomic_setbits_int(&p->p_flag, P_SIGSUSPEND);
484 	p->p_sigmask = newmask;
485 }
486 
487 /*
488  * Suspend process until signal, providing mask to be set
489  * in the meantime.  Note nonstandard calling convention:
490  * libc stub passes mask, not pointer, to save a copyin.
491  */
492 int
493 sys_sigsuspend(struct proc *p, void *v, register_t *retval)
494 {
495 	struct sys_sigsuspend_args /* {
496 		syscallarg(int) mask;
497 	} */ *uap = v;
498 	struct process *pr = p->p_p;
499 	struct sigacts *ps = pr->ps_sigacts;
500 
501 	dosigsuspend(p, SCARG(uap, mask) &~ sigcantmask);
502 	while (tsleep(ps, PPAUSE|PCATCH, "pause", 0) == 0)
503 		/* void */;
504 	/* always return EINTR rather than ERESTART... */
505 	return (EINTR);
506 }
507 
508 int
509 sigonstack(size_t stack)
510 {
511 	const struct sigaltstack *ss = &curproc->p_sigstk;
512 
513 	return (ss->ss_flags & SS_DISABLE ? 0 :
514 	    (stack - (size_t)ss->ss_sp < ss->ss_size));
515 }
516 
517 int
518 sys_sigaltstack(struct proc *p, void *v, register_t *retval)
519 {
520 	struct sys_sigaltstack_args /* {
521 		syscallarg(const struct sigaltstack *) nss;
522 		syscallarg(struct sigaltstack *) oss;
523 	} */ *uap = v;
524 	struct sigaltstack ss;
525 	const struct sigaltstack *nss;
526 	struct sigaltstack *oss;
527 	int onstack = sigonstack(PROC_STACK(p));
528 	int error;
529 
530 	nss = SCARG(uap, nss);
531 	oss = SCARG(uap, oss);
532 
533 	if (oss != NULL) {
534 		ss = p->p_sigstk;
535 		if (onstack)
536 			ss.ss_flags |= SS_ONSTACK;
537 		if ((error = copyout(&ss, oss, sizeof(ss))))
538 			return (error);
539 	}
540 	if (nss == NULL)
541 		return (0);
542 	error = copyin(nss, &ss, sizeof(ss));
543 	if (error)
544 		return (error);
545 	if (onstack)
546 		return (EPERM);
547 	if (ss.ss_flags & ~SS_DISABLE)
548 		return (EINVAL);
549 	if (ss.ss_flags & SS_DISABLE) {
550 		p->p_sigstk.ss_flags = ss.ss_flags;
551 		return (0);
552 	}
553 	if (ss.ss_size < MINSIGSTKSZ)
554 		return (ENOMEM);
555 	p->p_sigstk = ss;
556 	return (0);
557 }
558 
559 int
560 sys_kill(struct proc *cp, void *v, register_t *retval)
561 {
562 	struct sys_kill_args /* {
563 		syscallarg(int) pid;
564 		syscallarg(int) signum;
565 	} */ *uap = v;
566 	struct process *pr;
567 	int pid = SCARG(uap, pid);
568 	int signum = SCARG(uap, signum);
569 	int error;
570 	int zombie = 0;
571 
572 	if ((error = pledge_kill(cp, pid)) != 0)
573 		return (error);
574 	if (((u_int)signum) >= NSIG)
575 		return (EINVAL);
576 	if (pid > 0) {
577 		if ((pr = prfind(pid)) == NULL) {
578 			if ((pr = zombiefind(pid)) == NULL)
579 				return (ESRCH);
580 			else
581 				zombie = 1;
582 		}
583 		if (!cansignal(cp, pr, signum))
584 			return (EPERM);
585 
586 		/* kill single process */
587 		if (signum && !zombie)
588 			prsignal(pr, signum);
589 		return (0);
590 	}
591 	switch (pid) {
592 	case -1:		/* broadcast signal */
593 		return (killpg1(cp, signum, 0, 1));
594 	case 0:			/* signal own process group */
595 		return (killpg1(cp, signum, 0, 0));
596 	default:		/* negative explicit process group */
597 		return (killpg1(cp, signum, -pid, 0));
598 	}
599 }
600 
601 int
602 sys_thrkill(struct proc *cp, void *v, register_t *retval)
603 {
604 	struct sys_thrkill_args /* {
605 		syscallarg(pid_t) tid;
606 		syscallarg(int) signum;
607 		syscallarg(void *) tcb;
608 	} */ *uap = v;
609 	struct proc *p;
610 	int tid = SCARG(uap, tid);
611 	int signum = SCARG(uap, signum);
612 	void *tcb;
613 
614 	if (((u_int)signum) >= NSIG)
615 		return (EINVAL);
616 	if (tid > THREAD_PID_OFFSET) {
617 		if ((p = tfind(tid - THREAD_PID_OFFSET)) == NULL)
618 			return (ESRCH);
619 
620 		/* can only kill threads in the same process */
621 		if (p->p_p != cp->p_p)
622 			return (ESRCH);
623 	} else if (tid == 0)
624 		p = cp;
625 	else
626 		return (EINVAL);
627 
628 	/* optionally require the target thread to have the given tcb addr */
629 	tcb = SCARG(uap, tcb);
630 	if (tcb != NULL && tcb != TCB_GET(p))
631 		return (ESRCH);
632 
633 	if (signum)
634 		ptsignal(p, signum, STHREAD);
635 	return (0);
636 }
637 
638 /*
639  * Common code for kill process group/broadcast kill.
640  * cp is calling process.
641  */
642 int
643 killpg1(struct proc *cp, int signum, int pgid, int all)
644 {
645 	struct process *pr;
646 	struct pgrp *pgrp;
647 	int nfound = 0;
648 
649 	if (all) {
650 		/*
651 		 * broadcast
652 		 */
653 		LIST_FOREACH(pr, &allprocess, ps_list) {
654 			if (pr->ps_pid <= 1 ||
655 			    pr->ps_flags & (PS_SYSTEM | PS_NOBROADCASTKILL) ||
656 			    pr == cp->p_p || !cansignal(cp, pr, signum))
657 				continue;
658 			nfound++;
659 			if (signum)
660 				prsignal(pr, signum);
661 		}
662 	} else {
663 		if (pgid == 0)
664 			/*
665 			 * zero pgid means send to my process group.
666 			 */
667 			pgrp = cp->p_p->ps_pgrp;
668 		else {
669 			pgrp = pgfind(pgid);
670 			if (pgrp == NULL)
671 				return (ESRCH);
672 		}
673 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist) {
674 			if (pr->ps_pid <= 1 || pr->ps_flags & PS_SYSTEM ||
675 			    !cansignal(cp, pr, signum))
676 				continue;
677 			nfound++;
678 			if (signum)
679 				prsignal(pr, signum);
680 		}
681 	}
682 	return (nfound ? 0 : ESRCH);
683 }
684 
685 #define CANDELIVER(uid, euid, pr) \
686 	(euid == 0 || \
687 	(uid) == (pr)->ps_ucred->cr_ruid || \
688 	(uid) == (pr)->ps_ucred->cr_svuid || \
689 	(uid) == (pr)->ps_ucred->cr_uid || \
690 	(euid) == (pr)->ps_ucred->cr_ruid || \
691 	(euid) == (pr)->ps_ucred->cr_svuid || \
692 	(euid) == (pr)->ps_ucred->cr_uid)
693 
694 /*
695  * Deliver signum to pgid, but first check uid/euid against each
696  * process and see if it is permitted.
697  */
698 void
699 csignal(pid_t pgid, int signum, uid_t uid, uid_t euid)
700 {
701 	struct pgrp *pgrp;
702 	struct process *pr;
703 
704 	if (pgid == 0)
705 		return;
706 	if (pgid < 0) {
707 		pgid = -pgid;
708 		if ((pgrp = pgfind(pgid)) == NULL)
709 			return;
710 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
711 			if (CANDELIVER(uid, euid, pr))
712 				prsignal(pr, signum);
713 	} else {
714 		if ((pr = prfind(pgid)) == NULL)
715 			return;
716 		if (CANDELIVER(uid, euid, pr))
717 			prsignal(pr, signum);
718 	}
719 }
720 
721 /*
722  * Send a signal to a process group.
723  */
724 void
725 gsignal(int pgid, int signum)
726 {
727 	struct pgrp *pgrp;
728 
729 	if (pgid && (pgrp = pgfind(pgid)))
730 		pgsignal(pgrp, signum, 0);
731 }
732 
733 /*
734  * Send a signal to a process group.  If checktty is 1,
735  * limit to members which have a controlling terminal.
736  */
737 void
738 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
739 {
740 	struct process *pr;
741 
742 	if (pgrp)
743 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
744 			if (checkctty == 0 || pr->ps_flags & PS_CONTROLT)
745 				prsignal(pr, signum);
746 }
747 
748 /*
749  * Send a signal caused by a trap to the current thread
750  * If it will be caught immediately, deliver it with correct code.
751  * Otherwise, post it normally.
752  */
753 void
754 trapsignal(struct proc *p, int signum, u_long trapno, int code,
755     union sigval sigval)
756 {
757 	struct process *pr = p->p_p;
758 	struct sigacts *ps = pr->ps_sigacts;
759 	int mask;
760 
761 	mask = sigmask(signum);
762 	if ((pr->ps_flags & PS_TRACED) == 0 &&
763 	    (ps->ps_sigcatch & mask) != 0 &&
764 	    (p->p_sigmask & mask) == 0) {
765 #ifdef KTRACE
766 		if (KTRPOINT(p, KTR_PSIG)) {
767 			siginfo_t si;
768 
769 			initsiginfo(&si, signum, trapno, code, sigval);
770 			ktrpsig(p, signum, ps->ps_sigact[signum],
771 			    p->p_sigmask, code, &si);
772 		}
773 #endif
774 		p->p_ru.ru_nsignals++;
775 		(*pr->ps_emul->e_sendsig)(ps->ps_sigact[signum], signum,
776 		    p->p_sigmask, trapno, code, sigval);
777 		atomic_setbits_int(&p->p_sigmask, ps->ps_catchmask[signum]);
778 		if ((ps->ps_sigreset & mask) != 0) {
779 			ps->ps_sigcatch &= ~mask;
780 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
781 				ps->ps_sigignore |= mask;
782 			ps->ps_sigact[signum] = SIG_DFL;
783 		}
784 	} else {
785 		p->p_sisig = signum;
786 		p->p_sitrapno = trapno;	/* XXX for core dump/debugger */
787 		p->p_sicode = code;
788 		p->p_sigval = sigval;
789 
790 		/*
791 		 * Signals like SIGBUS and SIGSEGV should not, when
792 		 * generated by the kernel, be ignorable or blockable.
793 		 * If it is and we're not being traced, then just kill
794 		 * the process.
795 		 */
796 		if ((pr->ps_flags & PS_TRACED) == 0 &&
797 		    (sigprop[signum] & SA_KILL) &&
798 		    ((p->p_sigmask & mask) || (ps->ps_sigignore & mask)))
799 			sigexit(p, signum);
800 		ptsignal(p, signum, STHREAD);
801 	}
802 }
803 
804 /*
805  * Send the signal to the process.  If the signal has an action, the action
806  * is usually performed by the target process rather than the caller; we add
807  * the signal to the set of pending signals for the process.
808  *
809  * Exceptions:
810  *   o When a stop signal is sent to a sleeping process that takes the
811  *     default action, the process is stopped without awakening it.
812  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
813  *     regardless of the signal action (eg, blocked or ignored).
814  *
815  * Other ignored signals are discarded immediately.
816  */
817 void
818 psignal(struct proc *p, int signum)
819 {
820 	ptsignal(p, signum, SPROCESS);
821 }
822 
823 /*
824  * type = SPROCESS	process signal, can be diverted (sigwait())
825  *	XXX if blocked in all threads, mark as pending in struct process
826  * type = STHREAD	thread signal, but should be propagated if unhandled
827  * type = SPROPAGATED	propagated to this thread, so don't propagate again
828  */
829 void
830 ptsignal(struct proc *p, int signum, enum signal_type type)
831 {
832 	int s, prop;
833 	sig_t action;
834 	int mask;
835 	struct process *pr = p->p_p;
836 	struct proc *q;
837 	int wakeparent = 0;
838 
839 #ifdef DIAGNOSTIC
840 	if ((u_int)signum >= NSIG || signum == 0)
841 		panic("psignal signal number");
842 #endif
843 
844 	/* Ignore signal if the target process is exiting */
845 	if (pr->ps_flags & PS_EXITING)
846 		return;
847 
848 	mask = sigmask(signum);
849 
850 	if (type == SPROCESS) {
851 		/* Accept SIGKILL to coredumping processes */
852 		if (pr->ps_flags & PS_COREDUMP && signum == SIGKILL) {
853 			if (pr->ps_single != NULL)
854 				p = pr->ps_single;
855 			atomic_setbits_int(&p->p_siglist, mask);
856 			return;
857 		}
858 
859 		/*
860 		 * If the current thread can process the signal
861 		 * immediately (it's unblocked) then have it take it.
862 		 */
863 		q = curproc;
864 		if (q != NULL && q->p_p == pr && (q->p_flag & P_WEXIT) == 0 &&
865 		    (q->p_sigmask & mask) == 0)
866 			p = q;
867 		else {
868 			/*
869 			 * A process-wide signal can be diverted to a
870 			 * different thread that's in sigwait() for this
871 			 * signal.  If there isn't such a thread, then
872 			 * pick a thread that doesn't have it blocked so
873 			 * that the stop/kill consideration isn't
874 			 * delayed.  Otherwise, mark it pending on the
875 			 * main thread.
876 			 */
877 			TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
878 				/* ignore exiting threads */
879 				if (q->p_flag & P_WEXIT)
880 					continue;
881 
882 				/* skip threads that have the signal blocked */
883 				if ((q->p_sigmask & mask) != 0)
884 					continue;
885 
886 				/* okay, could send to this thread */
887 				p = q;
888 
889 				/*
890 				 * sigsuspend, sigwait, ppoll/pselect, etc?
891 				 * Definitely go to this thread, as it's
892 				 * already blocked in the kernel.
893 				 */
894 				if (q->p_flag & P_SIGSUSPEND)
895 					break;
896 			}
897 		}
898 	}
899 
900 	if (type != SPROPAGATED)
901 		KNOTE(&pr->ps_klist, NOTE_SIGNAL | signum);
902 
903 	prop = sigprop[signum];
904 
905 	/*
906 	 * If proc is traced, always give parent a chance.
907 	 */
908 	if (pr->ps_flags & PS_TRACED) {
909 		action = SIG_DFL;
910 		atomic_setbits_int(&p->p_siglist, mask);
911 	} else {
912 		/*
913 		 * If the signal is being ignored,
914 		 * then we forget about it immediately.
915 		 * (Note: we don't set SIGCONT in ps_sigignore,
916 		 * and if it is set to SIG_IGN,
917 		 * action will be SIG_DFL here.)
918 		 */
919 		if (pr->ps_sigacts->ps_sigignore & mask)
920 			return;
921 		if (p->p_sigmask & mask) {
922 			action = SIG_HOLD;
923 		} else if (pr->ps_sigacts->ps_sigcatch & mask) {
924 			action = SIG_CATCH;
925 		} else {
926 			action = SIG_DFL;
927 
928 			if (prop & SA_KILL && pr->ps_nice > NZERO)
929 				 pr->ps_nice = NZERO;
930 
931 			/*
932 			 * If sending a tty stop signal to a member of an
933 			 * orphaned process group, discard the signal here if
934 			 * the action is default; don't stop the process below
935 			 * if sleeping, and don't clear any pending SIGCONT.
936 			 */
937 			if (prop & SA_TTYSTOP && pr->ps_pgrp->pg_jobc == 0)
938 				return;
939 		}
940 
941 		atomic_setbits_int(&p->p_siglist, mask);
942 	}
943 
944 	if (prop & SA_CONT)
945 		atomic_clearbits_int(&p->p_siglist, stopsigmask);
946 
947 	if (prop & SA_STOP) {
948 		atomic_clearbits_int(&p->p_siglist, contsigmask);
949 		atomic_clearbits_int(&p->p_flag, P_CONTINUED);
950 	}
951 
952 	/*
953 	 * XXX delay processing of SA_STOP signals unless action == SIG_DFL?
954 	 */
955 	if (prop & (SA_CONT | SA_STOP) && type != SPROPAGATED)
956 		TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)
957 			if (q != p)
958 				ptsignal(q, signum, SPROPAGATED);
959 
960 	/*
961 	 * Defer further processing for signals which are held,
962 	 * except that stopped processes must be continued by SIGCONT.
963 	 */
964 	if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
965 		return;
966 
967 	SCHED_LOCK(s);
968 
969 	switch (p->p_stat) {
970 
971 	case SSLEEP:
972 		/*
973 		 * If process is sleeping uninterruptibly
974 		 * we can't interrupt the sleep... the signal will
975 		 * be noticed when the process returns through
976 		 * trap() or syscall().
977 		 */
978 		if ((p->p_flag & P_SINTR) == 0)
979 			goto out;
980 		/*
981 		 * Process is sleeping and traced... make it runnable
982 		 * so it can discover the signal in issignal() and stop
983 		 * for the parent.
984 		 */
985 		if (pr->ps_flags & PS_TRACED)
986 			goto run;
987 		/*
988 		 * If SIGCONT is default (or ignored) and process is
989 		 * asleep, we are finished; the process should not
990 		 * be awakened.
991 		 */
992 		if ((prop & SA_CONT) && action == SIG_DFL) {
993 			atomic_clearbits_int(&p->p_siglist, mask);
994 			goto out;
995 		}
996 		/*
997 		 * When a sleeping process receives a stop
998 		 * signal, process immediately if possible.
999 		 */
1000 		if ((prop & SA_STOP) && action == SIG_DFL) {
1001 			/*
1002 			 * If a child holding parent blocked,
1003 			 * stopping could cause deadlock.
1004 			 */
1005 			if (pr->ps_flags & PS_PPWAIT)
1006 				goto out;
1007 			atomic_clearbits_int(&p->p_siglist, mask);
1008 			p->p_xstat = signum;
1009 			proc_stop(p, 0);
1010 			goto out;
1011 		}
1012 		/*
1013 		 * All other (caught or default) signals
1014 		 * cause the process to run.
1015 		 */
1016 		goto runfast;
1017 		/*NOTREACHED*/
1018 
1019 	case SSTOP:
1020 		/*
1021 		 * If traced process is already stopped,
1022 		 * then no further action is necessary.
1023 		 */
1024 		if (pr->ps_flags & PS_TRACED)
1025 			goto out;
1026 
1027 		/*
1028 		 * Kill signal always sets processes running.
1029 		 */
1030 		if (signum == SIGKILL) {
1031 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1032 			goto runfast;
1033 		}
1034 
1035 		if (prop & SA_CONT) {
1036 			/*
1037 			 * If SIGCONT is default (or ignored), we continue the
1038 			 * process but don't leave the signal in p_siglist, as
1039 			 * it has no further action.  If SIGCONT is held, we
1040 			 * continue the process and leave the signal in
1041 			 * p_siglist.  If the process catches SIGCONT, let it
1042 			 * handle the signal itself.  If it isn't waiting on
1043 			 * an event, then it goes back to run state.
1044 			 * Otherwise, process goes back to sleep state.
1045 			 */
1046 			atomic_setbits_int(&p->p_flag, P_CONTINUED);
1047 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1048 			wakeparent = 1;
1049 			if (action == SIG_DFL)
1050 				atomic_clearbits_int(&p->p_siglist, mask);
1051 			if (action == SIG_CATCH)
1052 				goto runfast;
1053 			if (p->p_wchan == 0)
1054 				goto run;
1055 			p->p_stat = SSLEEP;
1056 			goto out;
1057 		}
1058 
1059 		if (prop & SA_STOP) {
1060 			/*
1061 			 * Already stopped, don't need to stop again.
1062 			 * (If we did the shell could get confused.)
1063 			 */
1064 			atomic_clearbits_int(&p->p_siglist, mask);
1065 			goto out;
1066 		}
1067 
1068 		/*
1069 		 * If process is sleeping interruptibly, then simulate a
1070 		 * wakeup so that when it is continued, it will be made
1071 		 * runnable and can look at the signal.  But don't make
1072 		 * the process runnable, leave it stopped.
1073 		 */
1074 		if (p->p_wchan && p->p_flag & P_SINTR)
1075 			unsleep(p);
1076 		goto out;
1077 
1078 	case SONPROC:
1079 		signotify(p);
1080 		/* FALLTHROUGH */
1081 	default:
1082 		/*
1083 		 * SRUN, SIDL, SDEAD do nothing with the signal,
1084 		 * other than kicking ourselves if we are running.
1085 		 * It will either never be noticed, or noticed very soon.
1086 		 */
1087 		goto out;
1088 	}
1089 	/*NOTREACHED*/
1090 
1091 runfast:
1092 	/*
1093 	 * Raise priority to at least PUSER.
1094 	 */
1095 	if (p->p_priority > PUSER)
1096 		p->p_priority = PUSER;
1097 run:
1098 	setrunnable(p);
1099 out:
1100 	SCHED_UNLOCK(s);
1101 	if (wakeparent)
1102 		wakeup(pr->ps_pptr);
1103 }
1104 
1105 /*
1106  * If the current process has received a signal (should be caught or cause
1107  * termination, should interrupt current syscall), return the signal number.
1108  * Stop signals with default action are processed immediately, then cleared;
1109  * they aren't returned.  This is checked after each entry to the system for
1110  * a syscall or trap (though this can usually be done without calling issignal
1111  * by checking the pending signal masks in the CURSIG macro.) The normal call
1112  * sequence is
1113  *
1114  *	while (signum = CURSIG(curproc))
1115  *		postsig(signum);
1116  *
1117  * Assumes that if the P_SINTR flag is set, we're holding both the
1118  * kernel and scheduler locks.
1119  */
1120 int
1121 issignal(struct proc *p)
1122 {
1123 	struct process *pr = p->p_p;
1124 	int signum, mask, prop;
1125 	int dolock = (p->p_flag & P_SINTR) == 0;
1126 	int s;
1127 
1128 	for (;;) {
1129 		mask = p->p_siglist & ~p->p_sigmask;
1130 		if (pr->ps_flags & PS_PPWAIT)
1131 			mask &= ~stopsigmask;
1132 		if (mask == 0)	 	/* no signal to send */
1133 			return (0);
1134 		signum = ffs((long)mask);
1135 		mask = sigmask(signum);
1136 		atomic_clearbits_int(&p->p_siglist, mask);
1137 
1138 		/*
1139 		 * We should see pending but ignored signals
1140 		 * only if PS_TRACED was on when they were posted.
1141 		 */
1142 		if (mask & pr->ps_sigacts->ps_sigignore &&
1143 		    (pr->ps_flags & PS_TRACED) == 0)
1144 			continue;
1145 
1146 		if ((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) {
1147 			/*
1148 			 * If traced, always stop, and stay
1149 			 * stopped until released by the debugger.
1150 			 */
1151 			p->p_xstat = signum;
1152 
1153 			if (dolock)
1154 				KERNEL_LOCK();
1155 			single_thread_set(p, SINGLE_PTRACE, 0);
1156 			if (dolock)
1157 				KERNEL_UNLOCK();
1158 
1159 			if (dolock)
1160 				SCHED_LOCK(s);
1161 			proc_stop(p, 1);
1162 			if (dolock)
1163 				SCHED_UNLOCK(s);
1164 
1165 			if (dolock)
1166 				KERNEL_LOCK();
1167 			single_thread_clear(p, 0);
1168 			if (dolock)
1169 				KERNEL_UNLOCK();
1170 
1171 			/*
1172 			 * If we are no longer being traced, or the parent
1173 			 * didn't give us a signal, look for more signals.
1174 			 */
1175 			if ((pr->ps_flags & PS_TRACED) == 0 || p->p_xstat == 0)
1176 				continue;
1177 
1178 			/*
1179 			 * If the new signal is being masked, look for other
1180 			 * signals.
1181 			 */
1182 			signum = p->p_xstat;
1183 			mask = sigmask(signum);
1184 			if ((p->p_sigmask & mask) != 0)
1185 				continue;
1186 
1187 			/* take the signal! */
1188 			atomic_clearbits_int(&p->p_siglist, mask);
1189 		}
1190 
1191 		prop = sigprop[signum];
1192 
1193 		/*
1194 		 * Decide whether the signal should be returned.
1195 		 * Return the signal's number, or fall through
1196 		 * to clear it from the pending mask.
1197 		 */
1198 		switch ((long)pr->ps_sigacts->ps_sigact[signum]) {
1199 		case (long)SIG_DFL:
1200 			/*
1201 			 * Don't take default actions on system processes.
1202 			 */
1203 			if (pr->ps_pid <= 1) {
1204 #ifdef DIAGNOSTIC
1205 				/*
1206 				 * Are you sure you want to ignore SIGSEGV
1207 				 * in init? XXX
1208 				 */
1209 				printf("Process (pid %d) got signal"
1210 				    " %d\n", pr->ps_pid, signum);
1211 #endif
1212 				break;		/* == ignore */
1213 			}
1214 			/*
1215 			 * If there is a pending stop signal to process
1216 			 * with default action, stop here,
1217 			 * then clear the signal.  However,
1218 			 * if process is member of an orphaned
1219 			 * process group, ignore tty stop signals.
1220 			 */
1221 			if (prop & SA_STOP) {
1222 				if (pr->ps_flags & PS_TRACED ||
1223 		    		    (pr->ps_pgrp->pg_jobc == 0 &&
1224 				    prop & SA_TTYSTOP))
1225 					break;	/* == ignore */
1226 				p->p_xstat = signum;
1227 				if (dolock)
1228 					SCHED_LOCK(s);
1229 				proc_stop(p, 1);
1230 				if (dolock)
1231 					SCHED_UNLOCK(s);
1232 				break;
1233 			} else if (prop & SA_IGNORE) {
1234 				/*
1235 				 * Except for SIGCONT, shouldn't get here.
1236 				 * Default action is to ignore; drop it.
1237 				 */
1238 				break;		/* == ignore */
1239 			} else
1240 				goto keep;
1241 			/*NOTREACHED*/
1242 		case (long)SIG_IGN:
1243 			/*
1244 			 * Masking above should prevent us ever trying
1245 			 * to take action on an ignored signal other
1246 			 * than SIGCONT, unless process is traced.
1247 			 */
1248 			if ((prop & SA_CONT) == 0 &&
1249 			    (pr->ps_flags & PS_TRACED) == 0)
1250 				printf("issignal\n");
1251 			break;		/* == ignore */
1252 		default:
1253 			/*
1254 			 * This signal has an action, let
1255 			 * postsig() process it.
1256 			 */
1257 			goto keep;
1258 		}
1259 	}
1260 	/* NOTREACHED */
1261 
1262 keep:
1263 	atomic_setbits_int(&p->p_siglist, mask); /*leave the signal for later */
1264 	return (signum);
1265 }
1266 
1267 /*
1268  * Put the argument process into the stopped state and notify the parent
1269  * via wakeup.  Signals are handled elsewhere.  The process must not be
1270  * on the run queue.
1271  */
1272 void
1273 proc_stop(struct proc *p, int sw)
1274 {
1275 	struct process *pr = p->p_p;
1276 	extern void *softclock_si;
1277 
1278 #ifdef MULTIPROCESSOR
1279 	SCHED_ASSERT_LOCKED();
1280 #endif
1281 
1282 	p->p_stat = SSTOP;
1283 	atomic_clearbits_int(&pr->ps_flags, PS_WAITED);
1284 	atomic_setbits_int(&pr->ps_flags, PS_STOPPED);
1285 	atomic_setbits_int(&p->p_flag, P_SUSPSIG);
1286 	if (!timeout_pending(&proc_stop_to)) {
1287 		timeout_add(&proc_stop_to, 0);
1288 		/*
1289 		 * We need this soft interrupt to be handled fast.
1290 		 * Extra calls to softclock don't hurt.
1291 		 */
1292                 softintr_schedule(softclock_si);
1293 	}
1294 	if (sw)
1295 		mi_switch();
1296 }
1297 
1298 /*
1299  * Called from a timeout to send signals to the parents of stopped processes.
1300  * We can't do this in proc_stop because it's called with nasty locks held
1301  * and we would need recursive scheduler lock to deal with that.
1302  */
1303 void
1304 proc_stop_sweep(void *v)
1305 {
1306 	struct process *pr;
1307 
1308 	LIST_FOREACH(pr, &allprocess, ps_list) {
1309 		if ((pr->ps_flags & PS_STOPPED) == 0)
1310 			continue;
1311 		atomic_clearbits_int(&pr->ps_flags, PS_STOPPED);
1312 
1313 		if ((pr->ps_pptr->ps_sigacts->ps_flags & SAS_NOCLDSTOP) == 0)
1314 			prsignal(pr->ps_pptr, SIGCHLD);
1315 		wakeup(pr->ps_pptr);
1316 	}
1317 }
1318 
1319 /*
1320  * Take the action for the specified signal
1321  * from the current set of pending signals.
1322  */
1323 void
1324 postsig(int signum)
1325 {
1326 	struct proc *p = curproc;
1327 	struct process *pr = p->p_p;
1328 	struct sigacts *ps = pr->ps_sigacts;
1329 	sig_t action;
1330 	u_long trapno;
1331 	int mask, returnmask;
1332 	union sigval sigval;
1333 	int s, code;
1334 
1335 #ifdef DIAGNOSTIC
1336 	if (signum == 0)
1337 		panic("postsig");
1338 #endif
1339 
1340 	KERNEL_LOCK();
1341 
1342 	mask = sigmask(signum);
1343 	atomic_clearbits_int(&p->p_siglist, mask);
1344 	action = ps->ps_sigact[signum];
1345 	sigval.sival_ptr = 0;
1346 
1347 	if (p->p_sisig != signum) {
1348 		trapno = 0;
1349 		code = SI_USER;
1350 		sigval.sival_ptr = 0;
1351 	} else {
1352 		trapno = p->p_sitrapno;
1353 		code = p->p_sicode;
1354 		sigval = p->p_sigval;
1355 	}
1356 
1357 #ifdef KTRACE
1358 	if (KTRPOINT(p, KTR_PSIG)) {
1359 		siginfo_t si;
1360 
1361 		initsiginfo(&si, signum, trapno, code, sigval);
1362 		ktrpsig(p, signum, action, p->p_flag & P_SIGSUSPEND ?
1363 		    p->p_oldmask : p->p_sigmask, code, &si);
1364 	}
1365 #endif
1366 	if (action == SIG_DFL) {
1367 		/*
1368 		 * Default action, where the default is to kill
1369 		 * the process.  (Other cases were ignored above.)
1370 		 */
1371 		sigexit(p, signum);
1372 		/* NOTREACHED */
1373 	} else {
1374 		/*
1375 		 * If we get here, the signal must be caught.
1376 		 */
1377 #ifdef DIAGNOSTIC
1378 		if (action == SIG_IGN || (p->p_sigmask & mask))
1379 			panic("postsig action");
1380 #endif
1381 		/*
1382 		 * Set the new mask value and also defer further
1383 		 * occurrences of this signal.
1384 		 *
1385 		 * Special case: user has done a sigpause.  Here the
1386 		 * current mask is not of interest, but rather the
1387 		 * mask from before the sigpause is what we want
1388 		 * restored after the signal processing is completed.
1389 		 */
1390 #ifdef MULTIPROCESSOR
1391 		s = splsched();
1392 #else
1393 		s = splhigh();
1394 #endif
1395 		if (p->p_flag & P_SIGSUSPEND) {
1396 			atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1397 			returnmask = p->p_oldmask;
1398 		} else {
1399 			returnmask = p->p_sigmask;
1400 		}
1401 		atomic_setbits_int(&p->p_sigmask, ps->ps_catchmask[signum]);
1402 		if ((ps->ps_sigreset & mask) != 0) {
1403 			ps->ps_sigcatch &= ~mask;
1404 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1405 				ps->ps_sigignore |= mask;
1406 			ps->ps_sigact[signum] = SIG_DFL;
1407 		}
1408 		splx(s);
1409 		p->p_ru.ru_nsignals++;
1410 		if (p->p_sisig == signum) {
1411 			p->p_sisig = 0;
1412 			p->p_sitrapno = 0;
1413 			p->p_sicode = SI_USER;
1414 			p->p_sigval.sival_ptr = NULL;
1415 		}
1416 
1417 		(*pr->ps_emul->e_sendsig)(action, signum, returnmask, trapno,
1418 		    code, sigval);
1419 	}
1420 
1421 	KERNEL_UNLOCK();
1422 }
1423 
1424 /*
1425  * Force the current process to exit with the specified signal, dumping core
1426  * if appropriate.  We bypass the normal tests for masked and caught signals,
1427  * allowing unrecoverable failures to terminate the process without changing
1428  * signal state.  Mark the accounting record with the signal termination.
1429  * If dumping core, save the signal number for the debugger.  Calls exit and
1430  * does not return.
1431  */
1432 void
1433 sigexit(struct proc *p, int signum)
1434 {
1435 	/* Mark process as going away */
1436 	atomic_setbits_int(&p->p_flag, P_WEXIT);
1437 
1438 	p->p_p->ps_acflag |= AXSIG;
1439 	if (sigprop[signum] & SA_CORE) {
1440 		p->p_sisig = signum;
1441 
1442 		/* if there are other threads, pause them */
1443 		if (P_HASSIBLING(p))
1444 			single_thread_set(p, SINGLE_SUSPEND, 0);
1445 
1446 		if (coredump(p) == 0)
1447 			signum |= WCOREFLAG;
1448 	}
1449 	exit1(p, W_EXITCODE(0, signum), EXIT_NORMAL);
1450 	/* NOTREACHED */
1451 }
1452 
1453 int nosuidcoredump = 1;
1454 
1455 struct coredump_iostate {
1456 	struct proc *io_proc;
1457 	struct vnode *io_vp;
1458 	struct ucred *io_cred;
1459 	off_t io_offset;
1460 };
1461 
1462 /*
1463  * Dump core, into a file named "progname.core", unless the process was
1464  * setuid/setgid.
1465  */
1466 int
1467 coredump(struct proc *p)
1468 {
1469 #ifdef SMALL_KERNEL
1470 	return EPERM;
1471 #else
1472 	struct process *pr = p->p_p;
1473 	struct vnode *vp;
1474 	struct ucred *cred = p->p_ucred;
1475 	struct vmspace *vm = p->p_vmspace;
1476 	struct nameidata nd;
1477 	struct vattr vattr;
1478 	struct coredump_iostate	io;
1479 	int error, len, incrash = 0;
1480 	char name[MAXPATHLEN];
1481 	const char *dir = "/var/crash";
1482 
1483 	if (pr->ps_emul->e_coredump == NULL)
1484 		return (EINVAL);
1485 
1486 	pr->ps_flags |= PS_COREDUMP;
1487 
1488 	/*
1489 	 * If the process has inconsistant uids, nosuidcoredump
1490 	 * determines coredump placement policy.
1491 	 */
1492 	if (((pr->ps_flags & PS_SUGID) && (error = suser(p, 0))) ||
1493 	   ((pr->ps_flags & PS_SUGID) && nosuidcoredump)) {
1494 		if (nosuidcoredump == 3 || nosuidcoredump == 2)
1495 			incrash = 1;
1496 		else
1497 			return (EPERM);
1498 	}
1499 
1500 	/* Don't dump if will exceed file size limit. */
1501 	if (USPACE + ptoa(vm->vm_dsize + vm->vm_ssize) >=
1502 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
1503 		return (EFBIG);
1504 
1505 	if (incrash && nosuidcoredump == 3) {
1506 		/*
1507 		 * If the program directory does not exist, dumps of
1508 		 * that core will silently fail.
1509 		 */
1510 		len = snprintf(name, sizeof(name), "%s/%s/%u.core",
1511 		    dir, pr->ps_comm, pr->ps_pid);
1512 	} else if (incrash && nosuidcoredump == 2)
1513 		len = snprintf(name, sizeof(name), "%s/%s.core",
1514 		    dir, pr->ps_comm);
1515 	else
1516 		len = snprintf(name, sizeof(name), "%s.core", pr->ps_comm);
1517 	if (len >= sizeof(name))
1518 		return (EACCES);
1519 
1520 	/*
1521 	 * Control the UID used to write out.  The normal case uses
1522 	 * the real UID.  If the sugid case is going to write into the
1523 	 * controlled directory, we do so as root.
1524 	 */
1525 	if (incrash == 0) {
1526 		cred = crdup(cred);
1527 		cred->cr_uid = cred->cr_ruid;
1528 		cred->cr_gid = cred->cr_rgid;
1529 	} else {
1530 		if (p->p_fd->fd_rdir) {
1531 			vrele(p->p_fd->fd_rdir);
1532 			p->p_fd->fd_rdir = NULL;
1533 		}
1534 		p->p_ucred = crdup(p->p_ucred);
1535 		crfree(cred);
1536 		cred = p->p_ucred;
1537 		crhold(cred);
1538 		cred->cr_uid = 0;
1539 		cred->cr_gid = 0;
1540 	}
1541 
1542 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
1543 
1544 	error = vn_open(&nd, O_CREAT | FWRITE | O_NOFOLLOW, S_IRUSR | S_IWUSR);
1545 
1546 	if (error)
1547 		goto out;
1548 
1549 	/*
1550 	 * Don't dump to non-regular files, files with links, or files
1551 	 * owned by someone else.
1552 	 */
1553 	vp = nd.ni_vp;
1554 	if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) {
1555 		VOP_UNLOCK(vp, p);
1556 		vn_close(vp, FWRITE, cred, p);
1557 		goto out;
1558 	}
1559 	if (vp->v_type != VREG || vattr.va_nlink != 1 ||
1560 	    vattr.va_mode & ((VREAD | VWRITE) >> 3 | (VREAD | VWRITE) >> 6) ||
1561 	    vattr.va_uid != cred->cr_uid) {
1562 		error = EACCES;
1563 		VOP_UNLOCK(vp, p);
1564 		vn_close(vp, FWRITE, cred, p);
1565 		goto out;
1566 	}
1567 	VATTR_NULL(&vattr);
1568 	vattr.va_size = 0;
1569 	VOP_SETATTR(vp, &vattr, cred, p);
1570 	pr->ps_acflag |= ACORE;
1571 
1572 	io.io_proc = p;
1573 	io.io_vp = vp;
1574 	io.io_cred = cred;
1575 	io.io_offset = 0;
1576 	VOP_UNLOCK(vp, p);
1577 	vref(vp);
1578 	error = vn_close(vp, FWRITE, cred, p);
1579 	if (error == 0)
1580 		error = (*pr->ps_emul->e_coredump)(p, &io);
1581 	vrele(vp);
1582 out:
1583 	crfree(cred);
1584 	return (error);
1585 #endif
1586 }
1587 
1588 #ifndef SMALL_KERNEL
1589 int
1590 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
1591 {
1592 	struct coredump_iostate *io = cookie;
1593 	off_t coffset = 0;
1594 	size_t csize;
1595 	int chunk, error;
1596 
1597 	csize = len;
1598 	do {
1599 		if (io->io_proc->p_siglist & sigmask(SIGKILL))
1600 			return (EINTR);
1601 
1602 		/* Rest of the loop sleeps with lock held, so... */
1603 		yield();
1604 
1605 		chunk = MIN(csize, MAXPHYS);
1606 		error = vn_rdwr(UIO_WRITE, io->io_vp,
1607 		    (caddr_t)data + coffset, chunk,
1608 		    io->io_offset + coffset, segflg,
1609 		    IO_UNIT, io->io_cred, NULL, io->io_proc);
1610 		if (error) {
1611 			struct process *pr = io->io_proc->p_p;
1612 			if (error == ENOSPC)
1613 				log(LOG_ERR, "coredump of %s(%d) failed, filesystem full\n",
1614 				    pr->ps_comm, pr->ps_pid);
1615 			else
1616 				log(LOG_ERR, "coredump of %s(%d), write failed: errno %d\n",
1617 				    pr->ps_comm, pr->ps_pid, error);
1618 			return (error);
1619 		}
1620 
1621 		coffset += chunk;
1622 		csize -= chunk;
1623 	} while (csize > 0);
1624 
1625 	io->io_offset += len;
1626 	return (0);
1627 }
1628 
1629 void
1630 coredump_unmap(void *cookie, vaddr_t start, vaddr_t end)
1631 {
1632 	struct coredump_iostate *io = cookie;
1633 
1634 	uvm_unmap(&io->io_proc->p_vmspace->vm_map, start, end);
1635 }
1636 
1637 #endif	/* !SMALL_KERNEL */
1638 
1639 /*
1640  * Nonexistent system call-- signal process (may want to handle it).
1641  * Flag error in case process won't see signal immediately (blocked or ignored).
1642  */
1643 int
1644 sys_nosys(struct proc *p, void *v, register_t *retval)
1645 {
1646 
1647 	ptsignal(p, SIGSYS, STHREAD);
1648 	return (ENOSYS);
1649 }
1650 
1651 int
1652 sys___thrsigdivert(struct proc *p, void *v, register_t *retval)
1653 {
1654 	static int sigwaitsleep;
1655 	struct sys___thrsigdivert_args /* {
1656 		syscallarg(sigset_t) sigmask;
1657 		syscallarg(siginfo_t *) info;
1658 		syscallarg(const struct timespec *) timeout;
1659 	} */ *uap = v;
1660 	struct process *pr = p->p_p;
1661 	sigset_t *m;
1662 	sigset_t mask = SCARG(uap, sigmask) &~ sigcantmask;
1663 	siginfo_t si;
1664 	uint64_t to_ticks = 0;
1665 	int timeinvalid = 0;
1666 	int error = 0;
1667 
1668 	memset(&si, 0, sizeof(si));
1669 
1670 	if (SCARG(uap, timeout) != NULL) {
1671 		struct timespec ts;
1672 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))) != 0)
1673 			return (error);
1674 #ifdef KTRACE
1675 		if (KTRPOINT(p, KTR_STRUCT))
1676 			ktrreltimespec(p, &ts);
1677 #endif
1678 		if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
1679 			timeinvalid = 1;
1680 		else {
1681 			to_ticks = (uint64_t)hz * ts.tv_sec +
1682 			    ts.tv_nsec / (tick * 1000);
1683 			if (to_ticks > INT_MAX)
1684 				to_ticks = INT_MAX;
1685 			if (to_ticks == 0 && ts.tv_nsec)
1686 				to_ticks = 1;
1687 		}
1688 	}
1689 
1690 	dosigsuspend(p, p->p_sigmask &~ mask);
1691 	for (;;) {
1692 		si.si_signo = CURSIG(p);
1693 		if (si.si_signo != 0) {
1694 			sigset_t smask = sigmask(si.si_signo);
1695 			if (smask & mask) {
1696 				if (p->p_siglist & smask)
1697 					m = &p->p_siglist;
1698 				else if (pr->ps_mainproc->p_siglist & smask)
1699 					m = &pr->ps_mainproc->p_siglist;
1700 				else {
1701 					/* signal got eaten by someone else? */
1702 					continue;
1703 				}
1704 				atomic_clearbits_int(m, smask);
1705 				error = 0;
1706 				break;
1707 			}
1708 		}
1709 
1710 		/* per-POSIX, delay this error until after the above */
1711 		if (timeinvalid)
1712 			error = EINVAL;
1713 
1714 		if (SCARG(uap, timeout) != NULL && to_ticks == 0)
1715 			error = EAGAIN;
1716 
1717 		if (error != 0)
1718 			break;
1719 
1720 		error = tsleep(&sigwaitsleep, PPAUSE|PCATCH, "sigwait",
1721 		    (int)to_ticks);
1722 	}
1723 
1724 	if (error == 0) {
1725 		*retval = si.si_signo;
1726 		if (SCARG(uap, info) != NULL)
1727 			error = copyout(&si, SCARG(uap, info), sizeof(si));
1728 	} else if (error == ERESTART && SCARG(uap, timeout) != NULL) {
1729 		/*
1730 		 * Restarting is wrong if there's a timeout, as it'll be
1731 		 * for the same interval again
1732 		 */
1733 		error = EINTR;
1734 	}
1735 
1736 	return (error);
1737 }
1738 
1739 void
1740 initsiginfo(siginfo_t *si, int sig, u_long trapno, int code, union sigval val)
1741 {
1742 	memset(si, 0, sizeof(*si));
1743 
1744 	si->si_signo = sig;
1745 	si->si_code = code;
1746 	if (code == SI_USER) {
1747 		si->si_value = val;
1748 	} else {
1749 		switch (sig) {
1750 		case SIGSEGV:
1751 		case SIGILL:
1752 		case SIGBUS:
1753 		case SIGFPE:
1754 			si->si_addr = val.sival_ptr;
1755 			si->si_trapno = trapno;
1756 			break;
1757 		case SIGXFSZ:
1758 			break;
1759 		}
1760 	}
1761 }
1762 
1763 int
1764 filt_sigattach(struct knote *kn)
1765 {
1766 	struct process *pr = curproc->p_p;
1767 
1768 	if (kn->kn_id >= NSIG)
1769 		return EINVAL;
1770 
1771 	kn->kn_ptr.p_process = pr;
1772 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
1773 
1774 	/* XXX lock the proc here while adding to the list? */
1775 	SLIST_INSERT_HEAD(&pr->ps_klist, kn, kn_selnext);
1776 
1777 	return (0);
1778 }
1779 
1780 void
1781 filt_sigdetach(struct knote *kn)
1782 {
1783 	struct process *pr = kn->kn_ptr.p_process;
1784 
1785 	SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
1786 }
1787 
1788 /*
1789  * signal knotes are shared with proc knotes, so we apply a mask to
1790  * the hint in order to differentiate them from process hints.  This
1791  * could be avoided by using a signal-specific knote list, but probably
1792  * isn't worth the trouble.
1793  */
1794 int
1795 filt_signal(struct knote *kn, long hint)
1796 {
1797 
1798 	if (hint & NOTE_SIGNAL) {
1799 		hint &= ~NOTE_SIGNAL;
1800 
1801 		if (kn->kn_id == hint)
1802 			kn->kn_data++;
1803 	}
1804 	return (kn->kn_data != 0);
1805 }
1806 
1807 void
1808 userret(struct proc *p)
1809 {
1810 	int sig;
1811 
1812 	/* send SIGPROF or SIGVTALRM if their timers interrupted this thread */
1813 	if (p->p_flag & P_PROFPEND) {
1814 		atomic_clearbits_int(&p->p_flag, P_PROFPEND);
1815 		KERNEL_LOCK();
1816 		psignal(p, SIGPROF);
1817 		KERNEL_UNLOCK();
1818 	}
1819 	if (p->p_flag & P_ALRMPEND) {
1820 		atomic_clearbits_int(&p->p_flag, P_ALRMPEND);
1821 		KERNEL_LOCK();
1822 		psignal(p, SIGVTALRM);
1823 		KERNEL_UNLOCK();
1824 	}
1825 
1826 	while ((sig = CURSIG(p)) != 0)
1827 		postsig(sig);
1828 
1829 	/*
1830 	 * If P_SIGSUSPEND is still set here, then we still need to restore
1831 	 * the original sigmask before returning to userspace.  Also, this
1832 	 * might unmask some pending signals, so we need to check a second
1833 	 * time for signals to post.
1834 	 */
1835 	if (p->p_flag & P_SIGSUSPEND) {
1836 		atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1837 		p->p_sigmask = p->p_oldmask;
1838 
1839 		while ((sig = CURSIG(p)) != 0)
1840 			postsig(sig);
1841 	}
1842 
1843 	if (p->p_flag & P_SUSPSINGLE) {
1844 		KERNEL_LOCK();
1845 		single_thread_check(p, 0);
1846 		KERNEL_UNLOCK();
1847 	}
1848 
1849 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_priority = p->p_usrpri;
1850 }
1851 
1852 int
1853 single_thread_check(struct proc *p, int deep)
1854 {
1855 	struct process *pr = p->p_p;
1856 
1857 	if (pr->ps_single != NULL && pr->ps_single != p) {
1858 		do {
1859 			int s;
1860 
1861 			/* if we're in deep, we need to unwind to the edge */
1862 			if (deep) {
1863 				if (pr->ps_flags & PS_SINGLEUNWIND)
1864 					return (ERESTART);
1865 				if (pr->ps_flags & PS_SINGLEEXIT)
1866 					return (EINTR);
1867 			}
1868 
1869 			if (--pr->ps_singlecount == 0)
1870 				wakeup(&pr->ps_singlecount);
1871 			if (pr->ps_flags & PS_SINGLEEXIT)
1872 				exit1(p, 0, EXIT_THREAD_NOCHECK);
1873 
1874 			/* not exiting and don't need to unwind, so suspend */
1875 			SCHED_LOCK(s);
1876 			p->p_stat = SSTOP;
1877 			mi_switch();
1878 			SCHED_UNLOCK(s);
1879 		} while (pr->ps_single != NULL);
1880 	}
1881 
1882 	return (0);
1883 }
1884 
1885 /*
1886  * Stop other threads in the process.  The mode controls how and
1887  * where the other threads should stop:
1888  *  - SINGLE_SUSPEND: stop wherever they are, will later either be told to exit
1889  *    (by setting to SINGLE_EXIT) or be released (via single_thread_clear())
1890  *  - SINGLE_PTRACE: stop wherever they are, will wait for them to stop
1891  *    later (via single_thread_wait()) and released as with SINGLE_SUSPEND
1892  *  - SINGLE_UNWIND: just unwind to kernel boundary, will be told to exit
1893  *    or released as with SINGLE_SUSPEND
1894  *  - SINGLE_EXIT: unwind to kernel boundary and exit
1895  */
1896 int
1897 single_thread_set(struct proc *p, enum single_thread_mode mode, int deep)
1898 {
1899 	struct process *pr = p->p_p;
1900 	struct proc *q;
1901 	int error;
1902 
1903 	KERNEL_ASSERT_LOCKED();
1904 
1905 	if ((error = single_thread_check(p, deep)))
1906 		return error;
1907 
1908 	switch (mode) {
1909 	case SINGLE_SUSPEND:
1910 	case SINGLE_PTRACE:
1911 		break;
1912 	case SINGLE_UNWIND:
1913 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
1914 		break;
1915 	case SINGLE_EXIT:
1916 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEEXIT);
1917 		atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
1918 		break;
1919 #ifdef DIAGNOSTIC
1920 	default:
1921 		panic("single_thread_mode = %d", mode);
1922 #endif
1923 	}
1924 	pr->ps_single = p;
1925 	pr->ps_singlecount = 0;
1926 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
1927 		int s;
1928 
1929 		if (q == p)
1930 			continue;
1931 		if (q->p_flag & P_WEXIT) {
1932 			if (mode == SINGLE_EXIT) {
1933 				SCHED_LOCK(s);
1934 				if (q->p_stat == SSTOP) {
1935 					setrunnable(q);
1936 					pr->ps_singlecount++;
1937 				}
1938 				SCHED_UNLOCK(s);
1939 			}
1940 			continue;
1941 		}
1942 		SCHED_LOCK(s);
1943 		atomic_setbits_int(&q->p_flag, P_SUSPSINGLE);
1944 		switch (q->p_stat) {
1945 		case SIDL:
1946 		case SRUN:
1947 			pr->ps_singlecount++;
1948 			break;
1949 		case SSLEEP:
1950 			/* if it's not interruptible, then just have to wait */
1951 			if (q->p_flag & P_SINTR) {
1952 				/* merely need to suspend?  just stop it */
1953 				if (mode == SINGLE_SUSPEND ||
1954 				    mode == SINGLE_PTRACE) {
1955 					q->p_stat = SSTOP;
1956 					break;
1957 				}
1958 				/* need to unwind or exit, so wake it */
1959 				setrunnable(q);
1960 			}
1961 			pr->ps_singlecount++;
1962 			break;
1963 		case SSTOP:
1964 			if (mode == SINGLE_EXIT) {
1965 				setrunnable(q);
1966 				pr->ps_singlecount++;
1967 			}
1968 			break;
1969 		case SDEAD:
1970 			break;
1971 		case SONPROC:
1972 			pr->ps_singlecount++;
1973 			signotify(q);
1974 			break;
1975 		}
1976 		SCHED_UNLOCK(s);
1977 	}
1978 
1979 	if (mode != SINGLE_PTRACE)
1980 		single_thread_wait(pr);
1981 
1982 	return 0;
1983 }
1984 
1985 void
1986 single_thread_wait(struct process *pr)
1987 {
1988 	/* wait until they're all suspended */
1989 	while (pr->ps_singlecount > 0)
1990 		tsleep(&pr->ps_singlecount, PUSER, "suspend", 0);
1991 }
1992 
1993 void
1994 single_thread_clear(struct proc *p, int flag)
1995 {
1996 	struct process *pr = p->p_p;
1997 	struct proc *q;
1998 
1999 	KASSERT(pr->ps_single == p);
2000 	KERNEL_ASSERT_LOCKED();
2001 
2002 	pr->ps_single = NULL;
2003 	atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND | PS_SINGLEEXIT);
2004 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2005 		int s;
2006 
2007 		if (q == p || (q->p_flag & P_SUSPSINGLE) == 0)
2008 			continue;
2009 		atomic_clearbits_int(&q->p_flag, P_SUSPSINGLE);
2010 
2011 		/*
2012 		 * if the thread was only stopped for single threading
2013 		 * then clearing that either makes it runnable or puts
2014 		 * it back into some sleep queue
2015 		 */
2016 		SCHED_LOCK(s);
2017 		if (q->p_stat == SSTOP && (q->p_flag & flag) == 0) {
2018 			if (q->p_wchan == 0)
2019 				setrunnable(q);
2020 			else
2021 				q->p_stat = SSLEEP;
2022 		}
2023 		SCHED_UNLOCK(s);
2024 	}
2025 }
2026