xref: /openbsd-src/sys/kern/kern_sig.c (revision 6f05df2d9be0954bec42d51d943d77bd250fb664)
1 /*	$OpenBSD: kern_sig.c,v 1.175 2014/11/16 05:42:21 guenther Exp $	*/
2 /*	$NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Theo de Raadt. All rights reserved.
6  * Copyright (c) 1982, 1986, 1989, 1991, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
39  */
40 
41 #define	SIGPROP		/* include signal properties table */
42 #include <sys/param.h>
43 #include <sys/signalvar.h>
44 #include <sys/resourcevar.h>
45 #include <sys/queue.h>
46 #include <sys/namei.h>
47 #include <sys/vnode.h>
48 #include <sys/event.h>
49 #include <sys/proc.h>
50 #include <sys/systm.h>
51 #include <sys/buf.h>
52 #include <sys/acct.h>
53 #include <sys/file.h>
54 #include <sys/filedesc.h>
55 #include <sys/kernel.h>
56 #include <sys/wait.h>
57 #include <sys/ktrace.h>
58 #include <sys/stat.h>
59 #include <sys/core.h>
60 #include <sys/malloc.h>
61 #include <sys/pool.h>
62 #include <sys/ptrace.h>
63 #include <sys/sched.h>
64 #include <sys/user.h>
65 
66 #include <sys/mount.h>
67 #include <sys/syscallargs.h>
68 
69 int	filt_sigattach(struct knote *kn);
70 void	filt_sigdetach(struct knote *kn);
71 int	filt_signal(struct knote *kn, long hint);
72 
73 struct filterops sig_filtops =
74 	{ 0, filt_sigattach, filt_sigdetach, filt_signal };
75 
76 void proc_stop(struct proc *p, int);
77 void proc_stop_sweep(void *);
78 struct timeout proc_stop_to;
79 
80 int cansignal(struct proc *, struct process *, int);
81 
82 struct pool sigacts_pool;	/* memory pool for sigacts structures */
83 
84 /*
85  * Can thread p, send the signal signum to process qr?
86  */
87 int
88 cansignal(struct proc *p, struct process *qr, int signum)
89 {
90 	struct process *pr = p->p_p;
91 	struct ucred *uc = p->p_ucred;
92 	struct ucred *quc = qr->ps_ucred;
93 
94 	if (uc->cr_uid == 0)
95 		return (1);		/* root can always signal */
96 
97 	if (pr == qr)
98 		return (1);		/* process can always signal itself */
99 
100 	/* optimization: if the same creds then the tests below will pass */
101 	if (uc == quc)
102 		return (1);
103 
104 	if (signum == SIGCONT && qr->ps_session == pr->ps_session)
105 		return (1);		/* SIGCONT in session */
106 
107 	/*
108 	 * Using kill(), only certain signals can be sent to setugid
109 	 * child processes
110 	 */
111 	if (qr->ps_flags & PS_SUGID) {
112 		switch (signum) {
113 		case 0:
114 		case SIGKILL:
115 		case SIGINT:
116 		case SIGTERM:
117 		case SIGALRM:
118 		case SIGSTOP:
119 		case SIGTTIN:
120 		case SIGTTOU:
121 		case SIGTSTP:
122 		case SIGHUP:
123 		case SIGUSR1:
124 		case SIGUSR2:
125 			if (uc->cr_ruid == quc->cr_ruid ||
126 			    uc->cr_uid == quc->cr_ruid)
127 				return (1);
128 		}
129 		return (0);
130 	}
131 
132 	if (uc->cr_ruid == quc->cr_ruid ||
133 	    uc->cr_ruid == quc->cr_svuid ||
134 	    uc->cr_uid == quc->cr_ruid ||
135 	    uc->cr_uid == quc->cr_svuid)
136 		return (1);
137 	return (0);
138 }
139 
140 /*
141  * Initialize signal-related data structures.
142  */
143 void
144 signal_init(void)
145 {
146 	timeout_set(&proc_stop_to, proc_stop_sweep, NULL);
147 
148 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, 0, 0, "sigapl",
149 	    &pool_allocator_nointr);
150 }
151 
152 /*
153  * Create an initial sigacts structure, using the same signal state
154  * as p.
155  */
156 struct sigacts *
157 sigactsinit(struct process *pr)
158 {
159 	struct sigacts *ps;
160 
161 	ps = pool_get(&sigacts_pool, PR_WAITOK);
162 	memcpy(ps, pr->ps_sigacts, sizeof(struct sigacts));
163 	ps->ps_refcnt = 1;
164 	return (ps);
165 }
166 
167 /*
168  * Share a sigacts structure.
169  */
170 struct sigacts *
171 sigactsshare(struct process *pr)
172 {
173 	struct sigacts *ps = pr->ps_sigacts;
174 
175 	ps->ps_refcnt++;
176 	return ps;
177 }
178 
179 /*
180  * Initialize a new sigaltstack structure.
181  */
182 void
183 sigstkinit(struct sigaltstack *ss)
184 {
185 	ss->ss_flags = SS_DISABLE;
186 	ss->ss_size = 0;
187 	ss->ss_sp = 0;
188 }
189 
190 /*
191  * Make this process not share its sigacts, maintaining all
192  * signal state.
193  */
194 void
195 sigactsunshare(struct process *pr)
196 {
197 	struct sigacts *newps;
198 
199 	if (pr->ps_sigacts->ps_refcnt == 1)
200 		return;
201 
202 	newps = sigactsinit(pr);
203 	sigactsfree(pr);
204 	pr->ps_sigacts = newps;
205 }
206 
207 /*
208  * Release a sigacts structure.
209  */
210 void
211 sigactsfree(struct process *pr)
212 {
213 	struct sigacts *ps = pr->ps_sigacts;
214 
215 	if (--ps->ps_refcnt > 0)
216 		return;
217 
218 	pr->ps_sigacts = NULL;
219 
220 	pool_put(&sigacts_pool, ps);
221 }
222 
223 /* ARGSUSED */
224 int
225 sys_sigaction(struct proc *p, void *v, register_t *retval)
226 {
227 	struct sys_sigaction_args /* {
228 		syscallarg(int) signum;
229 		syscallarg(const struct sigaction *) nsa;
230 		syscallarg(struct sigaction *) osa;
231 	} */ *uap = v;
232 	struct sigaction vec;
233 #ifdef KTRACE
234 	struct sigaction ovec;
235 #endif
236 	struct sigaction *sa;
237 	const struct sigaction *nsa;
238 	struct sigaction *osa;
239 	struct sigacts *ps = p->p_p->ps_sigacts;
240 	int signum;
241 	int bit, error;
242 
243 	signum = SCARG(uap, signum);
244 	nsa = SCARG(uap, nsa);
245 	osa = SCARG(uap, osa);
246 
247 	if (signum <= 0 || signum >= NSIG ||
248 	    (nsa && (signum == SIGKILL || signum == SIGSTOP)))
249 		return (EINVAL);
250 	sa = &vec;
251 	if (osa) {
252 		sa->sa_handler = ps->ps_sigact[signum];
253 		sa->sa_mask = ps->ps_catchmask[signum];
254 		bit = sigmask(signum);
255 		sa->sa_flags = 0;
256 		if ((ps->ps_sigonstack & bit) != 0)
257 			sa->sa_flags |= SA_ONSTACK;
258 		if ((ps->ps_sigintr & bit) == 0)
259 			sa->sa_flags |= SA_RESTART;
260 		if ((ps->ps_sigreset & bit) != 0)
261 			sa->sa_flags |= SA_RESETHAND;
262 		if ((ps->ps_siginfo & bit) != 0)
263 			sa->sa_flags |= SA_SIGINFO;
264 		if (signum == SIGCHLD) {
265 			if ((ps->ps_flags & SAS_NOCLDSTOP) != 0)
266 				sa->sa_flags |= SA_NOCLDSTOP;
267 			if ((ps->ps_flags & SAS_NOCLDWAIT) != 0)
268 				sa->sa_flags |= SA_NOCLDWAIT;
269 		}
270 		if ((sa->sa_mask & bit) == 0)
271 			sa->sa_flags |= SA_NODEFER;
272 		sa->sa_mask &= ~bit;
273 		error = copyout(sa, osa, sizeof (vec));
274 		if (error)
275 			return (error);
276 #ifdef KTRACE
277 		if (KTRPOINT(p, KTR_STRUCT))
278 			ovec = vec;
279 #endif
280 	}
281 	if (nsa) {
282 		error = copyin(nsa, sa, sizeof (vec));
283 		if (error)
284 			return (error);
285 #ifdef KTRACE
286 		if (KTRPOINT(p, KTR_STRUCT))
287 			ktrsigaction(p, sa);
288 #endif
289 		setsigvec(p, signum, sa);
290 	}
291 #ifdef KTRACE
292 	if (osa && KTRPOINT(p, KTR_STRUCT))
293 		ktrsigaction(p, &ovec);
294 #endif
295 	return (0);
296 }
297 
298 void
299 setsigvec(struct proc *p, int signum, struct sigaction *sa)
300 {
301 	struct sigacts *ps = p->p_p->ps_sigacts;
302 	int bit;
303 	int s;
304 
305 	bit = sigmask(signum);
306 	/*
307 	 * Change setting atomically.
308 	 */
309 	s = splhigh();
310 	ps->ps_sigact[signum] = sa->sa_handler;
311 	if ((sa->sa_flags & SA_NODEFER) == 0)
312 		sa->sa_mask |= sigmask(signum);
313 	ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask;
314 	if (signum == SIGCHLD) {
315 		if (sa->sa_flags & SA_NOCLDSTOP)
316 			atomic_setbits_int(&ps->ps_flags, SAS_NOCLDSTOP);
317 		else
318 			atomic_clearbits_int(&ps->ps_flags, SAS_NOCLDSTOP);
319 		/*
320 		 * If the SA_NOCLDWAIT flag is set or the handler
321 		 * is SIG_IGN we reparent the dying child to PID 1
322 		 * (init) which will reap the zombie.  Because we use
323 		 * init to do our dirty work we never set SAS_NOCLDWAIT
324 		 * for PID 1.
325 		 * XXX exit1 rework means this is unnecessary?
326 		 */
327 		if (initprocess->ps_sigacts != ps &&
328 		    ((sa->sa_flags & SA_NOCLDWAIT) ||
329 		    sa->sa_handler == SIG_IGN))
330 			atomic_setbits_int(&ps->ps_flags, SAS_NOCLDWAIT);
331 		else
332 			atomic_clearbits_int(&ps->ps_flags, SAS_NOCLDWAIT);
333 	}
334 	if ((sa->sa_flags & SA_RESETHAND) != 0)
335 		ps->ps_sigreset |= bit;
336 	else
337 		ps->ps_sigreset &= ~bit;
338 	if ((sa->sa_flags & SA_SIGINFO) != 0)
339 		ps->ps_siginfo |= bit;
340 	else
341 		ps->ps_siginfo &= ~bit;
342 	if ((sa->sa_flags & SA_RESTART) == 0)
343 		ps->ps_sigintr |= bit;
344 	else
345 		ps->ps_sigintr &= ~bit;
346 	if ((sa->sa_flags & SA_ONSTACK) != 0)
347 		ps->ps_sigonstack |= bit;
348 	else
349 		ps->ps_sigonstack &= ~bit;
350 	/*
351 	 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
352 	 * and for signals set to SIG_DFL where the default is to ignore.
353 	 * However, don't put SIGCONT in ps_sigignore,
354 	 * as we have to restart the process.
355 	 */
356 	if (sa->sa_handler == SIG_IGN ||
357 	    (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) {
358 		atomic_clearbits_int(&p->p_siglist, bit);
359 		if (signum != SIGCONT)
360 			ps->ps_sigignore |= bit;	/* easier in psignal */
361 		ps->ps_sigcatch &= ~bit;
362 	} else {
363 		ps->ps_sigignore &= ~bit;
364 		if (sa->sa_handler == SIG_DFL)
365 			ps->ps_sigcatch &= ~bit;
366 		else
367 			ps->ps_sigcatch |= bit;
368 	}
369 	splx(s);
370 }
371 
372 /*
373  * Initialize signal state for process 0;
374  * set to ignore signals that are ignored by default.
375  */
376 void
377 siginit(struct process *pr)
378 {
379 	struct sigacts *ps = pr->ps_sigacts;
380 	int i;
381 
382 	for (i = 0; i < NSIG; i++)
383 		if (sigprop[i] & SA_IGNORE && i != SIGCONT)
384 			ps->ps_sigignore |= sigmask(i);
385 	ps->ps_flags = SAS_NOCLDWAIT | SAS_NOCLDSTOP;
386 }
387 
388 /*
389  * Reset signals for an exec by the specified thread.
390  */
391 void
392 execsigs(struct proc *p)
393 {
394 	struct sigacts *ps;
395 	int nc, mask;
396 
397 	sigactsunshare(p->p_p);
398 	ps = p->p_p->ps_sigacts;
399 
400 	/*
401 	 * Reset caught signals.  Held signals remain held
402 	 * through p_sigmask (unless they were caught,
403 	 * and are now ignored by default).
404 	 */
405 	while (ps->ps_sigcatch) {
406 		nc = ffs((long)ps->ps_sigcatch);
407 		mask = sigmask(nc);
408 		ps->ps_sigcatch &= ~mask;
409 		if (sigprop[nc] & SA_IGNORE) {
410 			if (nc != SIGCONT)
411 				ps->ps_sigignore |= mask;
412 			atomic_clearbits_int(&p->p_siglist, mask);
413 		}
414 		ps->ps_sigact[nc] = SIG_DFL;
415 	}
416 	/*
417 	 * Reset stack state to the user stack.
418 	 * Clear set of signals caught on the signal stack.
419 	 */
420 	sigstkinit(&p->p_sigstk);
421 	ps->ps_flags &= ~SAS_NOCLDWAIT;
422 	if (ps->ps_sigact[SIGCHLD] == SIG_IGN)
423 		ps->ps_sigact[SIGCHLD] = SIG_DFL;
424 }
425 
426 /*
427  * Manipulate signal mask.
428  * Note that we receive new mask, not pointer,
429  * and return old mask as return value;
430  * the library stub does the rest.
431  */
432 int
433 sys_sigprocmask(struct proc *p, void *v, register_t *retval)
434 {
435 	struct sys_sigprocmask_args /* {
436 		syscallarg(int) how;
437 		syscallarg(sigset_t) mask;
438 	} */ *uap = v;
439 	int error = 0;
440 	int s;
441 	sigset_t mask;
442 
443 	*retval = p->p_sigmask;
444 	mask = SCARG(uap, mask);
445 	s = splhigh();
446 
447 	switch (SCARG(uap, how)) {
448 	case SIG_BLOCK:
449 		p->p_sigmask |= mask &~ sigcantmask;
450 		break;
451 	case SIG_UNBLOCK:
452 		p->p_sigmask &= ~mask;
453 		break;
454 	case SIG_SETMASK:
455 		p->p_sigmask = mask &~ sigcantmask;
456 		break;
457 	default:
458 		error = EINVAL;
459 		break;
460 	}
461 	splx(s);
462 	return (error);
463 }
464 
465 /* ARGSUSED */
466 int
467 sys_sigpending(struct proc *p, void *v, register_t *retval)
468 {
469 
470 	*retval = p->p_siglist;
471 	return (0);
472 }
473 
474 /*
475  * Temporarily replace calling proc's signal mask for the duration of a
476  * system call.  Original signal mask will be restored by userret().
477  */
478 void
479 dosigsuspend(struct proc *p, sigset_t newmask)
480 {
481 	KASSERT(p == curproc);
482 
483 	p->p_oldmask = p->p_sigmask;
484 	atomic_setbits_int(&p->p_flag, P_SIGSUSPEND);
485 	p->p_sigmask = newmask;
486 }
487 
488 /*
489  * Suspend process until signal, providing mask to be set
490  * in the meantime.  Note nonstandard calling convention:
491  * libc stub passes mask, not pointer, to save a copyin.
492  */
493 /* ARGSUSED */
494 int
495 sys_sigsuspend(struct proc *p, void *v, register_t *retval)
496 {
497 	struct sys_sigsuspend_args /* {
498 		syscallarg(int) mask;
499 	} */ *uap = v;
500 	struct process *pr = p->p_p;
501 	struct sigacts *ps = pr->ps_sigacts;
502 
503 	dosigsuspend(p, SCARG(uap, mask) &~ sigcantmask);
504 	while (tsleep(ps, PPAUSE|PCATCH, "pause", 0) == 0)
505 		/* void */;
506 	/* always return EINTR rather than ERESTART... */
507 	return (EINTR);
508 }
509 
510 int
511 sigonstack(size_t stack)
512 {
513 	const struct sigaltstack *ss = &curproc->p_sigstk;
514 
515 	return (ss->ss_flags & SS_DISABLE ? 0 :
516 	    (stack - (size_t)ss->ss_sp < ss->ss_size));
517 }
518 
519 int
520 sys_sigaltstack(struct proc *p, void *v, register_t *retval)
521 {
522 	struct sys_sigaltstack_args /* {
523 		syscallarg(const struct sigaltstack *) nss;
524 		syscallarg(struct sigaltstack *) oss;
525 	} */ *uap = v;
526 	struct sigaltstack ss;
527 	const struct sigaltstack *nss;
528 	struct sigaltstack *oss;
529 	int onstack = sigonstack(PROC_STACK(p));
530 	int error;
531 
532 	nss = SCARG(uap, nss);
533 	oss = SCARG(uap, oss);
534 
535 	if (oss != NULL) {
536 		ss = p->p_sigstk;
537 		if (onstack)
538 			ss.ss_flags |= SS_ONSTACK;
539 		if ((error = copyout(&ss, oss, sizeof(ss))))
540 			return (error);
541 	}
542 	if (nss == NULL)
543 		return (0);
544 	error = copyin(nss, &ss, sizeof(ss));
545 	if (error)
546 		return (error);
547 	if (onstack)
548 		return (EPERM);
549 	if (ss.ss_flags & ~SS_DISABLE)
550 		return (EINVAL);
551 	if (ss.ss_flags & SS_DISABLE) {
552 		p->p_sigstk.ss_flags = ss.ss_flags;
553 		return (0);
554 	}
555 	if (ss.ss_size < MINSIGSTKSZ)
556 		return (ENOMEM);
557 	p->p_sigstk = ss;
558 	return (0);
559 }
560 
561 /* ARGSUSED */
562 int
563 sys_kill(struct proc *cp, void *v, register_t *retval)
564 {
565 	struct sys_kill_args /* {
566 		syscallarg(int) pid;
567 		syscallarg(int) signum;
568 	} */ *uap = v;
569 	struct proc *p;
570 	int pid = SCARG(uap, pid);
571 	int signum = SCARG(uap, signum);
572 
573 	if (((u_int)signum) >= NSIG)
574 		return (EINVAL);
575 	if (pid > 0) {
576 		enum signal_type type = SPROCESS;
577 
578 		/*
579 		 * If the target pid is > THREAD_PID_OFFSET then this
580 		 * must be a kill of another thread in the same process.
581 		 * Otherwise, this is a process kill and the target must
582 		 * be a main thread.
583 		 */
584 		if (pid > THREAD_PID_OFFSET) {
585 			if ((p = pfind(pid - THREAD_PID_OFFSET)) == NULL)
586 				return (ESRCH);
587 			if (p->p_p != cp->p_p)
588 				return (ESRCH);
589 			type = STHREAD;
590 		} else {
591 			/* XXX use prfind() */
592 			if ((p = pfind(pid)) == NULL)
593 				return (ESRCH);
594 			if (p->p_flag & P_THREAD)
595 				return (ESRCH);
596 			if (!cansignal(cp, p->p_p, signum))
597 				return (EPERM);
598 		}
599 
600 		/* kill single process or thread */
601 		if (signum)
602 			ptsignal(p, signum, type);
603 		return (0);
604 	}
605 	switch (pid) {
606 	case -1:		/* broadcast signal */
607 		return (killpg1(cp, signum, 0, 1));
608 	case 0:			/* signal own process group */
609 		return (killpg1(cp, signum, 0, 0));
610 	default:		/* negative explicit process group */
611 		return (killpg1(cp, signum, -pid, 0));
612 	}
613 	/* NOTREACHED */
614 }
615 
616 /*
617  * Common code for kill process group/broadcast kill.
618  * cp is calling process.
619  */
620 int
621 killpg1(struct proc *cp, int signum, int pgid, int all)
622 {
623 	struct process *pr;
624 	struct pgrp *pgrp;
625 	int nfound = 0;
626 
627 	if (all)
628 		/*
629 		 * broadcast
630 		 */
631 		LIST_FOREACH(pr, &allprocess, ps_list) {
632 			if (pr->ps_pid <= 1 ||
633 			    pr->ps_flags & (PS_SYSTEM | PS_NOBROADCASTKILL) ||
634 			    pr == cp->p_p || !cansignal(cp, pr, signum))
635 				continue;
636 			nfound++;
637 			if (signum)
638 				prsignal(pr, signum);
639 		}
640 	else {
641 		if (pgid == 0)
642 			/*
643 			 * zero pgid means send to my process group.
644 			 */
645 			pgrp = cp->p_p->ps_pgrp;
646 		else {
647 			pgrp = pgfind(pgid);
648 			if (pgrp == NULL)
649 				return (ESRCH);
650 		}
651 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist) {
652 			if (pr->ps_pid <= 1 || pr->ps_flags & PS_SYSTEM ||
653 			    !cansignal(cp, pr, signum))
654 				continue;
655 			nfound++;
656 			if (signum)
657 				prsignal(pr, signum);
658 		}
659 	}
660 	return (nfound ? 0 : ESRCH);
661 }
662 
663 #define CANDELIVER(uid, euid, pr) \
664 	(euid == 0 || \
665 	(uid) == (pr)->ps_ucred->cr_ruid || \
666 	(uid) == (pr)->ps_ucred->cr_svuid || \
667 	(uid) == (pr)->ps_ucred->cr_uid || \
668 	(euid) == (pr)->ps_ucred->cr_ruid || \
669 	(euid) == (pr)->ps_ucred->cr_svuid || \
670 	(euid) == (pr)->ps_ucred->cr_uid)
671 
672 /*
673  * Deliver signum to pgid, but first check uid/euid against each
674  * process and see if it is permitted.
675  */
676 void
677 csignal(pid_t pgid, int signum, uid_t uid, uid_t euid)
678 {
679 	struct pgrp *pgrp;
680 	struct process *pr;
681 
682 	if (pgid == 0)
683 		return;
684 	if (pgid < 0) {
685 		pgid = -pgid;
686 		if ((pgrp = pgfind(pgid)) == NULL)
687 			return;
688 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
689 			if (CANDELIVER(uid, euid, pr))
690 				prsignal(pr, signum);
691 	} else {
692 		if ((pr = prfind(pgid)) == NULL)
693 			return;
694 		if (CANDELIVER(uid, euid, pr))
695 			prsignal(pr, signum);
696 	}
697 }
698 
699 /*
700  * Send a signal to a process group.
701  */
702 void
703 gsignal(int pgid, int signum)
704 {
705 	struct pgrp *pgrp;
706 
707 	if (pgid && (pgrp = pgfind(pgid)))
708 		pgsignal(pgrp, signum, 0);
709 }
710 
711 /*
712  * Send a signal to a process group.  If checktty is 1,
713  * limit to members which have a controlling terminal.
714  */
715 void
716 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
717 {
718 	struct process *pr;
719 
720 	if (pgrp)
721 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
722 			if (checkctty == 0 || pr->ps_flags & PS_CONTROLT)
723 				prsignal(pr, signum);
724 }
725 
726 /*
727  * Send a signal caused by a trap to the current process.
728  * If it will be caught immediately, deliver it with correct code.
729  * Otherwise, post it normally.
730  */
731 void
732 trapsignal(struct proc *p, int signum, u_long trapno, int code,
733     union sigval sigval)
734 {
735 	struct process *pr = p->p_p;
736 	struct sigacts *ps = pr->ps_sigacts;
737 	int mask;
738 
739 	mask = sigmask(signum);
740 	if ((pr->ps_flags & PS_TRACED) == 0 &&
741 	    (ps->ps_sigcatch & mask) != 0 &&
742 	    (p->p_sigmask & mask) == 0) {
743 #ifdef KTRACE
744 		if (KTRPOINT(p, KTR_PSIG)) {
745 			siginfo_t si;
746 
747 			initsiginfo(&si, signum, trapno, code, sigval);
748 			ktrpsig(p, signum, ps->ps_sigact[signum],
749 			    p->p_sigmask, code, &si);
750 		}
751 #endif
752 		p->p_ru.ru_nsignals++;
753 		(*pr->ps_emul->e_sendsig)(ps->ps_sigact[signum], signum,
754 		    p->p_sigmask, trapno, code, sigval);
755 		p->p_sigmask |= ps->ps_catchmask[signum];
756 		if ((ps->ps_sigreset & mask) != 0) {
757 			ps->ps_sigcatch &= ~mask;
758 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
759 				ps->ps_sigignore |= mask;
760 			ps->ps_sigact[signum] = SIG_DFL;
761 		}
762 	} else {
763 		p->p_sisig = signum;
764 		p->p_sitrapno = trapno;	/* XXX for core dump/debugger */
765 		p->p_sicode = code;
766 		p->p_sigval = sigval;
767 
768 		/*
769 		 * Signals like SIGBUS and SIGSEGV should not, when
770 		 * generated by the kernel, be ignorable or blockable.
771 		 * If it is and we're not being traced, then just kill
772 		 * the process.
773 		 */
774 		if ((pr->ps_flags & PS_TRACED) == 0 &&
775 		    (sigprop[signum] & SA_KILL) &&
776 		    ((p->p_sigmask & mask) || (ps->ps_sigignore & mask)))
777 			sigexit(p, signum);
778 		ptsignal(p, signum, STHREAD);
779 	}
780 }
781 
782 /*
783  * Send the signal to the process.  If the signal has an action, the action
784  * is usually performed by the target process rather than the caller; we add
785  * the signal to the set of pending signals for the process.
786  *
787  * Exceptions:
788  *   o When a stop signal is sent to a sleeping process that takes the
789  *     default action, the process is stopped without awakening it.
790  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
791  *     regardless of the signal action (eg, blocked or ignored).
792  *
793  * Other ignored signals are discarded immediately.
794  */
795 void
796 psignal(struct proc *p, int signum)
797 {
798 	ptsignal(p, signum, SPROCESS);
799 }
800 
801 /*
802  * type = SPROCESS	process signal, can be diverted (sigwait())
803  *	XXX if blocked in all threads, mark as pending in struct process
804  * type = STHREAD	thread signal, but should be propagated if unhandled
805  * type = SPROPAGATED	propagated to this thread, so don't propagate again
806  */
807 void
808 ptsignal(struct proc *p, int signum, enum signal_type type)
809 {
810 	int s, prop;
811 	sig_t action;
812 	int mask;
813 	struct process *pr = p->p_p;
814 	struct proc *q;
815 	int wakeparent = 0;
816 
817 #ifdef DIAGNOSTIC
818 	if ((u_int)signum >= NSIG || signum == 0)
819 		panic("psignal signal number");
820 #endif
821 
822 	/* Ignore signal if we are exiting */
823 	if (pr->ps_flags & PS_EXITING)
824 		return;
825 
826 	mask = sigmask(signum);
827 
828 	if (type == SPROCESS) {
829 		/* Accept SIGKILL to coredumping processes */
830 		if (pr->ps_flags & PS_COREDUMP && signum == SIGKILL) {
831 			if (pr->ps_single != NULL)
832 				p = pr->ps_single;
833 			atomic_setbits_int(&p->p_siglist, mask);
834 			return;
835 		}
836 
837 		/*
838 		 * If the current thread can process the signal
839 		 * immediately (it's unblocked) then have it take it.
840 		 */
841 		q = curproc;
842 		if (q != NULL && q->p_p == pr && (q->p_flag & P_WEXIT) == 0 &&
843 		    (q->p_sigmask & mask) == 0)
844 			p = q;
845 		else {
846 			/*
847 			 * A process-wide signal can be diverted to a
848 			 * different thread that's in sigwait() for this
849 			 * signal.  If there isn't such a thread, then
850 			 * pick a thread that doesn't have it blocked so
851 			 * that the stop/kill consideration isn't
852 			 * delayed.  Otherwise, mark it pending on the
853 			 * main thread.
854 			 */
855 			TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
856 				/* ignore exiting threads */
857 				if (q->p_flag & P_WEXIT)
858 					continue;
859 
860 				/* skip threads that have the signal blocked */
861 				if ((q->p_sigmask & mask) != 0)
862 					continue;
863 
864 				/* okay, could send to this thread */
865 				p = q;
866 
867 				/*
868 				 * sigsuspend, sigwait, ppoll/pselect, etc?
869 				 * Definitely go to this thread, as it's
870 				 * already blocked in the kernel.
871 				 */
872 				if (q->p_flag & P_SIGSUSPEND)
873 					break;
874 			}
875 		}
876 	}
877 
878 	if (type != SPROPAGATED)
879 		KNOTE(&pr->ps_klist, NOTE_SIGNAL | signum);
880 
881 	prop = sigprop[signum];
882 
883 	/*
884 	 * If proc is traced, always give parent a chance.
885 	 */
886 	if (pr->ps_flags & PS_TRACED) {
887 		action = SIG_DFL;
888 		atomic_setbits_int(&p->p_siglist, mask);
889 	} else {
890 		/*
891 		 * If the signal is being ignored,
892 		 * then we forget about it immediately.
893 		 * (Note: we don't set SIGCONT in ps_sigignore,
894 		 * and if it is set to SIG_IGN,
895 		 * action will be SIG_DFL here.)
896 		 */
897 		if (pr->ps_sigacts->ps_sigignore & mask)
898 			return;
899 		if (p->p_sigmask & mask) {
900 			action = SIG_HOLD;
901 		} else if (pr->ps_sigacts->ps_sigcatch & mask) {
902 			action = SIG_CATCH;
903 		} else {
904 			action = SIG_DFL;
905 
906 			if (prop & SA_KILL &&  pr->ps_nice > NZERO)
907 				 pr->ps_nice = NZERO;
908 
909 			/*
910 			 * If sending a tty stop signal to a member of an
911 			 * orphaned process group, discard the signal here if
912 			 * the action is default; don't stop the process below
913 			 * if sleeping, and don't clear any pending SIGCONT.
914 			 */
915 			if (prop & SA_TTYSTOP && pr->ps_pgrp->pg_jobc == 0)
916 				return;
917 		}
918 
919 		atomic_setbits_int(&p->p_siglist, mask);
920 	}
921 
922 	if (prop & SA_CONT)
923 		atomic_clearbits_int(&p->p_siglist, stopsigmask);
924 
925 	if (prop & SA_STOP) {
926 		atomic_clearbits_int(&p->p_siglist, contsigmask);
927 		atomic_clearbits_int(&p->p_flag, P_CONTINUED);
928 	}
929 
930 	/*
931 	 * XXX delay processing of SA_STOP signals unless action == SIG_DFL?
932 	 */
933 	if (prop & (SA_CONT | SA_STOP) && type != SPROPAGATED)
934 		TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)
935 			if (q != p)
936 				ptsignal(q, signum, SPROPAGATED);
937 
938 	/*
939 	 * Defer further processing for signals which are held,
940 	 * except that stopped processes must be continued by SIGCONT.
941 	 */
942 	if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
943 		return;
944 
945 	SCHED_LOCK(s);
946 
947 	switch (p->p_stat) {
948 
949 	case SSLEEP:
950 		/*
951 		 * If process is sleeping uninterruptibly
952 		 * we can't interrupt the sleep... the signal will
953 		 * be noticed when the process returns through
954 		 * trap() or syscall().
955 		 */
956 		if ((p->p_flag & P_SINTR) == 0)
957 			goto out;
958 		/*
959 		 * Process is sleeping and traced... make it runnable
960 		 * so it can discover the signal in issignal() and stop
961 		 * for the parent.
962 		 */
963 		if (pr->ps_flags & PS_TRACED)
964 			goto run;
965 		/*
966 		 * If SIGCONT is default (or ignored) and process is
967 		 * asleep, we are finished; the process should not
968 		 * be awakened.
969 		 */
970 		if ((prop & SA_CONT) && action == SIG_DFL) {
971 			atomic_clearbits_int(&p->p_siglist, mask);
972 			goto out;
973 		}
974 		/*
975 		 * When a sleeping process receives a stop
976 		 * signal, process immediately if possible.
977 		 */
978 		if ((prop & SA_STOP) && action == SIG_DFL) {
979 			/*
980 			 * If a child holding parent blocked,
981 			 * stopping could cause deadlock.
982 			 */
983 			if (pr->ps_flags & PS_PPWAIT)
984 				goto out;
985 			atomic_clearbits_int(&p->p_siglist, mask);
986 			p->p_xstat = signum;
987 			proc_stop(p, 0);
988 			goto out;
989 		}
990 		/*
991 		 * All other (caught or default) signals
992 		 * cause the process to run.
993 		 */
994 		goto runfast;
995 		/*NOTREACHED*/
996 
997 	case SSTOP:
998 		/*
999 		 * If traced process is already stopped,
1000 		 * then no further action is necessary.
1001 		 */
1002 		if (pr->ps_flags & PS_TRACED)
1003 			goto out;
1004 
1005 		/*
1006 		 * Kill signal always sets processes running.
1007 		 */
1008 		if (signum == SIGKILL) {
1009 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1010 			goto runfast;
1011 		}
1012 
1013 		if (prop & SA_CONT) {
1014 			/*
1015 			 * If SIGCONT is default (or ignored), we continue the
1016 			 * process but don't leave the signal in p_siglist, as
1017 			 * it has no further action.  If SIGCONT is held, we
1018 			 * continue the process and leave the signal in
1019 			 * p_siglist.  If the process catches SIGCONT, let it
1020 			 * handle the signal itself.  If it isn't waiting on
1021 			 * an event, then it goes back to run state.
1022 			 * Otherwise, process goes back to sleep state.
1023 			 */
1024 			atomic_setbits_int(&p->p_flag, P_CONTINUED);
1025 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1026 			wakeparent = 1;
1027 			if (action == SIG_DFL)
1028 				atomic_clearbits_int(&p->p_siglist, mask);
1029 			if (action == SIG_CATCH)
1030 				goto runfast;
1031 			if (p->p_wchan == 0)
1032 				goto run;
1033 			p->p_stat = SSLEEP;
1034 			goto out;
1035 		}
1036 
1037 		if (prop & SA_STOP) {
1038 			/*
1039 			 * Already stopped, don't need to stop again.
1040 			 * (If we did the shell could get confused.)
1041 			 */
1042 			atomic_clearbits_int(&p->p_siglist, mask);
1043 			goto out;
1044 		}
1045 
1046 		/*
1047 		 * If process is sleeping interruptibly, then simulate a
1048 		 * wakeup so that when it is continued, it will be made
1049 		 * runnable and can look at the signal.  But don't make
1050 		 * the process runnable, leave it stopped.
1051 		 */
1052 		if (p->p_wchan && p->p_flag & P_SINTR)
1053 			unsleep(p);
1054 		goto out;
1055 
1056 	case SONPROC:
1057 		signotify(p);
1058 		/* FALLTHROUGH */
1059 	default:
1060 		/*
1061 		 * SRUN, SIDL, SDEAD do nothing with the signal,
1062 		 * other than kicking ourselves if we are running.
1063 		 * It will either never be noticed, or noticed very soon.
1064 		 */
1065 		goto out;
1066 	}
1067 	/*NOTREACHED*/
1068 
1069 runfast:
1070 	/*
1071 	 * Raise priority to at least PUSER.
1072 	 */
1073 	if (p->p_priority > PUSER)
1074 		p->p_priority = PUSER;
1075 run:
1076 	setrunnable(p);
1077 out:
1078 	SCHED_UNLOCK(s);
1079 	if (wakeparent)
1080 		wakeup(pr->ps_pptr);
1081 }
1082 
1083 /*
1084  * If the current process has received a signal (should be caught or cause
1085  * termination, should interrupt current syscall), return the signal number.
1086  * Stop signals with default action are processed immediately, then cleared;
1087  * they aren't returned.  This is checked after each entry to the system for
1088  * a syscall or trap (though this can usually be done without calling issignal
1089  * by checking the pending signal masks in the CURSIG macro.) The normal call
1090  * sequence is
1091  *
1092  *	while (signum = CURSIG(curproc))
1093  *		postsig(signum);
1094  *
1095  * Assumes that if the P_SINTR flag is set, we're holding both the
1096  * kernel and scheduler locks.
1097  */
1098 int
1099 issignal(struct proc *p)
1100 {
1101 	struct process *pr = p->p_p;
1102 	int signum, mask, prop;
1103 	int dolock = (p->p_flag & P_SINTR) == 0;
1104 	int s;
1105 
1106 	for (;;) {
1107 		mask = p->p_siglist & ~p->p_sigmask;
1108 		if (pr->ps_flags & PS_PPWAIT)
1109 			mask &= ~stopsigmask;
1110 		if (mask == 0)	 	/* no signal to send */
1111 			return (0);
1112 		signum = ffs((long)mask);
1113 		mask = sigmask(signum);
1114 		atomic_clearbits_int(&p->p_siglist, mask);
1115 
1116 		/*
1117 		 * We should see pending but ignored signals
1118 		 * only if PS_TRACED was on when they were posted.
1119 		 */
1120 		if (mask & pr->ps_sigacts->ps_sigignore &&
1121 		    (pr->ps_flags & PS_TRACED) == 0)
1122 			continue;
1123 
1124 		if ((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) {
1125 			/*
1126 			 * If traced, always stop, and stay
1127 			 * stopped until released by the debugger.
1128 			 */
1129 			p->p_xstat = signum;
1130 
1131 			if (dolock)
1132 				KERNEL_LOCK();
1133 			single_thread_set(p, SINGLE_PTRACE, 0);
1134 			if (dolock)
1135 				KERNEL_UNLOCK();
1136 
1137 			if (dolock)
1138 				SCHED_LOCK(s);
1139 			proc_stop(p, 1);
1140 			if (dolock)
1141 				SCHED_UNLOCK(s);
1142 
1143 			if (dolock)
1144 				KERNEL_LOCK();
1145 			single_thread_clear(p, 0);
1146 			if (dolock)
1147 				KERNEL_UNLOCK();
1148 
1149 			/*
1150 			 * If we are no longer being traced, or the parent
1151 			 * didn't give us a signal, look for more signals.
1152 			 */
1153 			if ((pr->ps_flags & PS_TRACED) == 0 || p->p_xstat == 0)
1154 				continue;
1155 
1156 			/*
1157 			 * If the new signal is being masked, look for other
1158 			 * signals.
1159 			 */
1160 			signum = p->p_xstat;
1161 			mask = sigmask(signum);
1162 			if ((p->p_sigmask & mask) != 0)
1163 				continue;
1164 
1165 			/* take the signal! */
1166 			atomic_clearbits_int(&p->p_siglist, mask);
1167 		}
1168 
1169 		prop = sigprop[signum];
1170 
1171 		/*
1172 		 * Decide whether the signal should be returned.
1173 		 * Return the signal's number, or fall through
1174 		 * to clear it from the pending mask.
1175 		 */
1176 		switch ((long)pr->ps_sigacts->ps_sigact[signum]) {
1177 		case (long)SIG_DFL:
1178 			/*
1179 			 * Don't take default actions on system processes.
1180 			 */
1181 			if (p->p_pid <= 1) {
1182 #ifdef DIAGNOSTIC
1183 				/*
1184 				 * Are you sure you want to ignore SIGSEGV
1185 				 * in init? XXX
1186 				 */
1187 				printf("Process (pid %d) got signal %d\n",
1188 				    p->p_pid, signum);
1189 #endif
1190 				break;		/* == ignore */
1191 			}
1192 			/*
1193 			 * If there is a pending stop signal to process
1194 			 * with default action, stop here,
1195 			 * then clear the signal.  However,
1196 			 * if process is member of an orphaned
1197 			 * process group, ignore tty stop signals.
1198 			 */
1199 			if (prop & SA_STOP) {
1200 				if (pr->ps_flags & PS_TRACED ||
1201 		    		    (pr->ps_pgrp->pg_jobc == 0 &&
1202 				    prop & SA_TTYSTOP))
1203 					break;	/* == ignore */
1204 				p->p_xstat = signum;
1205 				if (dolock)
1206 					SCHED_LOCK(s);
1207 				proc_stop(p, 1);
1208 				if (dolock)
1209 					SCHED_UNLOCK(s);
1210 				break;
1211 			} else if (prop & SA_IGNORE) {
1212 				/*
1213 				 * Except for SIGCONT, shouldn't get here.
1214 				 * Default action is to ignore; drop it.
1215 				 */
1216 				break;		/* == ignore */
1217 			} else
1218 				goto keep;
1219 			/*NOTREACHED*/
1220 		case (long)SIG_IGN:
1221 			/*
1222 			 * Masking above should prevent us ever trying
1223 			 * to take action on an ignored signal other
1224 			 * than SIGCONT, unless process is traced.
1225 			 */
1226 			if ((prop & SA_CONT) == 0 &&
1227 			    (pr->ps_flags & PS_TRACED) == 0)
1228 				printf("issignal\n");
1229 			break;		/* == ignore */
1230 		default:
1231 			/*
1232 			 * This signal has an action, let
1233 			 * postsig() process it.
1234 			 */
1235 			goto keep;
1236 		}
1237 	}
1238 	/* NOTREACHED */
1239 
1240 keep:
1241 	atomic_setbits_int(&p->p_siglist, mask); /*leave the signal for later */
1242 	return (signum);
1243 }
1244 
1245 /*
1246  * Put the argument process into the stopped state and notify the parent
1247  * via wakeup.  Signals are handled elsewhere.  The process must not be
1248  * on the run queue.
1249  */
1250 void
1251 proc_stop(struct proc *p, int sw)
1252 {
1253 	struct process *pr = p->p_p;
1254 	extern void *softclock_si;
1255 
1256 #ifdef MULTIPROCESSOR
1257 	SCHED_ASSERT_LOCKED();
1258 #endif
1259 
1260 	p->p_stat = SSTOP;
1261 	atomic_clearbits_int(&pr->ps_flags, PS_WAITED);
1262 	atomic_setbits_int(&pr->ps_flags, PS_STOPPED);
1263 	atomic_setbits_int(&p->p_flag, P_SUSPSIG);
1264 	if (!timeout_pending(&proc_stop_to)) {
1265 		timeout_add(&proc_stop_to, 0);
1266 		/*
1267 		 * We need this soft interrupt to be handled fast.
1268 		 * Extra calls to softclock don't hurt.
1269 		 */
1270                 softintr_schedule(softclock_si);
1271 	}
1272 	if (sw)
1273 		mi_switch();
1274 }
1275 
1276 /*
1277  * Called from a timeout to send signals to the parents of stopped processes.
1278  * We can't do this in proc_stop because it's called with nasty locks held
1279  * and we would need recursive scheduler lock to deal with that.
1280  */
1281 void
1282 proc_stop_sweep(void *v)
1283 {
1284 	struct process *pr;
1285 
1286 	LIST_FOREACH(pr, &allprocess, ps_list) {
1287 		if ((pr->ps_flags & PS_STOPPED) == 0)
1288 			continue;
1289 		atomic_clearbits_int(&pr->ps_flags, PS_STOPPED);
1290 
1291 		if ((pr->ps_pptr->ps_sigacts->ps_flags & SAS_NOCLDSTOP) == 0)
1292 			prsignal(pr->ps_pptr, SIGCHLD);
1293 		wakeup(pr->ps_pptr);
1294 	}
1295 }
1296 
1297 /*
1298  * Take the action for the specified signal
1299  * from the current set of pending signals.
1300  */
1301 void
1302 postsig(int signum)
1303 {
1304 	struct proc *p = curproc;
1305 	struct process *pr = p->p_p;
1306 	struct sigacts *ps = pr->ps_sigacts;
1307 	sig_t action;
1308 	u_long trapno;
1309 	int mask, returnmask;
1310 	union sigval sigval;
1311 	int s, code;
1312 
1313 #ifdef DIAGNOSTIC
1314 	if (signum == 0)
1315 		panic("postsig");
1316 #endif
1317 
1318 	KERNEL_LOCK();
1319 
1320 	mask = sigmask(signum);
1321 	atomic_clearbits_int(&p->p_siglist, mask);
1322 	action = ps->ps_sigact[signum];
1323 	sigval.sival_ptr = 0;
1324 
1325 	if (p->p_sisig != signum) {
1326 		trapno = 0;
1327 		code = SI_USER;
1328 		sigval.sival_ptr = 0;
1329 	} else {
1330 		trapno = p->p_sitrapno;
1331 		code = p->p_sicode;
1332 		sigval = p->p_sigval;
1333 	}
1334 
1335 #ifdef KTRACE
1336 	if (KTRPOINT(p, KTR_PSIG)) {
1337 		siginfo_t si;
1338 
1339 		initsiginfo(&si, signum, trapno, code, sigval);
1340 		ktrpsig(p, signum, action, p->p_flag & P_SIGSUSPEND ?
1341 		    p->p_oldmask : p->p_sigmask, code, &si);
1342 	}
1343 #endif
1344 	if (action == SIG_DFL) {
1345 		/*
1346 		 * Default action, where the default is to kill
1347 		 * the process.  (Other cases were ignored above.)
1348 		 */
1349 		sigexit(p, signum);
1350 		/* NOTREACHED */
1351 	} else {
1352 		/*
1353 		 * If we get here, the signal must be caught.
1354 		 */
1355 #ifdef DIAGNOSTIC
1356 		if (action == SIG_IGN || (p->p_sigmask & mask))
1357 			panic("postsig action");
1358 #endif
1359 		/*
1360 		 * Set the new mask value and also defer further
1361 		 * occurrences of this signal.
1362 		 *
1363 		 * Special case: user has done a sigpause.  Here the
1364 		 * current mask is not of interest, but rather the
1365 		 * mask from before the sigpause is what we want
1366 		 * restored after the signal processing is completed.
1367 		 */
1368 #ifdef MULTIPROCESSOR
1369 		s = splsched();
1370 #else
1371 		s = splhigh();
1372 #endif
1373 		if (p->p_flag & P_SIGSUSPEND) {
1374 			atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1375 			returnmask = p->p_oldmask;
1376 		} else {
1377 			returnmask = p->p_sigmask;
1378 		}
1379 		p->p_sigmask |= ps->ps_catchmask[signum];
1380 		if ((ps->ps_sigreset & mask) != 0) {
1381 			ps->ps_sigcatch &= ~mask;
1382 			if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
1383 				ps->ps_sigignore |= mask;
1384 			ps->ps_sigact[signum] = SIG_DFL;
1385 		}
1386 		splx(s);
1387 		p->p_ru.ru_nsignals++;
1388 		if (p->p_sisig == signum) {
1389 			p->p_sisig = 0;
1390 			p->p_sitrapno = 0;
1391 			p->p_sicode = SI_USER;
1392 			p->p_sigval.sival_ptr = NULL;
1393 		}
1394 
1395 		(*pr->ps_emul->e_sendsig)(action, signum, returnmask, trapno,
1396 		    code, sigval);
1397 	}
1398 
1399 	KERNEL_UNLOCK();
1400 }
1401 
1402 /*
1403  * Force the current process to exit with the specified signal, dumping core
1404  * if appropriate.  We bypass the normal tests for masked and caught signals,
1405  * allowing unrecoverable failures to terminate the process without changing
1406  * signal state.  Mark the accounting record with the signal termination.
1407  * If dumping core, save the signal number for the debugger.  Calls exit and
1408  * does not return.
1409  */
1410 void
1411 sigexit(struct proc *p, int signum)
1412 {
1413 	/* Mark process as going away */
1414 	atomic_setbits_int(&p->p_flag, P_WEXIT);
1415 
1416 	p->p_p->ps_acflag |= AXSIG;
1417 	if (sigprop[signum] & SA_CORE) {
1418 		p->p_sisig = signum;
1419 
1420 		/* if there are other threads, pause them */
1421 		if (TAILQ_FIRST(&p->p_p->ps_threads) != p ||
1422 		    TAILQ_NEXT(p, p_thr_link) != NULL)
1423 			single_thread_set(p, SINGLE_SUSPEND, 0);
1424 
1425 		if (coredump(p) == 0)
1426 			signum |= WCOREFLAG;
1427 	}
1428 	exit1(p, W_EXITCODE(0, signum), EXIT_NORMAL);
1429 	/* NOTREACHED */
1430 }
1431 
1432 int nosuidcoredump = 1;
1433 
1434 struct coredump_iostate {
1435 	struct proc *io_proc;
1436 	struct vnode *io_vp;
1437 	struct ucred *io_cred;
1438 	off_t io_offset;
1439 };
1440 
1441 /*
1442  * Dump core, into a file named "progname.core", unless the process was
1443  * setuid/setgid.
1444  */
1445 int
1446 coredump(struct proc *p)
1447 {
1448 #ifdef SMALL_KERNEL
1449 	return EPERM;
1450 #else
1451 	struct process *pr = p->p_p;
1452 	struct vnode *vp;
1453 	struct ucred *cred = p->p_ucred;
1454 	struct vmspace *vm = p->p_vmspace;
1455 	struct nameidata nd;
1456 	struct vattr vattr;
1457 	struct coredump_iostate	io;
1458 	int error, len, incrash = 0;
1459 	char name[MAXPATHLEN];
1460 	const char *dir = "/var/crash";
1461 
1462 	pr->ps_flags |= PS_COREDUMP;
1463 
1464 	/*
1465 	 * If the process has inconsistant uids, nosuidcoredump
1466 	 * determines coredump placement policy.
1467 	 */
1468 	if (((pr->ps_flags & PS_SUGID) && (error = suser(p, 0))) ||
1469 	   ((pr->ps_flags & PS_SUGID) && nosuidcoredump)) {
1470 		if (nosuidcoredump == 3 || nosuidcoredump == 2)
1471 			incrash = 1;
1472 		else
1473 			return (EPERM);
1474 	}
1475 
1476 	/* Don't dump if will exceed file size limit. */
1477 	if (USPACE + ptoa(vm->vm_dsize + vm->vm_ssize) >=
1478 	    p->p_rlimit[RLIMIT_CORE].rlim_cur)
1479 		return (EFBIG);
1480 
1481 	if (incrash && nosuidcoredump == 3) {
1482 		/*
1483 		 * If the program directory does not exist, dumps of
1484 		 * that core will silently fail.
1485 		 */
1486 		len = snprintf(name, sizeof(name), "%s/%s/%u.core",
1487 		    dir, p->p_comm, p->p_pid);
1488 	} else if (incrash && nosuidcoredump == 2)
1489 		len = snprintf(name, sizeof(name), "%s/%s.core",
1490 		    dir, p->p_comm);
1491 	else
1492 		len = snprintf(name, sizeof(name), "%s.core", p->p_comm);
1493 	if (len >= sizeof(name))
1494 		return (EACCES);
1495 
1496 	/*
1497 	 * Control the UID used to write out.  The normal case uses
1498 	 * the real UID.  If the sugid case is going to write into the
1499 	 * controlled directory, we do so as root.
1500 	 */
1501 	if (incrash == 0) {
1502 		cred = crdup(cred);
1503 		cred->cr_uid = cred->cr_ruid;
1504 		cred->cr_gid = cred->cr_rgid;
1505 	} else {
1506 		if (p->p_fd->fd_rdir) {
1507 			vrele(p->p_fd->fd_rdir);
1508 			p->p_fd->fd_rdir = NULL;
1509 		}
1510 		p->p_ucred = crdup(p->p_ucred);
1511 		crfree(cred);
1512 		cred = p->p_ucred;
1513 		crhold(cred);
1514 		cred->cr_uid = 0;
1515 		cred->cr_gid = 0;
1516 	}
1517 
1518 	NDINIT(&nd, LOOKUP, NOFOLLOW, UIO_SYSSPACE, name, p);
1519 
1520 	error = vn_open(&nd, O_CREAT | FWRITE | O_NOFOLLOW, S_IRUSR | S_IWUSR);
1521 
1522 	if (error)
1523 		goto out;
1524 
1525 	/*
1526 	 * Don't dump to non-regular files, files with links, or files
1527 	 * owned by someone else.
1528 	 */
1529 	vp = nd.ni_vp;
1530 	if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) {
1531 		VOP_UNLOCK(vp, 0, p);
1532 		vn_close(vp, FWRITE, cred, p);
1533 		goto out;
1534 	}
1535 	if (vp->v_type != VREG || vattr.va_nlink != 1 ||
1536 	    vattr.va_mode & ((VREAD | VWRITE) >> 3 | (VREAD | VWRITE) >> 6) ||
1537 	    vattr.va_uid != cred->cr_uid) {
1538 		error = EACCES;
1539 		VOP_UNLOCK(vp, 0, p);
1540 		vn_close(vp, FWRITE, cred, p);
1541 		goto out;
1542 	}
1543 	VATTR_NULL(&vattr);
1544 	vattr.va_size = 0;
1545 	VOP_SETATTR(vp, &vattr, cred, p);
1546 	pr->ps_acflag |= ACORE;
1547 
1548 	io.io_proc = p;
1549 	io.io_vp = vp;
1550 	io.io_cred = cred;
1551 	io.io_offset = 0;
1552 	VOP_UNLOCK(vp, 0, p);
1553 	vref(vp);
1554 	error = vn_close(vp, FWRITE, cred, p);
1555 	if (error == 0)
1556 		error = (*pr->ps_emul->e_coredump)(p, &io);
1557 	vrele(vp);
1558 out:
1559 	crfree(cred);
1560 	return (error);
1561 #endif
1562 }
1563 
1564 int
1565 coredump_trad(struct proc *p, void *cookie)
1566 {
1567 #ifdef SMALL_KERNEL
1568 	return EPERM;
1569 #else
1570 	struct coredump_iostate *io = cookie;
1571 	struct vmspace *vm = io->io_proc->p_vmspace;
1572 	struct vnode *vp = io->io_vp;
1573 	struct ucred *cred = io->io_cred;
1574 	struct core core;
1575 	int error;
1576 
1577 	core.c_midmag = 0;
1578 	strlcpy(core.c_name, p->p_comm, sizeof(core.c_name));
1579 	core.c_nseg = 0;
1580 	core.c_signo = p->p_sisig;
1581 	core.c_ucode = p->p_sitrapno;
1582 	core.c_cpusize = 0;
1583 	core.c_tsize = (u_long)ptoa(vm->vm_tsize);
1584 	core.c_dsize = (u_long)ptoa(vm->vm_dsize);
1585 	core.c_ssize = (u_long)round_page(ptoa(vm->vm_ssize));
1586 	error = cpu_coredump(p, vp, cred, &core);
1587 	if (error)
1588 		return (error);
1589 	/*
1590 	 * uvm_coredump() spits out all appropriate segments.
1591 	 * All that's left to do is to write the core header.
1592 	 */
1593 	error = uvm_coredump(p, vp, cred, &core);
1594 	if (error)
1595 		return (error);
1596 	error = vn_rdwr(UIO_WRITE, vp, (caddr_t)&core,
1597 	    (int)core.c_hdrsize, (off_t)0,
1598 	    UIO_SYSSPACE, IO_UNIT, cred, NULL, p);
1599 	return (error);
1600 #endif
1601 }
1602 
1603 #ifndef SMALL_KERNEL
1604 int
1605 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
1606 {
1607 	struct coredump_iostate *io = cookie;
1608 	off_t coffset = 0;
1609 	size_t csize;
1610 	int chunk, error;
1611 
1612 	csize = len;
1613 	do {
1614 		if (io->io_proc->p_siglist & sigmask(SIGKILL))
1615 			return (EINTR);
1616 
1617 		/* Rest of the loop sleeps with lock held, so... */
1618 		yield();
1619 
1620 		chunk = MIN(csize, MAXPHYS);
1621 		error = vn_rdwr(UIO_WRITE, io->io_vp,
1622 		    (caddr_t)data + coffset, chunk,
1623 		    io->io_offset + coffset, segflg,
1624 		    IO_UNIT, io->io_cred, NULL, io->io_proc);
1625 		if (error) {
1626 			printf("pid %d (%s): %s write of %lu@%p"
1627 			    " at %lld failed: %d\n",
1628 			    io->io_proc->p_pid, io->io_proc->p_comm,
1629 			    segflg == UIO_USERSPACE ? "user" : "system",
1630 			    len, data, (long long)io->io_offset, error);
1631 			return (error);
1632 		}
1633 
1634 		coffset += chunk;
1635 		csize -= chunk;
1636 	} while (csize > 0);
1637 
1638 	io->io_offset += len;
1639 	return (0);
1640 }
1641 
1642 void
1643 coredump_unmap(void *cookie, vaddr_t start, vaddr_t end)
1644 {
1645 	struct coredump_iostate *io = cookie;
1646 
1647 	uvm_unmap(&io->io_proc->p_vmspace->vm_map, start, end);
1648 }
1649 
1650 #endif	/* !SMALL_KERNEL */
1651 
1652 /*
1653  * Nonexistent system call-- signal process (may want to handle it).
1654  * Flag error in case process won't see signal immediately (blocked or ignored).
1655  */
1656 /* ARGSUSED */
1657 int
1658 sys_nosys(struct proc *p, void *v, register_t *retval)
1659 {
1660 
1661 	ptsignal(p, SIGSYS, STHREAD);
1662 	return (ENOSYS);
1663 }
1664 
1665 int
1666 sys___thrsigdivert(struct proc *p, void *v, register_t *retval)
1667 {
1668 	static int sigwaitsleep;
1669 	struct sys___thrsigdivert_args /* {
1670 		syscallarg(sigset_t) sigmask;
1671 		syscallarg(siginfo_t *) info;
1672 		syscallarg(const struct timespec *) timeout;
1673 	} */ *uap = v;
1674 	struct process *pr = p->p_p;
1675 	sigset_t *m;
1676 	sigset_t mask = SCARG(uap, sigmask) &~ sigcantmask;
1677 	siginfo_t si;
1678 	long long to_ticks = 0;
1679 	int timeinvalid = 0;
1680 	int error = 0;
1681 
1682 	memset(&si, 0, sizeof(si));
1683 
1684 	if (SCARG(uap, timeout) != NULL) {
1685 		struct timespec ts;
1686 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))) != 0)
1687 			return (error);
1688 #ifdef KTRACE
1689 		if (KTRPOINT(p, KTR_STRUCT))
1690 			ktrreltimespec(p, &ts);
1691 #endif
1692 		if (ts.tv_nsec < 0 || ts.tv_nsec >= 1000000000)
1693 			timeinvalid = 1;
1694 		else {
1695 			to_ticks = (long long)hz * ts.tv_sec +
1696 			    ts.tv_nsec / (tick * 1000);
1697 			if (to_ticks > INT_MAX)
1698 				to_ticks = INT_MAX;
1699 		}
1700 	}
1701 
1702 	dosigsuspend(p, p->p_sigmask &~ mask);
1703 	for (;;) {
1704 		si.si_signo = CURSIG(p);
1705 		if (si.si_signo != 0) {
1706 			sigset_t smask = sigmask(si.si_signo);
1707 			if (smask & mask) {
1708 				if (p->p_siglist & smask)
1709 					m = &p->p_siglist;
1710 				else if (pr->ps_mainproc->p_siglist & smask)
1711 					m = &pr->ps_mainproc->p_siglist;
1712 				else {
1713 					/* signal got eaten by someone else? */
1714 					continue;
1715 				}
1716 				atomic_clearbits_int(m, smask);
1717 				error = 0;
1718 				break;
1719 			}
1720 		}
1721 
1722 		/* per-POSIX, delay this error until after the above */
1723 		if (timeinvalid)
1724 			error = EINVAL;
1725 
1726 		if (error != 0)
1727 			break;
1728 
1729 		error = tsleep(&sigwaitsleep, PPAUSE|PCATCH, "sigwait",
1730 		    (int)to_ticks);
1731 	}
1732 
1733 	if (error == 0) {
1734 		*retval = si.si_signo;
1735 		if (SCARG(uap, info) != NULL)
1736 			error = copyout(&si, SCARG(uap, info), sizeof(si));
1737 	} else if (error == ERESTART && SCARG(uap, timeout) != NULL) {
1738 		/*
1739 		 * Restarting is wrong if there's a timeout, as it'll be
1740 		 * for the same interval again
1741 		 */
1742 		error = EINTR;
1743 	}
1744 
1745 	return (error);
1746 }
1747 
1748 void
1749 initsiginfo(siginfo_t *si, int sig, u_long trapno, int code, union sigval val)
1750 {
1751 	memset(si, 0, sizeof(*si));
1752 
1753 	si->si_signo = sig;
1754 	si->si_code = code;
1755 	if (code == SI_USER) {
1756 		si->si_value = val;
1757 	} else {
1758 		switch (sig) {
1759 		case SIGSEGV:
1760 		case SIGILL:
1761 		case SIGBUS:
1762 		case SIGFPE:
1763 			si->si_addr = val.sival_ptr;
1764 			si->si_trapno = trapno;
1765 			break;
1766 		case SIGXFSZ:
1767 			break;
1768 		}
1769 	}
1770 }
1771 
1772 int
1773 filt_sigattach(struct knote *kn)
1774 {
1775 	struct process *pr = curproc->p_p;
1776 
1777 	kn->kn_ptr.p_process = pr;
1778 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
1779 
1780 	/* XXX lock the proc here while adding to the list? */
1781 	SLIST_INSERT_HEAD(&pr->ps_klist, kn, kn_selnext);
1782 
1783 	return (0);
1784 }
1785 
1786 void
1787 filt_sigdetach(struct knote *kn)
1788 {
1789 	struct process *pr = kn->kn_ptr.p_process;
1790 
1791 	SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
1792 }
1793 
1794 /*
1795  * signal knotes are shared with proc knotes, so we apply a mask to
1796  * the hint in order to differentiate them from process hints.  This
1797  * could be avoided by using a signal-specific knote list, but probably
1798  * isn't worth the trouble.
1799  */
1800 int
1801 filt_signal(struct knote *kn, long hint)
1802 {
1803 
1804 	if (hint & NOTE_SIGNAL) {
1805 		hint &= ~NOTE_SIGNAL;
1806 
1807 		if (kn->kn_id == hint)
1808 			kn->kn_data++;
1809 	}
1810 	return (kn->kn_data != 0);
1811 }
1812 
1813 void
1814 userret(struct proc *p)
1815 {
1816 	int sig;
1817 
1818 	/* send SIGPROF or SIGVTALRM if their timers interrupted this thread */
1819 	if (p->p_flag & P_PROFPEND) {
1820 		atomic_clearbits_int(&p->p_flag, P_PROFPEND);
1821 		KERNEL_LOCK();
1822 		psignal(p, SIGPROF);
1823 		KERNEL_UNLOCK();
1824 	}
1825 	if (p->p_flag & P_ALRMPEND) {
1826 		atomic_clearbits_int(&p->p_flag, P_ALRMPEND);
1827 		KERNEL_LOCK();
1828 		psignal(p, SIGVTALRM);
1829 		KERNEL_UNLOCK();
1830 	}
1831 
1832 	while ((sig = CURSIG(p)) != 0)
1833 		postsig(sig);
1834 
1835 	/*
1836 	 * If P_SIGSUSPEND is still set here, then we still need to restore
1837 	 * the original sigmask before returning to userspace.  Also, this
1838 	 * might unmask some pending signals, so we need to check a second
1839 	 * time for signals to post.
1840 	 */
1841 	if (p->p_flag & P_SIGSUSPEND) {
1842 		atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1843 		p->p_sigmask = p->p_oldmask;
1844 
1845 		while ((sig = CURSIG(p)) != 0)
1846 			postsig(sig);
1847 	}
1848 
1849 	if (p->p_flag & P_SUSPSINGLE) {
1850 		KERNEL_LOCK();
1851 		single_thread_check(p, 0);
1852 		KERNEL_UNLOCK();
1853 	}
1854 
1855 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_priority = p->p_usrpri;
1856 }
1857 
1858 int
1859 single_thread_check(struct proc *p, int deep)
1860 {
1861 	struct process *pr = p->p_p;
1862 
1863 	if (pr->ps_single != NULL && pr->ps_single != p) {
1864 		do {
1865 			int s;
1866 
1867 			/* if we're in deep, we need to unwind to the edge */
1868 			if (deep) {
1869 				if (pr->ps_flags & PS_SINGLEUNWIND)
1870 					return (ERESTART);
1871 				if (pr->ps_flags & PS_SINGLEEXIT)
1872 					return (EINTR);
1873 			}
1874 
1875 			if (--pr->ps_singlecount == 0)
1876 				wakeup(&pr->ps_singlecount);
1877 			if (pr->ps_flags & PS_SINGLEEXIT)
1878 				exit1(p, 0, EXIT_THREAD_NOCHECK);
1879 
1880 			/* not exiting and don't need to unwind, so suspend */
1881 			SCHED_LOCK(s);
1882 			p->p_stat = SSTOP;
1883 			mi_switch();
1884 			SCHED_UNLOCK(s);
1885 		} while (pr->ps_single != NULL);
1886 	}
1887 
1888 	return (0);
1889 }
1890 
1891 /*
1892  * Stop other threads in the process.  The mode controls how and
1893  * where the other threads should stop:
1894  *  - SINGLE_SUSPEND: stop wherever they are, will later either be told to exit
1895  *    (by setting to SINGLE_EXIT) or be released (via single_thread_clear())
1896  *  - SINGLE_PTRACE: stop wherever they are, will wait for them to stop
1897  *    later (via single_thread_wait()) and released as with SINGLE_SUSPEND
1898  *  - SINGLE_UNWIND: just unwind to kernel boundary, will be told to exit
1899  *    or released as with SINGLE_SUSPEND
1900  *  - SINGLE_EXIT: unwind to kernel boundary and exit
1901  */
1902 int
1903 single_thread_set(struct proc *p, enum single_thread_mode mode, int deep)
1904 {
1905 	struct process *pr = p->p_p;
1906 	struct proc *q;
1907 	int error;
1908 
1909 	KERNEL_ASSERT_LOCKED();
1910 
1911 	if ((error = single_thread_check(p, deep)))
1912 		return error;
1913 
1914 	switch (mode) {
1915 	case SINGLE_SUSPEND:
1916 	case SINGLE_PTRACE:
1917 		break;
1918 	case SINGLE_UNWIND:
1919 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
1920 		break;
1921 	case SINGLE_EXIT:
1922 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEEXIT);
1923 		atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
1924 		break;
1925 #ifdef DIAGNOSTIC
1926 	default:
1927 		panic("single_thread_mode = %d", mode);
1928 #endif
1929 	}
1930 	pr->ps_single = p;
1931 	pr->ps_singlecount = 0;
1932 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
1933 		int s;
1934 
1935 		if (q == p)
1936 			continue;
1937 		if (q->p_flag & P_WEXIT) {
1938 			if (mode == SINGLE_EXIT) {
1939 				SCHED_LOCK(s);
1940 				if (q->p_stat == SSTOP) {
1941 					setrunnable(q);
1942 					pr->ps_singlecount++;
1943 				}
1944 				SCHED_UNLOCK(s);
1945 			}
1946 			continue;
1947 		}
1948 		SCHED_LOCK(s);
1949 		atomic_setbits_int(&q->p_flag, P_SUSPSINGLE);
1950 		switch (q->p_stat) {
1951 		case SIDL:
1952 		case SRUN:
1953 			pr->ps_singlecount++;
1954 			break;
1955 		case SSLEEP:
1956 			/* if it's not interruptible, then just have to wait */
1957 			if (q->p_flag & P_SINTR) {
1958 				/* merely need to suspend?  just stop it */
1959 				if (mode == SINGLE_SUSPEND ||
1960 				    mode == SINGLE_PTRACE) {
1961 					q->p_stat = SSTOP;
1962 					break;
1963 				}
1964 				/* need to unwind or exit, so wake it */
1965 				setrunnable(q);
1966 			}
1967 			pr->ps_singlecount++;
1968 			break;
1969 		case SSTOP:
1970 			if (mode == SINGLE_EXIT) {
1971 				setrunnable(q);
1972 				pr->ps_singlecount++;
1973 			}
1974 			break;
1975 		case SDEAD:
1976 			break;
1977 		case SONPROC:
1978 			pr->ps_singlecount++;
1979 			signotify(q);
1980 			break;
1981 		}
1982 		SCHED_UNLOCK(s);
1983 	}
1984 
1985 	if (mode != SINGLE_PTRACE)
1986 		single_thread_wait(pr);
1987 
1988 	return 0;
1989 }
1990 
1991 void
1992 single_thread_wait(struct process *pr)
1993 {
1994 	/* wait until they're all suspended */
1995 	while (pr->ps_singlecount > 0)
1996 		tsleep(&pr->ps_singlecount, PUSER, "suspend", 0);
1997 }
1998 
1999 void
2000 single_thread_clear(struct proc *p, int flag)
2001 {
2002 	struct process *pr = p->p_p;
2003 	struct proc *q;
2004 
2005 	KASSERT(pr->ps_single == p);
2006 	KERNEL_ASSERT_LOCKED();
2007 
2008 	pr->ps_single = NULL;
2009 	atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND | PS_SINGLEEXIT);
2010 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2011 		int s;
2012 
2013 		if (q == p || (q->p_flag & P_SUSPSINGLE) == 0)
2014 			continue;
2015 		atomic_clearbits_int(&q->p_flag, P_SUSPSINGLE);
2016 
2017 		/*
2018 		 * if the thread was only stopped for single threading
2019 		 * then clearing that either makes it runnable or puts
2020 		 * it back into some sleep queue
2021 		 */
2022 		SCHED_LOCK(s);
2023 		if (q->p_stat == SSTOP && (q->p_flag & flag) == 0) {
2024 			if (q->p_wchan == 0)
2025 				setrunnable(q);
2026 			else
2027 				q->p_stat = SSLEEP;
2028 		}
2029 		SCHED_UNLOCK(s);
2030 	}
2031 }
2032