xref: /openbsd-src/sys/kern/kern_sig.c (revision d4741794dd2f512d997014f8bd85fbb24d935059)
1 /*	$OpenBSD: kern_sig.c,v 1.206 2016/10/05 02:31:52 guenther Exp $	*/
2 /*	$NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Theo de Raadt. All rights reserved.
6  * Copyright (c) 1982, 1986, 1989, 1991, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
39  */
40 
41 #define	SIGPROP		/* include signal properties table */
42 #include <sys/param.h>
43 #include <sys/signalvar.h>
44 #include <sys/resourcevar.h>
45 #include <sys/queue.h>
46 #include <sys/namei.h>
47 #include <sys/vnode.h>
48 #include <sys/event.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/acct.h>
52 #include <sys/file.h>
53 #include <sys/filedesc.h>
54 #include <sys/kernel.h>
55 #include <sys/wait.h>
56 #include <sys/ktrace.h>
57 #include <sys/stat.h>
58 #include <sys/core.h>
59 #include <sys/malloc.h>
60 #include <sys/pool.h>
61 #include <sys/ptrace.h>
62 #include <sys/sched.h>
63 #include <sys/user.h>
64 #include <sys/syslog.h>
65 #include <sys/pledge.h>
66 
67 #include <sys/mount.h>
68 #include <sys/syscallargs.h>
69 
70 #include <uvm/uvm_extern.h>
71 
72 #ifdef  __HAVE_MD_TCB
73 # include <machine/tcb.h>
74 #endif
75 
76 int	filt_sigattach(struct knote *kn);
77 void	filt_sigdetach(struct knote *kn);
78 int	filt_signal(struct knote *kn, long hint);
79 
80 struct filterops sig_filtops =
81 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
82 
83 void proc_stop(struct proc *p, int);
84 void proc_stop_sweep(void *);
85 struct timeout proc_stop_to;
86 
87 int cansignal(struct proc *, struct process *, int);
88 
89 struct pool sigacts_pool;	/* memory pool for sigacts structures */
90 
91 /*
92  * Can thread p, send the signal signum to process qr?
93  */
94 int
95 cansignal(struct proc *p, struct process *qr, int signum)
96 {
97 	struct process *pr = p->p_p;
98 	struct ucred *uc = p->p_ucred;
99 	struct ucred *quc = qr->ps_ucred;
100 
101 	if (uc->cr_uid == 0)
102 		return (1);		/* root can always signal */
103 
104 	if (pr == qr)
105 		return (1);		/* process can always signal itself */
106 
107 	/* optimization: if the same creds then the tests below will pass */
108 	if (uc == quc)
109 		return (1);
110 
111 	if (signum == SIGCONT && qr->ps_session == pr->ps_session)
112 		return (1);		/* SIGCONT in session */
113 
114 	/*
115 	 * Using kill(), only certain signals can be sent to setugid
116 	 * child processes
117 	 */
118 	if (qr->ps_flags & PS_SUGID) {
119 		switch (signum) {
120 		case 0:
121 		case SIGKILL:
122 		case SIGINT:
123 		case SIGTERM:
124 		case SIGALRM:
125 		case SIGSTOP:
126 		case SIGTTIN:
127 		case SIGTTOU:
128 		case SIGTSTP:
129 		case SIGHUP:
130 		case SIGUSR1:
131 		case SIGUSR2:
132 			if (uc->cr_ruid == quc->cr_ruid ||
133 			    uc->cr_uid == quc->cr_ruid)
134 				return (1);
135 		}
136 		return (0);
137 	}
138 
139 	if (uc->cr_ruid == quc->cr_ruid ||
140 	    uc->cr_ruid == quc->cr_svuid ||
141 	    uc->cr_uid == quc->cr_ruid ||
142 	    uc->cr_uid == quc->cr_svuid)
143 		return (1);
144 	return (0);
145 }
146 
147 /*
148  * Initialize signal-related data structures.
149  */
150 void
151 signal_init(void)
152 {
153 	timeout_set(&proc_stop_to, proc_stop_sweep, NULL);
154 
155 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, IPL_NONE,
156 	    PR_WAITOK, "sigapl", NULL);
157 }
158 
159 /*
160  * Create an initial sigacts structure, using the same signal state
161  * as p.
162  */
163 struct sigacts *
164 sigactsinit(struct process *pr)
165 {
166 	struct sigacts *ps;
167 
168 	ps = pool_get(&sigacts_pool, PR_WAITOK);
169 	memcpy(ps, pr->ps_sigacts, sizeof(struct sigacts));
170 	ps->ps_refcnt = 1;
171 	return (ps);
172 }
173 
174 /*
175  * Share a sigacts structure.
176  */
177 struct sigacts *
178 sigactsshare(struct process *pr)
179 {
180 	struct sigacts *ps = pr->ps_sigacts;
181 
182 	ps->ps_refcnt++;
183 	return ps;
184 }
185 
186 /*
187  * Initialize a new sigaltstack structure.
188  */
189 void
190 sigstkinit(struct sigaltstack *ss)
191 {
192 	ss->ss_flags = SS_DISABLE;
193 	ss->ss_size = 0;
194 	ss->ss_sp = 0;
195 }
196 
197 /*
198  * Make this process not share its sigacts, maintaining all
199  * signal state.
200  */
201 void
202 sigactsunshare(struct process *pr)
203 {
204 	struct sigacts *newps;
205 
206 	if (pr->ps_sigacts->ps_refcnt == 1)
207 		return;
208 
209 	newps = sigactsinit(pr);
210 	sigactsfree(pr);
211 	pr->ps_sigacts = newps;
212 }
213 
214 /*
215  * Release a sigacts structure.
216  */
217 void
218 sigactsfree(struct process *pr)
219 {
220 	struct sigacts *ps = pr->ps_sigacts;
221 
222 	if (--ps->ps_refcnt > 0)
223 		return;
224 
225 	pr->ps_sigacts = NULL;
226 
227 	pool_put(&sigacts_pool, ps);
228 }
229 
230 int
231 sys_sigaction(struct proc *p, void *v, register_t *retval)
232 {
233 	struct sys_sigaction_args /* {
234 		syscallarg(int) signum;
235 		syscallarg(const struct sigaction *) nsa;
236 		syscallarg(struct sigaction *) osa;
237 	} */ *uap = v;
238 	struct sigaction vec;
239 #ifdef KTRACE
240 	struct sigaction ovec;
241 #endif
242 	struct sigaction *sa;
243 	const struct sigaction *nsa;
244 	struct sigaction *osa;
245 	struct sigacts *ps = p->p_p->ps_sigacts;
246 	int signum;
247 	int bit, error;
248 
249 	signum = SCARG(uap, signum);
250 	nsa = SCARG(uap, nsa);
251 	osa = SCARG(uap, osa);
252 
253 	if (signum <= 0 || signum >= NSIG ||
254 	    (nsa && (signum == SIGKILL || signum == SIGSTOP)))
255 		return (EINVAL);
256 	sa = &vec;
257 	if (osa) {
258 		sa->sa_handler = ps->ps_sigact[signum];
259 		sa->sa_mask = ps->ps_catchmask[signum];
260 		bit = sigmask(signum);
261 		sa->sa_flags = 0;
262 		if ((ps->ps_sigonstack & bit) != 0)
263 			sa->sa_flags |= SA_ONSTACK;
264 		if ((ps->ps_sigintr & bit) == 0)
265 			sa->sa_flags |= SA_RESTART;
266 		if ((ps->ps_sigreset & bit) != 0)
267 			sa->sa_flags |= SA_RESETHAND;
268 		if ((ps->ps_siginfo & bit) != 0)
269 			sa->sa_flags |= SA_SIGINFO;
270 		if (signum == SIGCHLD) {
271 			if ((ps->ps_flags & SAS_NOCLDSTOP) != 0)
272 				sa->sa_flags |= SA_NOCLDSTOP;
273 			if ((ps->ps_flags & SAS_NOCLDWAIT) != 0)
274 				sa->sa_flags |= SA_NOCLDWAIT;
275 		}
276 		if ((sa->sa_mask & bit) == 0)
277 			sa->sa_flags |= SA_NODEFER;
278 		sa->sa_mask &= ~bit;
279 		error = copyout(sa, osa, sizeof (vec));
280 		if (error)
281 			return (error);
282 #ifdef KTRACE
283 		if (KTRPOINT(p, KTR_STRUCT))
284 			ovec = vec;
285 #endif
286 	}
287 	if (nsa) {
288 		error = copyin(nsa, sa, sizeof (vec));
289 		if (error)
290 			return (error);
291 #ifdef KTRACE
292 		if (KTRPOINT(p, KTR_STRUCT))
293 			ktrsigaction(p, sa);
294 #endif
295 		setsigvec(p, signum, sa);
296 	}
297 #ifdef KTRACE
298 	if (osa && KTRPOINT(p, KTR_STRUCT))
299 		ktrsigaction(p, &ovec);
300 #endif
301 	return (0);
302 }
303 
304 void
305 setsigvec(struct proc *p, int signum, struct sigaction *sa)
306 {
307 	struct sigacts *ps = p->p_p->ps_sigacts;
308 	int bit;
309 	int s;
310 
311 	bit = sigmask(signum);
312 	/*
313 	 * Change setting atomically.
314 	 */
315 	s = splhigh();
316 	ps->ps_sigact[signum] = sa->sa_handler;
317 	if ((sa->sa_flags & SA_NODEFER) == 0)
318 		sa->sa_mask |= sigmask(signum);
319 	ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask;
320 	if (signum == SIGCHLD) {
321 		if (sa->sa_flags & SA_NOCLDSTOP)
322 			atomic_setbits_int(&ps->ps_flags, SAS_NOCLDSTOP);
323 		else
324 			atomic_clearbits_int(&ps->ps_flags, SAS_NOCLDSTOP);
325 		/*
326 		 * If the SA_NOCLDWAIT flag is set or the handler
327 		 * is SIG_IGN we reparent the dying child to PID 1
328 		 * (init) which will reap the zombie.  Because we use
329 		 * init to do our dirty work we never set SAS_NOCLDWAIT
330 		 * for PID 1.
331 		 * XXX exit1 rework means this is unnecessary?
332 		 */
333 		if (initprocess->ps_sigacts != ps &&
334 		    ((sa->sa_flags & SA_NOCLDWAIT) ||
335 		    sa->sa_handler == SIG_IGN))
336 			atomic_setbits_int(&ps->ps_flags, SAS_NOCLDWAIT);
337 		else
338 			atomic_clearbits_int(&ps->ps_flags, SAS_NOCLDWAIT);
339 	}
340 	if ((sa->sa_flags & SA_RESETHAND) != 0)
341 		ps->ps_sigreset |= bit;
342 	else
343 		ps->ps_sigreset &= ~bit;
344 	if ((sa->sa_flags & SA_SIGINFO) != 0)
345 		ps->ps_siginfo |= bit;
346 	else
347 		ps->ps_siginfo &= ~bit;
348 	if ((sa->sa_flags & SA_RESTART) == 0)
349 		ps->ps_sigintr |= bit;
350 	else
351 		ps->ps_sigintr &= ~bit;
352 	if ((sa->sa_flags & SA_ONSTACK) != 0)
353 		ps->ps_sigonstack |= bit;
354 	else
355 		ps->ps_sigonstack &= ~bit;
356 	/*
357 	 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
358 	 * and for signals set to SIG_DFL where the default is to ignore.
359 	 * However, don't put SIGCONT in ps_sigignore,
360 	 * as we have to restart the process.
361 	 */
362 	if (sa->sa_handler == SIG_IGN ||
363 	    (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) {
364 		atomic_clearbits_int(&p->p_siglist, bit);
365 		if (signum != SIGCONT)
366 			ps->ps_sigignore |= bit;	/* easier in psignal */
367 		ps->ps_sigcatch &= ~bit;
368 	} else {
369 		ps->ps_sigignore &= ~bit;
370 		if (sa->sa_handler == SIG_DFL)
371 			ps->ps_sigcatch &= ~bit;
372 		else
373 			ps->ps_sigcatch |= bit;
374 	}
375 	splx(s);
376 }
377 
378 /*
379  * Initialize signal state for process 0;
380  * set to ignore signals that are ignored by default.
381  */
382 void
383 siginit(struct process *pr)
384 {
385 	struct sigacts *ps = pr->ps_sigacts;
386 	int i;
387 
388 	for (i = 0; i < NSIG; i++)
389 		if (sigprop[i] & SA_IGNORE && i != SIGCONT)
390 			ps->ps_sigignore |= sigmask(i);
391 	ps->ps_flags = SAS_NOCLDWAIT | SAS_NOCLDSTOP;
392 }
393 
394 /*
395  * Reset signals for an exec by the specified thread.
396  */
397 void
398 execsigs(struct proc *p)
399 {
400 	struct sigacts *ps;
401 	int nc, mask;
402 
403 	sigactsunshare(p->p_p);
404 	ps = p->p_p->ps_sigacts;
405 
406 	/*
407 	 * Reset caught signals.  Held signals remain held
408 	 * through p_sigmask (unless they were caught,
409 	 * and are now ignored by default).
410 	 */
411 	while (ps->ps_sigcatch) {
412 		nc = ffs((long)ps->ps_sigcatch);
413 		mask = sigmask(nc);
414 		ps->ps_sigcatch &= ~mask;
415 		if (sigprop[nc] & SA_IGNORE) {
416 			if (nc != SIGCONT)
417 				ps->ps_sigignore |= mask;
418 			atomic_clearbits_int(&p->p_siglist, mask);
419 		}
420 		ps->ps_sigact[nc] = SIG_DFL;
421 	}
422 	/*
423 	 * Reset stack state to the user stack.
424 	 * Clear set of signals caught on the signal stack.
425 	 */
426 	sigstkinit(&p->p_sigstk);
427 	ps->ps_flags &= ~SAS_NOCLDWAIT;
428 	if (ps->ps_sigact[SIGCHLD] == SIG_IGN)
429 		ps->ps_sigact[SIGCHLD] = SIG_DFL;
430 }
431 
432 /*
433  * Manipulate signal mask.
434  * Note that we receive new mask, not pointer,
435  * and return old mask as return value;
436  * the library stub does the rest.
437  */
438 int
439 sys_sigprocmask(struct proc *p, void *v, register_t *retval)
440 {
441 	struct sys_sigprocmask_args /* {
442 		syscallarg(int) how;
443 		syscallarg(sigset_t) mask;
444 	} */ *uap = v;
445 	int error = 0;
446 	sigset_t mask;
447 
448 	*retval = p->p_sigmask;
449 	mask = SCARG(uap, mask) &~ sigcantmask;
450 
451 	switch (SCARG(uap, how)) {
452 	case SIG_BLOCK:
453 		atomic_setbits_int(&p->p_sigmask, mask);
454 		break;
455 	case SIG_UNBLOCK:
456 		atomic_clearbits_int(&p->p_sigmask, mask);
457 		break;
458 	case SIG_SETMASK:
459 		p->p_sigmask = mask;
460 		break;
461 	default:
462 		error = EINVAL;
463 		break;
464 	}
465 	return (error);
466 }
467 
468 int
469 sys_sigpending(struct proc *p, void *v, register_t *retval)
470 {
471 
472 	*retval = p->p_siglist;
473 	return (0);
474 }
475 
476 /*
477  * Temporarily replace calling proc's signal mask for the duration of a
478  * system call.  Original signal mask will be restored by userret().
479  */
480 void
481 dosigsuspend(struct proc *p, sigset_t newmask)
482 {
483 	KASSERT(p == curproc);
484 
485 	p->p_oldmask = p->p_sigmask;
486 	atomic_setbits_int(&p->p_flag, P_SIGSUSPEND);
487 	p->p_sigmask = newmask;
488 }
489 
490 /*
491  * Suspend process until signal, providing mask to be set
492  * in the meantime.  Note nonstandard calling convention:
493  * libc stub passes mask, not pointer, to save a copyin.
494  */
495 int
496 sys_sigsuspend(struct proc *p, void *v, register_t *retval)
497 {
498 	struct sys_sigsuspend_args /* {
499 		syscallarg(int) mask;
500 	} */ *uap = v;
501 	struct process *pr = p->p_p;
502 	struct sigacts *ps = pr->ps_sigacts;
503 
504 	dosigsuspend(p, SCARG(uap, mask) &~ sigcantmask);
505 	while (tsleep(ps, PPAUSE|PCATCH, "pause", 0) == 0)
506 		/* void */;
507 	/* always return EINTR rather than ERESTART... */
508 	return (EINTR);
509 }
510 
511 int
512 sigonstack(size_t stack)
513 {
514 	const struct sigaltstack *ss = &curproc->p_sigstk;
515 
516 	return (ss->ss_flags & SS_DISABLE ? 0 :
517 	    (stack - (size_t)ss->ss_sp < ss->ss_size));
518 }
519 
520 int
521 sys_sigaltstack(struct proc *p, void *v, register_t *retval)
522 {
523 	struct sys_sigaltstack_args /* {
524 		syscallarg(const struct sigaltstack *) nss;
525 		syscallarg(struct sigaltstack *) oss;
526 	} */ *uap = v;
527 	struct sigaltstack ss;
528 	const struct sigaltstack *nss;
529 	struct sigaltstack *oss;
530 	int onstack = sigonstack(PROC_STACK(p));
531 	int error;
532 
533 	nss = SCARG(uap, nss);
534 	oss = SCARG(uap, oss);
535 
536 	if (oss != NULL) {
537 		ss = p->p_sigstk;
538 		if (onstack)
539 			ss.ss_flags |= SS_ONSTACK;
540 		if ((error = copyout(&ss, oss, sizeof(ss))))
541 			return (error);
542 	}
543 	if (nss == NULL)
544 		return (0);
545 	error = copyin(nss, &ss, sizeof(ss));
546 	if (error)
547 		return (error);
548 	if (onstack)
549 		return (EPERM);
550 	if (ss.ss_flags & ~SS_DISABLE)
551 		return (EINVAL);
552 	if (ss.ss_flags & SS_DISABLE) {
553 		p->p_sigstk.ss_flags = ss.ss_flags;
554 		return (0);
555 	}
556 	if (ss.ss_size < MINSIGSTKSZ)
557 		return (ENOMEM);
558 	p->p_sigstk = ss;
559 	return (0);
560 }
561 
562 int
563 sys_kill(struct proc *cp, void *v, register_t *retval)
564 {
565 	struct sys_kill_args /* {
566 		syscallarg(int) pid;
567 		syscallarg(int) signum;
568 	} */ *uap = v;
569 	struct process *pr;
570 	int pid = SCARG(uap, pid);
571 	int signum = SCARG(uap, signum);
572 	int error;
573 	int zombie = 0;
574 
575 	if ((error = pledge_kill(cp, pid)) != 0)
576 		return (error);
577 	if (((u_int)signum) >= NSIG)
578 		return (EINVAL);
579 	if (pid > 0) {
580 		if ((pr = prfind(pid)) == NULL) {
581 			if ((pr = zombiefind(pid)) == NULL)
582 				return (ESRCH);
583 			else
584 				zombie = 1;
585 		}
586 		if (!cansignal(cp, pr, signum))
587 			return (EPERM);
588 
589 		/* kill single process */
590 		if (signum && !zombie)
591 			prsignal(pr, signum);
592 		return (0);
593 	}
594 	switch (pid) {
595 	case -1:		/* broadcast signal */
596 		return (killpg1(cp, signum, 0, 1));
597 	case 0:			/* signal own process group */
598 		return (killpg1(cp, signum, 0, 0));
599 	default:		/* negative explicit process group */
600 		return (killpg1(cp, signum, -pid, 0));
601 	}
602 }
603 
604 int
605 sys_thrkill(struct proc *cp, void *v, register_t *retval)
606 {
607 	struct sys_thrkill_args /* {
608 		syscallarg(pid_t) tid;
609 		syscallarg(int) signum;
610 		syscallarg(void *) tcb;
611 	} */ *uap = v;
612 	struct proc *p;
613 	int tid = SCARG(uap, tid);
614 	int signum = SCARG(uap, signum);
615 	void *tcb;
616 
617 	if (((u_int)signum) >= NSIG)
618 		return (EINVAL);
619 	if (tid > THREAD_PID_OFFSET) {
620 		if ((p = pfind(tid - THREAD_PID_OFFSET)) == NULL)
621 			return (ESRCH);
622 
623 		/* can only kill threads in the same process */
624 		if (p->p_p != cp->p_p)
625 			return (ESRCH);
626 	} else if (tid == 0)
627 		p = cp;
628 	else
629 		return (EINVAL);
630 
631 	/* optionally require the target thread to have the given tcb addr */
632 	tcb = SCARG(uap, tcb);
633 	if (tcb != NULL && tcb != TCB_GET(p))
634 		return (ESRCH);
635 
636 	if (signum)
637 		ptsignal(p, signum, STHREAD);
638 	return (0);
639 }
640 
641 /*
642  * Common code for kill process group/broadcast kill.
643  * cp is calling process.
644  */
645 int
646 killpg1(struct proc *cp, int signum, int pgid, int all)
647 {
648 	struct process *pr;
649 	struct pgrp *pgrp;
650 	int nfound = 0;
651 
652 	if (all)
653 		/*
654 		 * broadcast
655 		 */
656 		LIST_FOREACH(pr, &allprocess, ps_list) {
657 			if (pr->ps_pid <= 1 ||
658 			    pr->ps_flags & (PS_SYSTEM | PS_NOBROADCASTKILL) ||
659 			    pr == cp->p_p || !cansignal(cp, pr, signum))
660 				continue;
661 			nfound++;
662 			if (signum)
663 				prsignal(pr, signum);
664 		}
665 	else {
666 		if (pgid == 0)
667 			/*
668 			 * zero pgid means send to my process group.
669 			 */
670 			pgrp = cp->p_p->ps_pgrp;
671 		else {
672 			pgrp = pgfind(pgid);
673 			if (pgrp == NULL)
674 				return (ESRCH);
675 		}
676 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist) {
677 			if (pr->ps_pid <= 1 || pr->ps_flags & PS_SYSTEM ||
678 			    !cansignal(cp, pr, signum))
679 				continue;
680 			nfound++;
681 			if (signum)
682 				prsignal(pr, signum);
683 		}
684 	}
685 	return (nfound ? 0 : ESRCH);
686 }
687 
688 #define CANDELIVER(uid, euid, pr) \
689 	(euid == 0 || \
690 	(uid) == (pr)->ps_ucred->cr_ruid || \
691 	(uid) == (pr)->ps_ucred->cr_svuid || \
692 	(uid) == (pr)->ps_ucred->cr_uid || \
693 	(euid) == (pr)->ps_ucred->cr_ruid || \
694 	(euid) == (pr)->ps_ucred->cr_svuid || \
695 	(euid) == (pr)->ps_ucred->cr_uid)
696 
697 /*
698  * Deliver signum to pgid, but first check uid/euid against each
699  * process and see if it is permitted.
700  */
701 void
702 csignal(pid_t pgid, int signum, uid_t uid, uid_t euid)
703 {
704 	struct pgrp *pgrp;
705 	struct process *pr;
706 
707 	if (pgid == 0)
708 		return;
709 	if (pgid < 0) {
710 		pgid = -pgid;
711 		if ((pgrp = pgfind(pgid)) == NULL)
712 			return;
713 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
714 			if (CANDELIVER(uid, euid, pr))
715 				prsignal(pr, signum);
716 	} else {
717 		if ((pr = prfind(pgid)) == NULL)
718 			return;
719 		if (CANDELIVER(uid, euid, pr))
720 			prsignal(pr, signum);
721 	}
722 }
723 
724 /*
725  * Send a signal to a process group.
726  */
727 void
728 gsignal(int pgid, int signum)
729 {
730 	struct pgrp *pgrp;
731 
732 	if (pgid && (pgrp = pgfind(pgid)))
733 		pgsignal(pgrp, signum, 0);
734 }
735 
736 /*
737  * Send a signal to a process group.  If checktty is 1,
738  * limit to members which have a controlling terminal.
739  */
740 void
741 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
742 {
743 	struct process *pr;
744 
745 	if (pgrp)
746 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
747 			if (checkctty == 0 || pr->ps_flags & PS_CONTROLT)
748 				prsignal(pr, signum);
749 }
750 
751 /*
752  * Send a signal caused by a trap to the current thread
753  * If it will be caught immediately, deliver it with correct code.
754  * Otherwise, post it normally.
755  */
756 void
757 trapsignal(struct proc *p, int signum, u_long trapno, int code,
758     union sigval sigval)
759 {
760 	struct process *pr = p->p_p;
761 	struct sigacts *ps = pr->ps_sigacts;
762 	int mask;
763 
764 	mask = sigmask(signum);
765 	if ((pr->ps_flags & PS_TRACED) == 0 &&
766 	    (ps->ps_sigcatch & mask) != 0 &&
767 	    (p->p_sigmask & mask) == 0) {
768 #ifdef KTRACE
769 		if (KTRPOINT(p, KTR_PSIG)) {
770 			siginfo_t si;
771 
772 			initsiginfo(&si, signum, trapno, code, sigval);
773 			ktrpsig(p, signum, ps->ps_sigact[signum],
774 			    p->p_sigmask, code, &si);
775 		}
776 #endif
777 		p->p_ru.ru_nsignals++;
778 		(*pr->ps_emul->e_sendsig)(ps->ps_sigact[signum], signum,
779 		    p->p_sigmask, trapno, code, sigval);
780 		atomic_setbits_int(&p->p_sigmask, ps->ps_catchmask[signum]);
781 		if ((ps->ps_sigreset & mask) != 0) {
782 			ps->ps_sigcatch &= ~mask;
783 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
784 				ps->ps_sigignore |= mask;
785 			ps->ps_sigact[signum] = SIG_DFL;
786 		}
787 	} else {
788 		p->p_sisig = signum;
789 		p->p_sitrapno = trapno;	/* XXX for core dump/debugger */
790 		p->p_sicode = code;
791 		p->p_sigval = sigval;
792 
793 		/*
794 		 * Signals like SIGBUS and SIGSEGV should not, when
795 		 * generated by the kernel, be ignorable or blockable.
796 		 * If it is and we're not being traced, then just kill
797 		 * the process.
798 		 */
799 		if ((pr->ps_flags & PS_TRACED) == 0 &&
800 		    (sigprop[signum] & SA_KILL) &&
801 		    ((p->p_sigmask & mask) || (ps->ps_sigignore & mask)))
802 			sigexit(p, signum);
803 		ptsignal(p, signum, STHREAD);
804 	}
805 }
806 
807 /*
808  * Send the signal to the process.  If the signal has an action, the action
809  * is usually performed by the target process rather than the caller; we add
810  * the signal to the set of pending signals for the process.
811  *
812  * Exceptions:
813  *   o When a stop signal is sent to a sleeping process that takes the
814  *     default action, the process is stopped without awakening it.
815  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
816  *     regardless of the signal action (eg, blocked or ignored).
817  *
818  * Other ignored signals are discarded immediately.
819  */
820 void
821 psignal(struct proc *p, int signum)
822 {
823 	ptsignal(p, signum, SPROCESS);
824 }
825 
826 /*
827  * type = SPROCESS	process signal, can be diverted (sigwait())
828  *	XXX if blocked in all threads, mark as pending in struct process
829  * type = STHREAD	thread signal, but should be propagated if unhandled
830  * type = SPROPAGATED	propagated to this thread, so don't propagate again
831  */
832 void
833 ptsignal(struct proc *p, int signum, enum signal_type type)
834 {
835 	int s, prop;
836 	sig_t action;
837 	int mask;
838 	struct process *pr = p->p_p;
839 	struct proc *q;
840 	int wakeparent = 0;
841 
842 #ifdef DIAGNOSTIC
843 	if ((u_int)signum >= NSIG || signum == 0)
844 		panic("psignal signal number");
845 #endif
846 
847 	/* Ignore signal if the target process is exiting */
848 	if (pr->ps_flags & PS_EXITING)
849 		return;
850 
851 	mask = sigmask(signum);
852 
853 	if (type == SPROCESS) {
854 		/* Accept SIGKILL to coredumping processes */
855 		if (pr->ps_flags & PS_COREDUMP && signum == SIGKILL) {
856 			if (pr->ps_single != NULL)
857 				p = pr->ps_single;
858 			atomic_setbits_int(&p->p_siglist, mask);
859 			return;
860 		}
861 
862 		/*
863 		 * If the current thread can process the signal
864 		 * immediately (it's unblocked) then have it take it.
865 		 */
866 		q = curproc;
867 		if (q != NULL && q->p_p == pr && (q->p_flag & P_WEXIT) == 0 &&
868 		    (q->p_sigmask & mask) == 0)
869 			p = q;
870 		else {
871 			/*
872 			 * A process-wide signal can be diverted to a
873 			 * different thread that's in sigwait() for this
874 			 * signal.  If there isn't such a thread, then
875 			 * pick a thread that doesn't have it blocked so
876 			 * that the stop/kill consideration isn't
877 			 * delayed.  Otherwise, mark it pending on the
878 			 * main thread.
879 			 */
880 			TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
881 				/* ignore exiting threads */
882 				if (q->p_flag & P_WEXIT)
883 					continue;
884 
885 				/* skip threads that have the signal blocked */
886 				if ((q->p_sigmask & mask) != 0)
887 					continue;
888 
889 				/* okay, could send to this thread */
890 				p = q;
891 
892 				/*
893 				 * sigsuspend, sigwait, ppoll/pselect, etc?
894 				 * Definitely go to this thread, as it's
895 				 * already blocked in the kernel.
896 				 */
897 				if (q->p_flag & P_SIGSUSPEND)
898 					break;
899 			}
900 		}
901 	}
902 
903 	if (type != SPROPAGATED)
904 		KNOTE(&pr->ps_klist, NOTE_SIGNAL | signum);
905 
906 	prop = sigprop[signum];
907 
908 	/*
909 	 * If proc is traced, always give parent a chance.
910 	 */
911 	if (pr->ps_flags & PS_TRACED) {
912 		action = SIG_DFL;
913 		atomic_setbits_int(&p->p_siglist, mask);
914 	} else {
915 		/*
916 		 * If the signal is being ignored,
917 		 * then we forget about it immediately.
918 		 * (Note: we don't set SIGCONT in ps_sigignore,
919 		 * and if it is set to SIG_IGN,
920 		 * action will be SIG_DFL here.)
921 		 */
922 		if (pr->ps_sigacts->ps_sigignore & mask)
923 			return;
924 		if (p->p_sigmask & mask) {
925 			action = SIG_HOLD;
926 		} else if (pr->ps_sigacts->ps_sigcatch & mask) {
927 			action = SIG_CATCH;
928 		} else {
929 			action = SIG_DFL;
930 
931 			if (prop & SA_KILL && pr->ps_nice > NZERO)
932 				 pr->ps_nice = NZERO;
933 
934 			/*
935 			 * If sending a tty stop signal to a member of an
936 			 * orphaned process group, discard the signal here if
937 			 * the action is default; don't stop the process below
938 			 * if sleeping, and don't clear any pending SIGCONT.
939 			 */
940 			if (prop & SA_TTYSTOP && pr->ps_pgrp->pg_jobc == 0)
941 				return;
942 		}
943 
944 		atomic_setbits_int(&p->p_siglist, mask);
945 	}
946 
947 	if (prop & SA_CONT)
948 		atomic_clearbits_int(&p->p_siglist, stopsigmask);
949 
950 	if (prop & SA_STOP) {
951 		atomic_clearbits_int(&p->p_siglist, contsigmask);
952 		atomic_clearbits_int(&p->p_flag, P_CONTINUED);
953 	}
954 
955 	/*
956 	 * XXX delay processing of SA_STOP signals unless action == SIG_DFL?
957 	 */
958 	if (prop & (SA_CONT | SA_STOP) && type != SPROPAGATED)
959 		TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)
960 			if (q != p)
961 				ptsignal(q, signum, SPROPAGATED);
962 
963 	/*
964 	 * Defer further processing for signals which are held,
965 	 * except that stopped processes must be continued by SIGCONT.
966 	 */
967 	if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
968 		return;
969 
970 	SCHED_LOCK(s);
971 
972 	switch (p->p_stat) {
973 
974 	case SSLEEP:
975 		/*
976 		 * If process is sleeping uninterruptibly
977 		 * we can't interrupt the sleep... the signal will
978 		 * be noticed when the process returns through
979 		 * trap() or syscall().
980 		 */
981 		if ((p->p_flag & P_SINTR) == 0)
982 			goto out;
983 		/*
984 		 * Process is sleeping and traced... make it runnable
985 		 * so it can discover the signal in issignal() and stop
986 		 * for the parent.
987 		 */
988 		if (pr->ps_flags & PS_TRACED)
989 			goto run;
990 		/*
991 		 * If SIGCONT is default (or ignored) and process is
992 		 * asleep, we are finished; the process should not
993 		 * be awakened.
994 		 */
995 		if ((prop & SA_CONT) && action == SIG_DFL) {
996 			atomic_clearbits_int(&p->p_siglist, mask);
997 			goto out;
998 		}
999 		/*
1000 		 * When a sleeping process receives a stop
1001 		 * signal, process immediately if possible.
1002 		 */
1003 		if ((prop & SA_STOP) && action == SIG_DFL) {
1004 			/*
1005 			 * If a child holding parent blocked,
1006 			 * stopping could cause deadlock.
1007 			 */
1008 			if (pr->ps_flags & PS_PPWAIT)
1009 				goto out;
1010 			atomic_clearbits_int(&p->p_siglist, mask);
1011 			p->p_xstat = signum;
1012 			proc_stop(p, 0);
1013 			goto out;
1014 		}
1015 		/*
1016 		 * All other (caught or default) signals
1017 		 * cause the process to run.
1018 		 */
1019 		goto runfast;
1020 		/*NOTREACHED*/
1021 
1022 	case SSTOP:
1023 		/*
1024 		 * If traced process is already stopped,
1025 		 * then no further action is necessary.
1026 		 */
1027 		if (pr->ps_flags & PS_TRACED)
1028 			goto out;
1029 
1030 		/*
1031 		 * Kill signal always sets processes running.
1032 		 */
1033 		if (signum == SIGKILL) {
1034 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1035 			goto runfast;
1036 		}
1037 
1038 		if (prop & SA_CONT) {
1039 			/*
1040 			 * If SIGCONT is default (or ignored), we continue the
1041 			 * process but don't leave the signal in p_siglist, as
1042 			 * it has no further action.  If SIGCONT is held, we
1043 			 * continue the process and leave the signal in
1044 			 * p_siglist.  If the process catches SIGCONT, let it
1045 			 * handle the signal itself.  If it isn't waiting on
1046 			 * an event, then it goes back to run state.
1047 			 * Otherwise, process goes back to sleep state.
1048 			 */
1049 			atomic_setbits_int(&p->p_flag, P_CONTINUED);
1050 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1051 			wakeparent = 1;
1052 			if (action == SIG_DFL)
1053 				atomic_clearbits_int(&p->p_siglist, mask);
1054 			if (action == SIG_CATCH)
1055 				goto runfast;
1056 			if (p->p_wchan == 0)
1057 				goto run;
1058 			p->p_stat = SSLEEP;
1059 			goto out;
1060 		}
1061 
1062 		if (prop & SA_STOP) {
1063 			/*
1064 			 * Already stopped, don't need to stop again.
1065 			 * (If we did the shell could get confused.)
1066 			 */
1067 			atomic_clearbits_int(&p->p_siglist, mask);
1068 			goto out;
1069 		}
1070 
1071 		/*
1072 		 * If process is sleeping interruptibly, then simulate a
1073 		 * wakeup so that when it is continued, it will be made
1074 		 * runnable and can look at the signal.  But don't make
1075 		 * the process runnable, leave it stopped.
1076 		 */
1077 		if (p->p_wchan && p->p_flag & P_SINTR)
1078 			unsleep(p);
1079 		goto out;
1080 
1081 	case SONPROC:
1082 		signotify(p);
1083 		/* FALLTHROUGH */
1084 	default:
1085 		/*
1086 		 * SRUN, SIDL, SDEAD do nothing with the signal,
1087 		 * other than kicking ourselves if we are running.
1088 		 * It will either never be noticed, or noticed very soon.
1089 		 */
1090 		goto out;
1091 	}
1092 	/*NOTREACHED*/
1093 
1094 runfast:
1095 	/*
1096 	 * Raise priority to at least PUSER.
1097 	 */
1098 	if (p->p_priority > PUSER)
1099 		p->p_priority = PUSER;
1100 run:
1101 	setrunnable(p);
1102 out:
1103 	SCHED_UNLOCK(s);
1104 	if (wakeparent)
1105 		wakeup(pr->ps_pptr);
1106 }
1107 
1108 /*
1109  * If the current process has received a signal (should be caught or cause
1110  * termination, should interrupt current syscall), return the signal number.
1111  * Stop signals with default action are processed immediately, then cleared;
1112  * they aren't returned.  This is checked after each entry to the system for
1113  * a syscall or trap (though this can usually be done without calling issignal
1114  * by checking the pending signal masks in the CURSIG macro.) The normal call
1115  * sequence is
1116  *
1117  *	while (signum = CURSIG(curproc))
1118  *		postsig(signum);
1119  *
1120  * Assumes that if the P_SINTR flag is set, we're holding both the
1121  * kernel and scheduler locks.
1122  */
1123 int
1124 issignal(struct proc *p)
1125 {
1126 	struct process *pr = p->p_p;
1127 	int signum, mask, prop;
1128 	int dolock = (p->p_flag & P_SINTR) == 0;
1129 	int s;
1130 
1131 	for (;;) {
1132 		mask = p->p_siglist & ~p->p_sigmask;
1133 		if (pr->ps_flags & PS_PPWAIT)
1134 			mask &= ~stopsigmask;
1135 		if (mask == 0)	 	/* no signal to send */
1136 			return (0);
1137 		signum = ffs((long)mask);
1138 		mask = sigmask(signum);
1139 		atomic_clearbits_int(&p->p_siglist, mask);
1140 
1141 		/*
1142 		 * We should see pending but ignored signals
1143 		 * only if PS_TRACED was on when they were posted.
1144 		 */
1145 		if (mask & pr->ps_sigacts->ps_sigignore &&
1146 		    (pr->ps_flags & PS_TRACED) == 0)
1147 			continue;
1148 
1149 		if ((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) {
1150 			/*
1151 			 * If traced, always stop, and stay
1152 			 * stopped until released by the debugger.
1153 			 */
1154 			p->p_xstat = signum;
1155 
1156 			if (dolock)
1157 				KERNEL_LOCK();
1158 			single_thread_set(p, SINGLE_PTRACE, 0);
1159 			if (dolock)
1160 				KERNEL_UNLOCK();
1161 
1162 			if (dolock)
1163 				SCHED_LOCK(s);
1164 			proc_stop(p, 1);
1165 			if (dolock)
1166 				SCHED_UNLOCK(s);
1167 
1168 			if (dolock)
1169 				KERNEL_LOCK();
1170 			single_thread_clear(p, 0);
1171 			if (dolock)
1172 				KERNEL_UNLOCK();
1173 
1174 			/*
1175 			 * If we are no longer being traced, or the parent
1176 			 * didn't give us a signal, look for more signals.
1177 			 */
1178 			if ((pr->ps_flags & PS_TRACED) == 0 || p->p_xstat == 0)
1179 				continue;
1180 
1181 			/*
1182 			 * If the new signal is being masked, look for other
1183 			 * signals.
1184 			 */
1185 			signum = p->p_xstat;
1186 			mask = sigmask(signum);
1187 			if ((p->p_sigmask & mask) != 0)
1188 				continue;
1189 
1190 			/* take the signal! */
1191 			atomic_clearbits_int(&p->p_siglist, mask);
1192 		}
1193 
1194 		prop = sigprop[signum];
1195 
1196 		/*
1197 		 * Decide whether the signal should be returned.
1198 		 * Return the signal's number, or fall through
1199 		 * to clear it from the pending mask.
1200 		 */
1201 		switch ((long)pr->ps_sigacts->ps_sigact[signum]) {
1202 		case (long)SIG_DFL:
1203 			/*
1204 			 * Don't take default actions on system processes.
1205 			 */
1206 			if (pr->ps_pid <= 1) {
1207 #ifdef DIAGNOSTIC
1208 				/*
1209 				 * Are you sure you want to ignore SIGSEGV
1210 				 * in init? XXX
1211 				 */
1212 				printf("Process (pid %d) got signal"
1213 				    " %d\n", pr->ps_pid, signum);
1214 #endif
1215 				break;		/* == ignore */
1216 			}
1217 			/*
1218 			 * If there is a pending stop signal to process
1219 			 * with default action, stop here,
1220 			 * then clear the signal.  However,
1221 			 * if process is member of an orphaned
1222 			 * process group, ignore tty stop signals.
1223 			 */
1224 			if (prop & SA_STOP) {
1225 				if (pr->ps_flags & PS_TRACED ||
1226 		    		    (pr->ps_pgrp->pg_jobc == 0 &&
1227 				    prop & SA_TTYSTOP))
1228 					break;	/* == ignore */
1229 				p->p_xstat = signum;
1230 				if (dolock)
1231 					SCHED_LOCK(s);
1232 				proc_stop(p, 1);
1233 				if (dolock)
1234 					SCHED_UNLOCK(s);
1235 				break;
1236 			} else if (prop & SA_IGNORE) {
1237 				/*
1238 				 * Except for SIGCONT, shouldn't get here.
1239 				 * Default action is to ignore; drop it.
1240 				 */
1241 				break;		/* == ignore */
1242 			} else
1243 				goto keep;
1244 			/*NOTREACHED*/
1245 		case (long)SIG_IGN:
1246 			/*
1247 			 * Masking above should prevent us ever trying
1248 			 * to take action on an ignored signal other
1249 			 * than SIGCONT, unless process is traced.
1250 			 */
1251 			if ((prop & SA_CONT) == 0 &&
1252 			    (pr->ps_flags & PS_TRACED) == 0)
1253 				printf("issignal\n");
1254 			break;		/* == ignore */
1255 		default:
1256 			/*
1257 			 * This signal has an action, let
1258 			 * postsig() process it.
1259 			 */
1260 			goto keep;
1261 		}
1262 	}
1263 	/* NOTREACHED */
1264 
1265 keep:
1266 	atomic_setbits_int(&p->p_siglist, mask); /*leave the signal for later */
1267 	return (signum);
1268 }
1269 
1270 /*
1271  * Put the argument process into the stopped state and notify the parent
1272  * via wakeup.  Signals are handled elsewhere.  The process must not be
1273  * on the run queue.
1274  */
1275 void
1276 proc_stop(struct proc *p, int sw)
1277 {
1278 	struct process *pr = p->p_p;
1279 	extern void *softclock_si;
1280 
1281 #ifdef MULTIPROCESSOR
1282 	SCHED_ASSERT_LOCKED();
1283 #endif
1284 
1285 	p->p_stat = SSTOP;
1286 	atomic_clearbits_int(&pr->ps_flags, PS_WAITED);
1287 	atomic_setbits_int(&pr->ps_flags, PS_STOPPED);
1288 	atomic_setbits_int(&p->p_flag, P_SUSPSIG);
1289 	if (!timeout_pending(&proc_stop_to)) {
1290 		timeout_add(&proc_stop_to, 0);
1291 		/*
1292 		 * We need this soft interrupt to be handled fast.
1293 		 * Extra calls to softclock don't hurt.
1294 		 */
1295                 softintr_schedule(softclock_si);
1296 	}
1297 	if (sw)
1298 		mi_switch();
1299 }
1300 
1301 /*
1302  * Called from a timeout to send signals to the parents of stopped processes.
1303  * We can't do this in proc_stop because it's called with nasty locks held
1304  * and we would need recursive scheduler lock to deal with that.
1305  */
1306 void
1307 proc_stop_sweep(void *v)
1308 {
1309 	struct process *pr;
1310 
1311 	LIST_FOREACH(pr, &allprocess, ps_list) {
1312 		if ((pr->ps_flags & PS_STOPPED) == 0)
1313 			continue;
1314 		atomic_clearbits_int(&pr->ps_flags, PS_STOPPED);
1315 
1316 		if ((pr->ps_pptr->ps_sigacts->ps_flags & SAS_NOCLDSTOP) == 0)
1317 			prsignal(pr->ps_pptr, SIGCHLD);
1318 		wakeup(pr->ps_pptr);
1319 	}
1320 }
1321 
1322 /*
1323  * Take the action for the specified signal
1324  * from the current set of pending signals.
1325  */
1326 void
1327 postsig(int signum)
1328 {
1329 	struct proc *p = curproc;
1330 	struct process *pr = p->p_p;
1331 	struct sigacts *ps = pr->ps_sigacts;
1332 	sig_t action;
1333 	u_long trapno;
1334 	int mask, returnmask;
1335 	union sigval sigval;
1336 	int s, code;
1337 
1338 #ifdef DIAGNOSTIC
1339 	if (signum == 0)
1340 		panic("postsig");
1341 #endif
1342 
1343 	KERNEL_LOCK();
1344 
1345 	mask = sigmask(signum);
1346 	atomic_clearbits_int(&p->p_siglist, mask);
1347 	action = ps->ps_sigact[signum];
1348 	sigval.sival_ptr = 0;
1349 
1350 	if (p->p_sisig != signum) {
1351 		trapno = 0;
1352 		code = SI_USER;
1353 		sigval.sival_ptr = 0;
1354 	} else {
1355 		trapno = p->p_sitrapno;
1356 		code = p->p_sicode;
1357 		sigval = p->p_sigval;
1358 	}
1359 
1360 #ifdef KTRACE
1361 	if (KTRPOINT(p, KTR_PSIG)) {
1362 		siginfo_t si;
1363 
1364 		initsiginfo(&si, signum, trapno, code, sigval);
1365 		ktrpsig(p, signum, action, p->p_flag & P_SIGSUSPEND ?
1366 		    p->p_oldmask : p->p_sigmask, code, &si);
1367 	}
1368 #endif
1369 	if (action == SIG_DFL) {
1370 		/*
1371 		 * Default action, where the default is to kill
1372 		 * the process.  (Other cases were ignored above.)
1373 		 */
1374 		sigexit(p, signum);
1375 		/* NOTREACHED */
1376 	} else {
1377 		/*
1378 		 * If we get here, the signal must be caught.
1379 		 */
1380 #ifdef DIAGNOSTIC
1381 		if (action == SIG_IGN || (p->p_sigmask & mask))
1382 			panic("postsig action");
1383 #endif
1384 		/*
1385 		 * Set the new mask value and also defer further
1386 		 * occurrences of this signal.
1387 		 *
1388 		 * Special case: user has done a sigpause.  Here the
1389 		 * current mask is not of interest, but rather the
1390 		 * mask from before the sigpause is what we want
1391 		 * restored after the signal processing is completed.
1392 		 */
1393 #ifdef MULTIPROCESSOR
1394 		s = splsched();
1395 #else
1396 		s = splhigh();
1397 #endif
1398 		if (p->p_flag & P_SIGSUSPEND) {
1399 			atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1400 			returnmask = p->p_oldmask;
1401 		} else {
1402 			returnmask = p->p_sigmask;
1403 		}
1404 		atomic_setbits_int(&p->p_sigmask, ps->ps_catchmask[signum]);
1405 		if ((ps->ps_sigreset & mask) != 0) {
1406 			ps->ps_sigcatch &= ~mask;
1407 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1408 				ps->ps_sigignore |= mask;
1409 			ps->ps_sigact[signum] = SIG_DFL;
1410 		}
1411 		splx(s);
1412 		p->p_ru.ru_nsignals++;
1413 		if (p->p_sisig == signum) {
1414 			p->p_sisig = 0;
1415 			p->p_sitrapno = 0;
1416 			p->p_sicode = SI_USER;
1417 			p->p_sigval.sival_ptr = NULL;
1418 		}
1419 
1420 		(*pr->ps_emul->e_sendsig)(action, signum, returnmask, trapno,
1421 		    code, sigval);
1422 	}
1423 
1424 	KERNEL_UNLOCK();
1425 }
1426 
1427 /*
1428  * Force the current process to exit with the specified signal, dumping core
1429  * if appropriate.  We bypass the normal tests for masked and caught signals,
1430  * allowing unrecoverable failures to terminate the process without changing
1431  * signal state.  Mark the accounting record with the signal termination.
1432  * If dumping core, save the signal number for the debugger.  Calls exit and
1433  * does not return.
1434  */
1435 void
1436 sigexit(struct proc *p, int signum)
1437 {
1438 	/* Mark process as going away */
1439 	atomic_setbits_int(&p->p_flag, P_WEXIT);
1440 
1441 	p->p_p->ps_acflag |= AXSIG;
1442 	if (sigprop[signum] & SA_CORE) {
1443 		p->p_sisig = signum;
1444 
1445 		/* if there are other threads, pause them */
1446 		if (P_HASSIBLING(p))
1447 			single_thread_set(p, SINGLE_SUSPEND, 0);
1448 
1449 		if (coredump(p) == 0)
1450 			signum |= WCOREFLAG;
1451 	}
1452 	exit1(p, W_EXITCODE(0, signum), EXIT_NORMAL);
1453 	/* NOTREACHED */
1454 }
1455 
1456 int nosuidcoredump = 1;
1457 
1458 struct coredump_iostate {
1459 	struct proc *io_proc;
1460 	struct vnode *io_vp;
1461 	struct ucred *io_cred;
1462 	off_t io_offset;
1463 };
1464 
1465 /*
1466  * Dump core, into a file named "progname.core", unless the process was
1467  * setuid/setgid.
1468  */
1469 int
1470 coredump(struct proc *p)
1471 {
1472 #ifdef SMALL_KERNEL
1473 	return EPERM;
1474 #else
1475 	struct process *pr = p->p_p;
1476 	struct vnode *vp;
1477 	struct ucred *cred = p->p_ucred;
1478 	struct vmspace *vm = p->p_vmspace;
1479 	struct nameidata nd;
1480 	struct vattr vattr;
1481 	struct coredump_iostate	io;
1482 	int error, len, incrash = 0;
1483 	char name[MAXPATHLEN];
1484 	const char *dir = "/var/crash";
1485 
1486 	if (pr->ps_emul->e_coredump == NULL)
1487 		return (EINVAL);
1488 
1489 	pr->ps_flags |= PS_COREDUMP;
1490 
1491 	/*
1492 	 * If the process has inconsistant uids, nosuidcoredump
1493 	 * determines coredump placement policy.
1494 	 */
1495 	if (((pr->ps_flags & PS_SUGID) && (error = suser(p, 0))) ||
1496 	   ((pr->ps_flags & PS_SUGID) && nosuidcoredump)) {
1497 		if (nosuidcoredump == 3 || nosuidcoredump == 2)
1498 			incrash = 1;
1499 		else
1500 			return (EPERM);
1501 	}
1502 
1503 	/* Don't dump if will exceed file size limit. */
1504 	if (USPACE + ptoa(vm->vm_dsize + vm->vm_ssize) >=
1505 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
1506 		return (EFBIG);
1507 
1508 	if (incrash && nosuidcoredump == 3) {
1509 		/*
1510 		 * If the program directory does not exist, dumps of
1511 		 * that core will silently fail.
1512 		 */
1513 		len = snprintf(name, sizeof(name), "%s/%s/%u.core",
1514 		    dir, p->p_comm, pr->ps_pid);
1515 	} else if (incrash && nosuidcoredump == 2)
1516 		len = snprintf(name, sizeof(name), "%s/%s.core",
1517 		    dir, p->p_comm);
1518 	else
1519 		len = snprintf(name, sizeof(name), "%s.core", p->p_comm);
1520 	if (len >= sizeof(name))
1521 		return (EACCES);
1522 
1523 	/*
1524 	 * Control the UID used to write out.  The normal case uses
1525 	 * the real UID.  If the sugid case is going to write into the
1526 	 * controlled directory, we do so as root.
1527 	 */
1528 	if (incrash == 0) {
1529 		cred = crdup(cred);
1530 		cred->cr_uid = cred->cr_ruid;
1531 		cred->cr_gid = cred->cr_rgid;
1532 	} else {
1533 		if (p->p_fd->fd_rdir) {
1534 			vrele(p->p_fd->fd_rdir);
1535 			p->p_fd->fd_rdir = NULL;
1536 		}
1537 		p->p_ucred = crdup(p->p_ucred);
1538 		crfree(cred);
1539 		cred = p->p_ucred;
1540 		crhold(cred);
1541 		cred->cr_uid = 0;
1542 		cred->cr_gid = 0;
1543 	}
1544 
1545 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
1546 
1547 	error = vn_open(&nd, O_CREAT | FWRITE | O_NOFOLLOW, S_IRUSR | S_IWUSR);
1548 
1549 	if (error)
1550 		goto out;
1551 
1552 	/*
1553 	 * Don't dump to non-regular files, files with links, or files
1554 	 * owned by someone else.
1555 	 */
1556 	vp = nd.ni_vp;
1557 	if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) {
1558 		VOP_UNLOCK(vp, p);
1559 		vn_close(vp, FWRITE, cred, p);
1560 		goto out;
1561 	}
1562 	if (vp->v_type != VREG || vattr.va_nlink != 1 ||
1563 	    vattr.va_mode & ((VREAD | VWRITE) >> 3 | (VREAD | VWRITE) >> 6) ||
1564 	    vattr.va_uid != cred->cr_uid) {
1565 		error = EACCES;
1566 		VOP_UNLOCK(vp, p);
1567 		vn_close(vp, FWRITE, cred, p);
1568 		goto out;
1569 	}
1570 	VATTR_NULL(&vattr);
1571 	vattr.va_size = 0;
1572 	VOP_SETATTR(vp, &vattr, cred, p);
1573 	pr->ps_acflag |= ACORE;
1574 
1575 	io.io_proc = p;
1576 	io.io_vp = vp;
1577 	io.io_cred = cred;
1578 	io.io_offset = 0;
1579 	VOP_UNLOCK(vp, p);
1580 	vref(vp);
1581 	error = vn_close(vp, FWRITE, cred, p);
1582 	if (error == 0)
1583 		error = (*pr->ps_emul->e_coredump)(p, &io);
1584 	vrele(vp);
1585 out:
1586 	crfree(cred);
1587 	return (error);
1588 #endif
1589 }
1590 
1591 #ifndef SMALL_KERNEL
1592 int
1593 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
1594 {
1595 	struct coredump_iostate *io = cookie;
1596 	off_t coffset = 0;
1597 	size_t csize;
1598 	int chunk, error;
1599 
1600 	csize = len;
1601 	do {
1602 		if (io->io_proc->p_siglist & sigmask(SIGKILL))
1603 			return (EINTR);
1604 
1605 		/* Rest of the loop sleeps with lock held, so... */
1606 		yield();
1607 
1608 		chunk = MIN(csize, MAXPHYS);
1609 		error = vn_rdwr(UIO_WRITE, io->io_vp,
1610 		    (caddr_t)data + coffset, chunk,
1611 		    io->io_offset + coffset, segflg,
1612 		    IO_UNIT, io->io_cred, NULL, io->io_proc);
1613 		if (error) {
1614 			if (error == ENOSPC)
1615 				log(LOG_ERR, "coredump of %s(%d) failed, filesystem full\n",
1616 				    io->io_proc->p_comm, io->io_proc->p_p->ps_pid);
1617 			else
1618 				log(LOG_ERR, "coredump of %s(%d), write failed: errno %d\n",
1619 				    io->io_proc->p_comm, io->io_proc->p_p->ps_pid, error);
1620 			return (error);
1621 		}
1622 
1623 		coffset += chunk;
1624 		csize -= chunk;
1625 	} while (csize > 0);
1626 
1627 	io->io_offset += len;
1628 	return (0);
1629 }
1630 
1631 void
1632 coredump_unmap(void *cookie, vaddr_t start, vaddr_t end)
1633 {
1634 	struct coredump_iostate *io = cookie;
1635 
1636 	uvm_unmap(&io->io_proc->p_vmspace->vm_map, start, end);
1637 }
1638 
1639 #endif	/* !SMALL_KERNEL */
1640 
1641 /*
1642  * Nonexistent system call-- signal process (may want to handle it).
1643  * Flag error in case process won't see signal immediately (blocked or ignored).
1644  */
1645 int
1646 sys_nosys(struct proc *p, void *v, register_t *retval)
1647 {
1648 
1649 	ptsignal(p, SIGSYS, STHREAD);
1650 	return (ENOSYS);
1651 }
1652 
1653 int
1654 sys___thrsigdivert(struct proc *p, void *v, register_t *retval)
1655 {
1656 	static int sigwaitsleep;
1657 	struct sys___thrsigdivert_args /* {
1658 		syscallarg(sigset_t) sigmask;
1659 		syscallarg(siginfo_t *) info;
1660 		syscallarg(const struct timespec *) timeout;
1661 	} */ *uap = v;
1662 	struct process *pr = p->p_p;
1663 	sigset_t *m;
1664 	sigset_t mask = SCARG(uap, sigmask) &~ sigcantmask;
1665 	siginfo_t si;
1666 	uint64_t to_ticks = 0;
1667 	int timeinvalid = 0;
1668 	int error = 0;
1669 
1670 	memset(&si, 0, sizeof(si));
1671 
1672 	if (SCARG(uap, timeout) != NULL) {
1673 		struct timespec ts;
1674 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))) != 0)
1675 			return (error);
1676 #ifdef KTRACE
1677 		if (KTRPOINT(p, KTR_STRUCT))
1678 			ktrreltimespec(p, &ts);
1679 #endif
1680 		if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
1681 			timeinvalid = 1;
1682 		else {
1683 			to_ticks = (uint64_t)hz * ts.tv_sec +
1684 			    ts.tv_nsec / (tick * 1000);
1685 			if (to_ticks > INT_MAX)
1686 				to_ticks = INT_MAX;
1687 			if (to_ticks == 0 && ts.tv_nsec)
1688 				to_ticks = 1;
1689 		}
1690 	}
1691 
1692 	dosigsuspend(p, p->p_sigmask &~ mask);
1693 	for (;;) {
1694 		si.si_signo = CURSIG(p);
1695 		if (si.si_signo != 0) {
1696 			sigset_t smask = sigmask(si.si_signo);
1697 			if (smask & mask) {
1698 				if (p->p_siglist & smask)
1699 					m = &p->p_siglist;
1700 				else if (pr->ps_mainproc->p_siglist & smask)
1701 					m = &pr->ps_mainproc->p_siglist;
1702 				else {
1703 					/* signal got eaten by someone else? */
1704 					continue;
1705 				}
1706 				atomic_clearbits_int(m, smask);
1707 				error = 0;
1708 				break;
1709 			}
1710 		}
1711 
1712 		/* per-POSIX, delay this error until after the above */
1713 		if (timeinvalid)
1714 			error = EINVAL;
1715 
1716 		if (SCARG(uap, timeout) != NULL && to_ticks == 0)
1717 			error = EAGAIN;
1718 
1719 		if (error != 0)
1720 			break;
1721 
1722 		error = tsleep(&sigwaitsleep, PPAUSE|PCATCH, "sigwait",
1723 		    (int)to_ticks);
1724 	}
1725 
1726 	if (error == 0) {
1727 		*retval = si.si_signo;
1728 		if (SCARG(uap, info) != NULL)
1729 			error = copyout(&si, SCARG(uap, info), sizeof(si));
1730 	} else if (error == ERESTART && SCARG(uap, timeout) != NULL) {
1731 		/*
1732 		 * Restarting is wrong if there's a timeout, as it'll be
1733 		 * for the same interval again
1734 		 */
1735 		error = EINTR;
1736 	}
1737 
1738 	return (error);
1739 }
1740 
1741 void
1742 initsiginfo(siginfo_t *si, int sig, u_long trapno, int code, union sigval val)
1743 {
1744 	memset(si, 0, sizeof(*si));
1745 
1746 	si->si_signo = sig;
1747 	si->si_code = code;
1748 	if (code == SI_USER) {
1749 		si->si_value = val;
1750 	} else {
1751 		switch (sig) {
1752 		case SIGSEGV:
1753 		case SIGILL:
1754 		case SIGBUS:
1755 		case SIGFPE:
1756 			si->si_addr = val.sival_ptr;
1757 			si->si_trapno = trapno;
1758 			break;
1759 		case SIGXFSZ:
1760 			break;
1761 		}
1762 	}
1763 }
1764 
1765 int
1766 filt_sigattach(struct knote *kn)
1767 {
1768 	struct process *pr = curproc->p_p;
1769 
1770 	if (kn->kn_id >= NSIG)
1771 		return EINVAL;
1772 
1773 	kn->kn_ptr.p_process = pr;
1774 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
1775 
1776 	/* XXX lock the proc here while adding to the list? */
1777 	SLIST_INSERT_HEAD(&pr->ps_klist, kn, kn_selnext);
1778 
1779 	return (0);
1780 }
1781 
1782 void
1783 filt_sigdetach(struct knote *kn)
1784 {
1785 	struct process *pr = kn->kn_ptr.p_process;
1786 
1787 	SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
1788 }
1789 
1790 /*
1791  * signal knotes are shared with proc knotes, so we apply a mask to
1792  * the hint in order to differentiate them from process hints.  This
1793  * could be avoided by using a signal-specific knote list, but probably
1794  * isn't worth the trouble.
1795  */
1796 int
1797 filt_signal(struct knote *kn, long hint)
1798 {
1799 
1800 	if (hint & NOTE_SIGNAL) {
1801 		hint &= ~NOTE_SIGNAL;
1802 
1803 		if (kn->kn_id == hint)
1804 			kn->kn_data++;
1805 	}
1806 	return (kn->kn_data != 0);
1807 }
1808 
1809 void
1810 userret(struct proc *p)
1811 {
1812 	int sig;
1813 
1814 	/* send SIGPROF or SIGVTALRM if their timers interrupted this thread */
1815 	if (p->p_flag & P_PROFPEND) {
1816 		atomic_clearbits_int(&p->p_flag, P_PROFPEND);
1817 		KERNEL_LOCK();
1818 		psignal(p, SIGPROF);
1819 		KERNEL_UNLOCK();
1820 	}
1821 	if (p->p_flag & P_ALRMPEND) {
1822 		atomic_clearbits_int(&p->p_flag, P_ALRMPEND);
1823 		KERNEL_LOCK();
1824 		psignal(p, SIGVTALRM);
1825 		KERNEL_UNLOCK();
1826 	}
1827 
1828 	while ((sig = CURSIG(p)) != 0)
1829 		postsig(sig);
1830 
1831 	/*
1832 	 * If P_SIGSUSPEND is still set here, then we still need to restore
1833 	 * the original sigmask before returning to userspace.  Also, this
1834 	 * might unmask some pending signals, so we need to check a second
1835 	 * time for signals to post.
1836 	 */
1837 	if (p->p_flag & P_SIGSUSPEND) {
1838 		atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1839 		p->p_sigmask = p->p_oldmask;
1840 
1841 		while ((sig = CURSIG(p)) != 0)
1842 			postsig(sig);
1843 	}
1844 
1845 	if (p->p_flag & P_SUSPSINGLE) {
1846 		KERNEL_LOCK();
1847 		single_thread_check(p, 0);
1848 		KERNEL_UNLOCK();
1849 	}
1850 
1851 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_priority = p->p_usrpri;
1852 }
1853 
1854 int
1855 single_thread_check(struct proc *p, int deep)
1856 {
1857 	struct process *pr = p->p_p;
1858 
1859 	if (pr->ps_single != NULL && pr->ps_single != p) {
1860 		do {
1861 			int s;
1862 
1863 			/* if we're in deep, we need to unwind to the edge */
1864 			if (deep) {
1865 				if (pr->ps_flags & PS_SINGLEUNWIND)
1866 					return (ERESTART);
1867 				if (pr->ps_flags & PS_SINGLEEXIT)
1868 					return (EINTR);
1869 			}
1870 
1871 			if (--pr->ps_singlecount == 0)
1872 				wakeup(&pr->ps_singlecount);
1873 			if (pr->ps_flags & PS_SINGLEEXIT)
1874 				exit1(p, 0, EXIT_THREAD_NOCHECK);
1875 
1876 			/* not exiting and don't need to unwind, so suspend */
1877 			SCHED_LOCK(s);
1878 			p->p_stat = SSTOP;
1879 			mi_switch();
1880 			SCHED_UNLOCK(s);
1881 		} while (pr->ps_single != NULL);
1882 	}
1883 
1884 	return (0);
1885 }
1886 
1887 /*
1888  * Stop other threads in the process.  The mode controls how and
1889  * where the other threads should stop:
1890  *  - SINGLE_SUSPEND: stop wherever they are, will later either be told to exit
1891  *    (by setting to SINGLE_EXIT) or be released (via single_thread_clear())
1892  *  - SINGLE_PTRACE: stop wherever they are, will wait for them to stop
1893  *    later (via single_thread_wait()) and released as with SINGLE_SUSPEND
1894  *  - SINGLE_UNWIND: just unwind to kernel boundary, will be told to exit
1895  *    or released as with SINGLE_SUSPEND
1896  *  - SINGLE_EXIT: unwind to kernel boundary and exit
1897  */
1898 int
1899 single_thread_set(struct proc *p, enum single_thread_mode mode, int deep)
1900 {
1901 	struct process *pr = p->p_p;
1902 	struct proc *q;
1903 	int error;
1904 
1905 	KERNEL_ASSERT_LOCKED();
1906 
1907 	if ((error = single_thread_check(p, deep)))
1908 		return error;
1909 
1910 	switch (mode) {
1911 	case SINGLE_SUSPEND:
1912 	case SINGLE_PTRACE:
1913 		break;
1914 	case SINGLE_UNWIND:
1915 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
1916 		break;
1917 	case SINGLE_EXIT:
1918 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEEXIT);
1919 		atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
1920 		break;
1921 #ifdef DIAGNOSTIC
1922 	default:
1923 		panic("single_thread_mode = %d", mode);
1924 #endif
1925 	}
1926 	pr->ps_single = p;
1927 	pr->ps_singlecount = 0;
1928 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
1929 		int s;
1930 
1931 		if (q == p)
1932 			continue;
1933 		if (q->p_flag & P_WEXIT) {
1934 			if (mode == SINGLE_EXIT) {
1935 				SCHED_LOCK(s);
1936 				if (q->p_stat == SSTOP) {
1937 					setrunnable(q);
1938 					pr->ps_singlecount++;
1939 				}
1940 				SCHED_UNLOCK(s);
1941 			}
1942 			continue;
1943 		}
1944 		SCHED_LOCK(s);
1945 		atomic_setbits_int(&q->p_flag, P_SUSPSINGLE);
1946 		switch (q->p_stat) {
1947 		case SIDL:
1948 		case SRUN:
1949 			pr->ps_singlecount++;
1950 			break;
1951 		case SSLEEP:
1952 			/* if it's not interruptible, then just have to wait */
1953 			if (q->p_flag & P_SINTR) {
1954 				/* merely need to suspend?  just stop it */
1955 				if (mode == SINGLE_SUSPEND ||
1956 				    mode == SINGLE_PTRACE) {
1957 					q->p_stat = SSTOP;
1958 					break;
1959 				}
1960 				/* need to unwind or exit, so wake it */
1961 				setrunnable(q);
1962 			}
1963 			pr->ps_singlecount++;
1964 			break;
1965 		case SSTOP:
1966 			if (mode == SINGLE_EXIT) {
1967 				setrunnable(q);
1968 				pr->ps_singlecount++;
1969 			}
1970 			break;
1971 		case SDEAD:
1972 			break;
1973 		case SONPROC:
1974 			pr->ps_singlecount++;
1975 			signotify(q);
1976 			break;
1977 		}
1978 		SCHED_UNLOCK(s);
1979 	}
1980 
1981 	if (mode != SINGLE_PTRACE)
1982 		single_thread_wait(pr);
1983 
1984 	return 0;
1985 }
1986 
1987 void
1988 single_thread_wait(struct process *pr)
1989 {
1990 	/* wait until they're all suspended */
1991 	while (pr->ps_singlecount > 0)
1992 		tsleep(&pr->ps_singlecount, PUSER, "suspend", 0);
1993 }
1994 
1995 void
1996 single_thread_clear(struct proc *p, int flag)
1997 {
1998 	struct process *pr = p->p_p;
1999 	struct proc *q;
2000 
2001 	KASSERT(pr->ps_single == p);
2002 	KERNEL_ASSERT_LOCKED();
2003 
2004 	pr->ps_single = NULL;
2005 	atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND | PS_SINGLEEXIT);
2006 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2007 		int s;
2008 
2009 		if (q == p || (q->p_flag & P_SUSPSINGLE) == 0)
2010 			continue;
2011 		atomic_clearbits_int(&q->p_flag, P_SUSPSINGLE);
2012 
2013 		/*
2014 		 * if the thread was only stopped for single threading
2015 		 * then clearing that either makes it runnable or puts
2016 		 * it back into some sleep queue
2017 		 */
2018 		SCHED_LOCK(s);
2019 		if (q->p_stat == SSTOP && (q->p_flag & flag) == 0) {
2020 			if (q->p_wchan == 0)
2021 				setrunnable(q);
2022 			else
2023 				q->p_stat = SSLEEP;
2024 		}
2025 		SCHED_UNLOCK(s);
2026 	}
2027 }
2028