xref: /openbsd-src/sys/kern/kern_sig.c (revision 5a38ef86d0b61900239c7913d24a05e7b88a58f0)
1 /*	$OpenBSD: kern_sig.c,v 1.291 2021/12/07 22:17:02 guenther Exp $	*/
2 /*	$NetBSD: kern_sig.c,v 1.54 1996/04/22 01:38:32 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1997 Theo de Raadt. All rights reserved.
6  * Copyright (c) 1982, 1986, 1989, 1991, 1993
7  *	The Regents of the University of California.  All rights reserved.
8  * (c) UNIX System Laboratories, Inc.
9  * All or some portions of this file are derived from material licensed
10  * to the University of California by American Telephone and Telegraph
11  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
12  * the permission of UNIX System Laboratories, Inc.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. Neither the name of the University nor the names of its contributors
23  *    may be used to endorse or promote products derived from this software
24  *    without specific prior written permission.
25  *
26  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
27  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
28  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
29  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
30  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
31  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
32  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
33  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
34  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
35  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
36  * SUCH DAMAGE.
37  *
38  *	@(#)kern_sig.c	8.7 (Berkeley) 4/18/94
39  */
40 
41 #include <sys/param.h>
42 #include <sys/signalvar.h>
43 #include <sys/resourcevar.h>
44 #include <sys/queue.h>
45 #include <sys/namei.h>
46 #include <sys/vnode.h>
47 #include <sys/event.h>
48 #include <sys/proc.h>
49 #include <sys/systm.h>
50 #include <sys/acct.h>
51 #include <sys/fcntl.h>
52 #include <sys/filedesc.h>
53 #include <sys/kernel.h>
54 #include <sys/wait.h>
55 #include <sys/ktrace.h>
56 #include <sys/stat.h>
57 #include <sys/core.h>
58 #include <sys/malloc.h>
59 #include <sys/pool.h>
60 #include <sys/ptrace.h>
61 #include <sys/sched.h>
62 #include <sys/user.h>
63 #include <sys/syslog.h>
64 #include <sys/ttycom.h>
65 #include <sys/pledge.h>
66 #include <sys/witness.h>
67 #include <sys/exec_elf.h>
68 
69 #include <sys/mount.h>
70 #include <sys/syscallargs.h>
71 
72 #include <uvm/uvm_extern.h>
73 #include <machine/tcb.h>
74 
75 int	filt_sigattach(struct knote *kn);
76 void	filt_sigdetach(struct knote *kn);
77 int	filt_signal(struct knote *kn, long hint);
78 
79 const struct filterops sig_filtops = {
80 	.f_flags	= 0,
81 	.f_attach	= filt_sigattach,
82 	.f_detach	= filt_sigdetach,
83 	.f_event	= filt_signal,
84 };
85 
86 /*
87  * The array below categorizes the signals and their default actions.
88  */
89 const int sigprop[NSIG] = {
90 	0,			/* unused */
91 	SA_KILL,		/* SIGHUP */
92 	SA_KILL,		/* SIGINT */
93 	SA_KILL|SA_CORE,	/* SIGQUIT */
94 	SA_KILL|SA_CORE,	/* SIGILL */
95 	SA_KILL|SA_CORE,	/* SIGTRAP */
96 	SA_KILL|SA_CORE,	/* SIGABRT */
97 	SA_KILL|SA_CORE,	/* SIGEMT */
98 	SA_KILL|SA_CORE,	/* SIGFPE */
99 	SA_KILL,		/* SIGKILL */
100 	SA_KILL|SA_CORE,	/* SIGBUS */
101 	SA_KILL|SA_CORE,	/* SIGSEGV */
102 	SA_KILL|SA_CORE,	/* SIGSYS */
103 	SA_KILL,		/* SIGPIPE */
104 	SA_KILL,		/* SIGALRM */
105 	SA_KILL,		/* SIGTERM */
106 	SA_IGNORE,		/* SIGURG */
107 	SA_STOP,		/* SIGSTOP */
108 	SA_STOP|SA_TTYSTOP,	/* SIGTSTP */
109 	SA_IGNORE|SA_CONT,	/* SIGCONT */
110 	SA_IGNORE,		/* SIGCHLD */
111 	SA_STOP|SA_TTYSTOP,	/* SIGTTIN */
112 	SA_STOP|SA_TTYSTOP,	/* SIGTTOU */
113 	SA_IGNORE,		/* SIGIO */
114 	SA_KILL,		/* SIGXCPU */
115 	SA_KILL,		/* SIGXFSZ */
116 	SA_KILL,		/* SIGVTALRM */
117 	SA_KILL,		/* SIGPROF */
118 	SA_IGNORE,		/* SIGWINCH  */
119 	SA_IGNORE,		/* SIGINFO */
120 	SA_KILL,		/* SIGUSR1 */
121 	SA_KILL,		/* SIGUSR2 */
122 	SA_IGNORE,		/* SIGTHR */
123 };
124 
125 #define	CONTSIGMASK	(sigmask(SIGCONT))
126 #define	STOPSIGMASK	(sigmask(SIGSTOP) | sigmask(SIGTSTP) | \
127 			    sigmask(SIGTTIN) | sigmask(SIGTTOU))
128 
129 void setsigvec(struct proc *, int, struct sigaction *);
130 
131 void proc_stop(struct proc *p, int);
132 void proc_stop_sweep(void *);
133 void *proc_stop_si;
134 
135 void postsig_done(struct proc *, int, sigset_t, int);
136 void postsig(struct proc *, int);
137 int cansignal(struct proc *, struct process *, int);
138 
139 struct pool sigacts_pool;	/* memory pool for sigacts structures */
140 
141 void sigio_del(struct sigiolst *);
142 void sigio_unlink(struct sigio_ref *, struct sigiolst *);
143 struct mutex sigio_lock = MUTEX_INITIALIZER(IPL_HIGH);
144 
145 /*
146  * Can thread p, send the signal signum to process qr?
147  */
148 int
149 cansignal(struct proc *p, struct process *qr, int signum)
150 {
151 	struct process *pr = p->p_p;
152 	struct ucred *uc = p->p_ucred;
153 	struct ucred *quc = qr->ps_ucred;
154 
155 	if (uc->cr_uid == 0)
156 		return (1);		/* root can always signal */
157 
158 	if (pr == qr)
159 		return (1);		/* process can always signal itself */
160 
161 	/* optimization: if the same creds then the tests below will pass */
162 	if (uc == quc)
163 		return (1);
164 
165 	if (signum == SIGCONT && qr->ps_session == pr->ps_session)
166 		return (1);		/* SIGCONT in session */
167 
168 	/*
169 	 * Using kill(), only certain signals can be sent to setugid
170 	 * child processes
171 	 */
172 	if (qr->ps_flags & PS_SUGID) {
173 		switch (signum) {
174 		case 0:
175 		case SIGKILL:
176 		case SIGINT:
177 		case SIGTERM:
178 		case SIGALRM:
179 		case SIGSTOP:
180 		case SIGTTIN:
181 		case SIGTTOU:
182 		case SIGTSTP:
183 		case SIGHUP:
184 		case SIGUSR1:
185 		case SIGUSR2:
186 			if (uc->cr_ruid == quc->cr_ruid ||
187 			    uc->cr_uid == quc->cr_ruid)
188 				return (1);
189 		}
190 		return (0);
191 	}
192 
193 	if (uc->cr_ruid == quc->cr_ruid ||
194 	    uc->cr_ruid == quc->cr_svuid ||
195 	    uc->cr_uid == quc->cr_ruid ||
196 	    uc->cr_uid == quc->cr_svuid)
197 		return (1);
198 	return (0);
199 }
200 
201 /*
202  * Initialize signal-related data structures.
203  */
204 void
205 signal_init(void)
206 {
207 	proc_stop_si = softintr_establish(IPL_SOFTCLOCK, proc_stop_sweep,
208 	    NULL);
209 	if (proc_stop_si == NULL)
210 		panic("signal_init failed to register softintr");
211 
212 	pool_init(&sigacts_pool, sizeof(struct sigacts), 0, IPL_NONE,
213 	    PR_WAITOK, "sigapl", NULL);
214 }
215 
216 /*
217  * Initialize a new sigaltstack structure.
218  */
219 void
220 sigstkinit(struct sigaltstack *ss)
221 {
222 	ss->ss_flags = SS_DISABLE;
223 	ss->ss_size = 0;
224 	ss->ss_sp = NULL;
225 }
226 
227 /*
228  * Create an initial sigacts structure, using the same signal state
229  * as pr.
230  */
231 struct sigacts *
232 sigactsinit(struct process *pr)
233 {
234 	struct sigacts *ps;
235 
236 	ps = pool_get(&sigacts_pool, PR_WAITOK);
237 	memcpy(ps, pr->ps_sigacts, sizeof(struct sigacts));
238 	return (ps);
239 }
240 
241 /*
242  * Release a sigacts structure.
243  */
244 void
245 sigactsfree(struct process *pr)
246 {
247 	struct sigacts *ps = pr->ps_sigacts;
248 
249 	pr->ps_sigacts = NULL;
250 
251 	pool_put(&sigacts_pool, ps);
252 }
253 
254 int
255 sys_sigaction(struct proc *p, void *v, register_t *retval)
256 {
257 	struct sys_sigaction_args /* {
258 		syscallarg(int) signum;
259 		syscallarg(const struct sigaction *) nsa;
260 		syscallarg(struct sigaction *) osa;
261 	} */ *uap = v;
262 	struct sigaction vec;
263 #ifdef KTRACE
264 	struct sigaction ovec;
265 #endif
266 	struct sigaction *sa;
267 	const struct sigaction *nsa;
268 	struct sigaction *osa;
269 	struct sigacts *ps = p->p_p->ps_sigacts;
270 	int signum;
271 	int bit, error;
272 
273 	signum = SCARG(uap, signum);
274 	nsa = SCARG(uap, nsa);
275 	osa = SCARG(uap, osa);
276 
277 	if (signum <= 0 || signum >= NSIG ||
278 	    (nsa && (signum == SIGKILL || signum == SIGSTOP)))
279 		return (EINVAL);
280 	sa = &vec;
281 	if (osa) {
282 		sa->sa_handler = ps->ps_sigact[signum];
283 		sa->sa_mask = ps->ps_catchmask[signum];
284 		bit = sigmask(signum);
285 		sa->sa_flags = 0;
286 		if ((ps->ps_sigonstack & bit) != 0)
287 			sa->sa_flags |= SA_ONSTACK;
288 		if ((ps->ps_sigintr & bit) == 0)
289 			sa->sa_flags |= SA_RESTART;
290 		if ((ps->ps_sigreset & bit) != 0)
291 			sa->sa_flags |= SA_RESETHAND;
292 		if ((ps->ps_siginfo & bit) != 0)
293 			sa->sa_flags |= SA_SIGINFO;
294 		if (signum == SIGCHLD) {
295 			if ((ps->ps_sigflags & SAS_NOCLDSTOP) != 0)
296 				sa->sa_flags |= SA_NOCLDSTOP;
297 			if ((ps->ps_sigflags & SAS_NOCLDWAIT) != 0)
298 				sa->sa_flags |= SA_NOCLDWAIT;
299 		}
300 		if ((sa->sa_mask & bit) == 0)
301 			sa->sa_flags |= SA_NODEFER;
302 		sa->sa_mask &= ~bit;
303 		error = copyout(sa, osa, sizeof (vec));
304 		if (error)
305 			return (error);
306 #ifdef KTRACE
307 		if (KTRPOINT(p, KTR_STRUCT))
308 			ovec = vec;
309 #endif
310 	}
311 	if (nsa) {
312 		error = copyin(nsa, sa, sizeof (vec));
313 		if (error)
314 			return (error);
315 #ifdef KTRACE
316 		if (KTRPOINT(p, KTR_STRUCT))
317 			ktrsigaction(p, sa);
318 #endif
319 		setsigvec(p, signum, sa);
320 	}
321 #ifdef KTRACE
322 	if (osa && KTRPOINT(p, KTR_STRUCT))
323 		ktrsigaction(p, &ovec);
324 #endif
325 	return (0);
326 }
327 
328 void
329 setsigvec(struct proc *p, int signum, struct sigaction *sa)
330 {
331 	struct sigacts *ps = p->p_p->ps_sigacts;
332 	int bit;
333 	int s;
334 
335 	bit = sigmask(signum);
336 	/*
337 	 * Change setting atomically.
338 	 */
339 	s = splhigh();
340 	ps->ps_sigact[signum] = sa->sa_handler;
341 	if ((sa->sa_flags & SA_NODEFER) == 0)
342 		sa->sa_mask |= sigmask(signum);
343 	ps->ps_catchmask[signum] = sa->sa_mask &~ sigcantmask;
344 	if (signum == SIGCHLD) {
345 		if (sa->sa_flags & SA_NOCLDSTOP)
346 			atomic_setbits_int(&ps->ps_sigflags, SAS_NOCLDSTOP);
347 		else
348 			atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDSTOP);
349 		/*
350 		 * If the SA_NOCLDWAIT flag is set or the handler
351 		 * is SIG_IGN we reparent the dying child to PID 1
352 		 * (init) which will reap the zombie.  Because we use
353 		 * init to do our dirty work we never set SAS_NOCLDWAIT
354 		 * for PID 1.
355 		 * XXX exit1 rework means this is unnecessary?
356 		 */
357 		if (initprocess->ps_sigacts != ps &&
358 		    ((sa->sa_flags & SA_NOCLDWAIT) ||
359 		    sa->sa_handler == SIG_IGN))
360 			atomic_setbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
361 		else
362 			atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
363 	}
364 	if ((sa->sa_flags & SA_RESETHAND) != 0)
365 		ps->ps_sigreset |= bit;
366 	else
367 		ps->ps_sigreset &= ~bit;
368 	if ((sa->sa_flags & SA_SIGINFO) != 0)
369 		ps->ps_siginfo |= bit;
370 	else
371 		ps->ps_siginfo &= ~bit;
372 	if ((sa->sa_flags & SA_RESTART) == 0)
373 		ps->ps_sigintr |= bit;
374 	else
375 		ps->ps_sigintr &= ~bit;
376 	if ((sa->sa_flags & SA_ONSTACK) != 0)
377 		ps->ps_sigonstack |= bit;
378 	else
379 		ps->ps_sigonstack &= ~bit;
380 	/*
381 	 * Set bit in ps_sigignore for signals that are set to SIG_IGN,
382 	 * and for signals set to SIG_DFL where the default is to ignore.
383 	 * However, don't put SIGCONT in ps_sigignore,
384 	 * as we have to restart the process.
385 	 */
386 	if (sa->sa_handler == SIG_IGN ||
387 	    (sigprop[signum] & SA_IGNORE && sa->sa_handler == SIG_DFL)) {
388 		atomic_clearbits_int(&p->p_siglist, bit);
389 		atomic_clearbits_int(&p->p_p->ps_siglist, bit);
390 		if (signum != SIGCONT)
391 			ps->ps_sigignore |= bit;	/* easier in psignal */
392 		ps->ps_sigcatch &= ~bit;
393 	} else {
394 		ps->ps_sigignore &= ~bit;
395 		if (sa->sa_handler == SIG_DFL)
396 			ps->ps_sigcatch &= ~bit;
397 		else
398 			ps->ps_sigcatch |= bit;
399 	}
400 	splx(s);
401 }
402 
403 /*
404  * Initialize signal state for process 0;
405  * set to ignore signals that are ignored by default.
406  */
407 void
408 siginit(struct sigacts *ps)
409 {
410 	int i;
411 
412 	for (i = 0; i < NSIG; i++)
413 		if (sigprop[i] & SA_IGNORE && i != SIGCONT)
414 			ps->ps_sigignore |= sigmask(i);
415 	ps->ps_sigflags = SAS_NOCLDWAIT | SAS_NOCLDSTOP;
416 }
417 
418 /*
419  * Reset signals for an exec by the specified thread.
420  */
421 void
422 execsigs(struct proc *p)
423 {
424 	struct sigacts *ps;
425 	int nc, mask;
426 
427 	ps = p->p_p->ps_sigacts;
428 
429 	/*
430 	 * Reset caught signals.  Held signals remain held
431 	 * through p_sigmask (unless they were caught,
432 	 * and are now ignored by default).
433 	 */
434 	while (ps->ps_sigcatch) {
435 		nc = ffs((long)ps->ps_sigcatch);
436 		mask = sigmask(nc);
437 		ps->ps_sigcatch &= ~mask;
438 		if (sigprop[nc] & SA_IGNORE) {
439 			if (nc != SIGCONT)
440 				ps->ps_sigignore |= mask;
441 			atomic_clearbits_int(&p->p_siglist, mask);
442 			atomic_clearbits_int(&p->p_p->ps_siglist, mask);
443 		}
444 		ps->ps_sigact[nc] = SIG_DFL;
445 	}
446 	/*
447 	 * Reset stack state to the user stack.
448 	 * Clear set of signals caught on the signal stack.
449 	 */
450 	sigstkinit(&p->p_sigstk);
451 	atomic_clearbits_int(&ps->ps_sigflags, SAS_NOCLDWAIT);
452 	if (ps->ps_sigact[SIGCHLD] == SIG_IGN)
453 		ps->ps_sigact[SIGCHLD] = SIG_DFL;
454 }
455 
456 /*
457  * Manipulate signal mask.
458  * Note that we receive new mask, not pointer,
459  * and return old mask as return value;
460  * the library stub does the rest.
461  */
462 int
463 sys_sigprocmask(struct proc *p, void *v, register_t *retval)
464 {
465 	struct sys_sigprocmask_args /* {
466 		syscallarg(int) how;
467 		syscallarg(sigset_t) mask;
468 	} */ *uap = v;
469 	int error = 0;
470 	sigset_t mask;
471 
472 	KASSERT(p == curproc);
473 
474 	*retval = p->p_sigmask;
475 	mask = SCARG(uap, mask) &~ sigcantmask;
476 
477 	switch (SCARG(uap, how)) {
478 	case SIG_BLOCK:
479 		atomic_setbits_int(&p->p_sigmask, mask);
480 		break;
481 	case SIG_UNBLOCK:
482 		atomic_clearbits_int(&p->p_sigmask, mask);
483 		break;
484 	case SIG_SETMASK:
485 		p->p_sigmask = mask;
486 		break;
487 	default:
488 		error = EINVAL;
489 		break;
490 	}
491 	return (error);
492 }
493 
494 int
495 sys_sigpending(struct proc *p, void *v, register_t *retval)
496 {
497 
498 	*retval = p->p_siglist | p->p_p->ps_siglist;
499 	return (0);
500 }
501 
502 /*
503  * Temporarily replace calling proc's signal mask for the duration of a
504  * system call.  Original signal mask will be restored by userret().
505  */
506 void
507 dosigsuspend(struct proc *p, sigset_t newmask)
508 {
509 	KASSERT(p == curproc);
510 
511 	p->p_oldmask = p->p_sigmask;
512 	atomic_setbits_int(&p->p_flag, P_SIGSUSPEND);
513 	p->p_sigmask = newmask;
514 }
515 
516 /*
517  * Suspend thread until signal, providing mask to be set
518  * in the meantime.  Note nonstandard calling convention:
519  * libc stub passes mask, not pointer, to save a copyin.
520  */
521 int
522 sys_sigsuspend(struct proc *p, void *v, register_t *retval)
523 {
524 	struct sys_sigsuspend_args /* {
525 		syscallarg(int) mask;
526 	} */ *uap = v;
527 
528 	dosigsuspend(p, SCARG(uap, mask) &~ sigcantmask);
529 	while (tsleep_nsec(&nowake, PPAUSE|PCATCH, "sigsusp", INFSLP) == 0)
530 		continue;
531 	/* always return EINTR rather than ERESTART... */
532 	return (EINTR);
533 }
534 
535 int
536 sigonstack(size_t stack)
537 {
538 	const struct sigaltstack *ss = &curproc->p_sigstk;
539 
540 	return (ss->ss_flags & SS_DISABLE ? 0 :
541 	    (stack - (size_t)ss->ss_sp < ss->ss_size));
542 }
543 
544 int
545 sys_sigaltstack(struct proc *p, void *v, register_t *retval)
546 {
547 	struct sys_sigaltstack_args /* {
548 		syscallarg(const struct sigaltstack *) nss;
549 		syscallarg(struct sigaltstack *) oss;
550 	} */ *uap = v;
551 	struct sigaltstack ss;
552 	const struct sigaltstack *nss;
553 	struct sigaltstack *oss;
554 	int onstack = sigonstack(PROC_STACK(p));
555 	int error;
556 
557 	nss = SCARG(uap, nss);
558 	oss = SCARG(uap, oss);
559 
560 	if (oss != NULL) {
561 		ss = p->p_sigstk;
562 		if (onstack)
563 			ss.ss_flags |= SS_ONSTACK;
564 		if ((error = copyout(&ss, oss, sizeof(ss))))
565 			return (error);
566 	}
567 	if (nss == NULL)
568 		return (0);
569 	error = copyin(nss, &ss, sizeof(ss));
570 	if (error)
571 		return (error);
572 	if (onstack)
573 		return (EPERM);
574 	if (ss.ss_flags & ~SS_DISABLE)
575 		return (EINVAL);
576 	if (ss.ss_flags & SS_DISABLE) {
577 		p->p_sigstk.ss_flags = ss.ss_flags;
578 		return (0);
579 	}
580 	if (ss.ss_size < MINSIGSTKSZ)
581 		return (ENOMEM);
582 
583 	error = uvm_map_remap_as_stack(p, (vaddr_t)ss.ss_sp, ss.ss_size);
584 	if (error)
585 		return (error);
586 
587 	p->p_sigstk = ss;
588 	return (0);
589 }
590 
591 int
592 sys_kill(struct proc *cp, void *v, register_t *retval)
593 {
594 	struct sys_kill_args /* {
595 		syscallarg(int) pid;
596 		syscallarg(int) signum;
597 	} */ *uap = v;
598 	struct process *pr;
599 	int pid = SCARG(uap, pid);
600 	int signum = SCARG(uap, signum);
601 	int error;
602 	int zombie = 0;
603 
604 	if ((error = pledge_kill(cp, pid)) != 0)
605 		return (error);
606 	if (((u_int)signum) >= NSIG)
607 		return (EINVAL);
608 	if (pid > 0) {
609 		if ((pr = prfind(pid)) == NULL) {
610 			if ((pr = zombiefind(pid)) == NULL)
611 				return (ESRCH);
612 			else
613 				zombie = 1;
614 		}
615 		if (!cansignal(cp, pr, signum))
616 			return (EPERM);
617 
618 		/* kill single process */
619 		if (signum && !zombie)
620 			prsignal(pr, signum);
621 		return (0);
622 	}
623 	switch (pid) {
624 	case -1:		/* broadcast signal */
625 		return (killpg1(cp, signum, 0, 1));
626 	case 0:			/* signal own process group */
627 		return (killpg1(cp, signum, 0, 0));
628 	default:		/* negative explicit process group */
629 		return (killpg1(cp, signum, -pid, 0));
630 	}
631 }
632 
633 int
634 sys_thrkill(struct proc *cp, void *v, register_t *retval)
635 {
636 	struct sys_thrkill_args /* {
637 		syscallarg(pid_t) tid;
638 		syscallarg(int) signum;
639 		syscallarg(void *) tcb;
640 	} */ *uap = v;
641 	struct proc *p;
642 	int tid = SCARG(uap, tid);
643 	int signum = SCARG(uap, signum);
644 	void *tcb;
645 
646 	if (((u_int)signum) >= NSIG)
647 		return (EINVAL);
648 	if (tid > THREAD_PID_OFFSET) {
649 		if ((p = tfind(tid - THREAD_PID_OFFSET)) == NULL)
650 			return (ESRCH);
651 
652 		/* can only kill threads in the same process */
653 		if (p->p_p != cp->p_p)
654 			return (ESRCH);
655 	} else if (tid == 0)
656 		p = cp;
657 	else
658 		return (EINVAL);
659 
660 	/* optionally require the target thread to have the given tcb addr */
661 	tcb = SCARG(uap, tcb);
662 	if (tcb != NULL && tcb != TCB_GET(p))
663 		return (ESRCH);
664 
665 	if (signum)
666 		ptsignal(p, signum, STHREAD);
667 	return (0);
668 }
669 
670 /*
671  * Common code for kill process group/broadcast kill.
672  * cp is calling process.
673  */
674 int
675 killpg1(struct proc *cp, int signum, int pgid, int all)
676 {
677 	struct process *pr;
678 	struct pgrp *pgrp;
679 	int nfound = 0;
680 
681 	if (all) {
682 		/*
683 		 * broadcast
684 		 */
685 		LIST_FOREACH(pr, &allprocess, ps_list) {
686 			if (pr->ps_pid <= 1 ||
687 			    pr->ps_flags & (PS_SYSTEM | PS_NOBROADCASTKILL) ||
688 			    pr == cp->p_p || !cansignal(cp, pr, signum))
689 				continue;
690 			nfound++;
691 			if (signum)
692 				prsignal(pr, signum);
693 		}
694 	} else {
695 		if (pgid == 0)
696 			/*
697 			 * zero pgid means send to my process group.
698 			 */
699 			pgrp = cp->p_p->ps_pgrp;
700 		else {
701 			pgrp = pgfind(pgid);
702 			if (pgrp == NULL)
703 				return (ESRCH);
704 		}
705 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist) {
706 			if (pr->ps_pid <= 1 || pr->ps_flags & PS_SYSTEM ||
707 			    !cansignal(cp, pr, signum))
708 				continue;
709 			nfound++;
710 			if (signum)
711 				prsignal(pr, signum);
712 		}
713 	}
714 	return (nfound ? 0 : ESRCH);
715 }
716 
717 #define CANDELIVER(uid, euid, pr) \
718 	(euid == 0 || \
719 	(uid) == (pr)->ps_ucred->cr_ruid || \
720 	(uid) == (pr)->ps_ucred->cr_svuid || \
721 	(uid) == (pr)->ps_ucred->cr_uid || \
722 	(euid) == (pr)->ps_ucred->cr_ruid || \
723 	(euid) == (pr)->ps_ucred->cr_svuid || \
724 	(euid) == (pr)->ps_ucred->cr_uid)
725 
726 #define CANSIGIO(cr, pr) \
727 	CANDELIVER((cr)->cr_ruid, (cr)->cr_uid, (pr))
728 
729 /*
730  * Send a signal to a process group.  If checktty is 1,
731  * limit to members which have a controlling terminal.
732  */
733 void
734 pgsignal(struct pgrp *pgrp, int signum, int checkctty)
735 {
736 	struct process *pr;
737 
738 	if (pgrp)
739 		LIST_FOREACH(pr, &pgrp->pg_members, ps_pglist)
740 			if (checkctty == 0 || pr->ps_flags & PS_CONTROLT)
741 				prsignal(pr, signum);
742 }
743 
744 /*
745  * Send a SIGIO or SIGURG signal to a process or process group using stored
746  * credentials rather than those of the current process.
747  */
748 void
749 pgsigio(struct sigio_ref *sir, int sig, int checkctty)
750 {
751 	struct process *pr;
752 	struct sigio *sigio;
753 
754 	if (sir->sir_sigio == NULL)
755 		return;
756 
757 	KERNEL_LOCK();
758 	mtx_enter(&sigio_lock);
759 	sigio = sir->sir_sigio;
760 	if (sigio == NULL)
761 		goto out;
762 	if (sigio->sio_pgid > 0) {
763 		if (CANSIGIO(sigio->sio_ucred, sigio->sio_proc))
764 			prsignal(sigio->sio_proc, sig);
765 	} else if (sigio->sio_pgid < 0) {
766 		LIST_FOREACH(pr, &sigio->sio_pgrp->pg_members, ps_pglist) {
767 			if (CANSIGIO(sigio->sio_ucred, pr) &&
768 			    (checkctty == 0 || (pr->ps_flags & PS_CONTROLT)))
769 				prsignal(pr, sig);
770 		}
771 	}
772 out:
773 	mtx_leave(&sigio_lock);
774 	KERNEL_UNLOCK();
775 }
776 
777 /*
778  * Recalculate the signal mask and reset the signal disposition after
779  * usermode frame for delivery is formed.
780  */
781 void
782 postsig_done(struct proc *p, int signum, sigset_t catchmask, int reset)
783 {
784 	KERNEL_ASSERT_LOCKED();
785 
786 	p->p_ru.ru_nsignals++;
787 	atomic_setbits_int(&p->p_sigmask, catchmask);
788 	if (reset != 0) {
789 		sigset_t mask = sigmask(signum);
790 		struct sigacts *ps = p->p_p->ps_sigacts;
791 
792 		ps->ps_sigcatch &= ~mask;
793 		if (signum != SIGCONT && sigprop[signum] & SA_IGNORE)
794 			ps->ps_sigignore |= mask;
795 		ps->ps_sigact[signum] = SIG_DFL;
796 	}
797 }
798 
799 /*
800  * Send a signal caused by a trap to the current thread
801  * If it will be caught immediately, deliver it with correct code.
802  * Otherwise, post it normally.
803  */
804 void
805 trapsignal(struct proc *p, int signum, u_long trapno, int code,
806     union sigval sigval)
807 {
808 	struct process *pr = p->p_p;
809 	struct sigacts *ps = pr->ps_sigacts;
810 	int mask;
811 
812 	KERNEL_LOCK();
813 	switch (signum) {
814 	case SIGILL:
815 	case SIGBUS:
816 	case SIGSEGV:
817 		pr->ps_acflag |= ATRAP;
818 		break;
819 	}
820 
821 	mask = sigmask(signum);
822 	if ((pr->ps_flags & PS_TRACED) == 0 &&
823 	    (ps->ps_sigcatch & mask) != 0 &&
824 	    (p->p_sigmask & mask) == 0) {
825 		siginfo_t si;
826 		sigset_t catchmask = ps->ps_catchmask[signum];
827 		int info = (ps->ps_siginfo & mask) != 0;
828 		int onstack = (ps->ps_sigonstack & mask) != 0;
829 		int reset = (ps->ps_sigreset & mask) != 0;
830 
831 		initsiginfo(&si, signum, trapno, code, sigval);
832 #ifdef KTRACE
833 		if (KTRPOINT(p, KTR_PSIG)) {
834 			ktrpsig(p, signum, ps->ps_sigact[signum],
835 			    p->p_sigmask, code, &si);
836 		}
837 #endif
838 		if (sendsig(ps->ps_sigact[signum], signum, p->p_sigmask, &si,
839 		    info, onstack)) {
840 			sigexit(p, SIGILL);
841 			/* NOTREACHED */
842 		}
843 		postsig_done(p, signum, catchmask, reset);
844 	} else {
845 		p->p_sisig = signum;
846 		p->p_sitrapno = trapno;	/* XXX for core dump/debugger */
847 		p->p_sicode = code;
848 		p->p_sigval = sigval;
849 
850 		/*
851 		 * Signals like SIGBUS and SIGSEGV should not, when
852 		 * generated by the kernel, be ignorable or blockable.
853 		 * If it is and we're not being traced, then just kill
854 		 * the process.
855 		 * After vfs_shutdown(9), init(8) cannot receive signals
856 		 * because new code pages of the signal handler cannot be
857 		 * mapped from halted storage.  init(8) may not die or the
858 		 * kernel panics.  Better loop between signal handler and
859 		 * page fault trap until the machine is halted.
860 		 */
861 		if ((pr->ps_flags & PS_TRACED) == 0 &&
862 		    (sigprop[signum] & SA_KILL) &&
863 		    ((p->p_sigmask & mask) || (ps->ps_sigignore & mask)) &&
864 		    pr->ps_pid != 1)
865 			sigexit(p, signum);
866 		ptsignal(p, signum, STHREAD);
867 	}
868 	KERNEL_UNLOCK();
869 }
870 
871 /*
872  * Send the signal to the process.  If the signal has an action, the action
873  * is usually performed by the target process rather than the caller; we add
874  * the signal to the set of pending signals for the process.
875  *
876  * Exceptions:
877  *   o When a stop signal is sent to a sleeping process that takes the
878  *     default action, the process is stopped without awakening it.
879  *   o SIGCONT restarts stopped processes (or puts them back to sleep)
880  *     regardless of the signal action (eg, blocked or ignored).
881  *
882  * Other ignored signals are discarded immediately.
883  */
884 void
885 psignal(struct proc *p, int signum)
886 {
887 	ptsignal(p, signum, SPROCESS);
888 }
889 
890 /*
891  * type = SPROCESS	process signal, can be diverted (sigwait())
892  * type = STHREAD	thread signal, but should be propagated if unhandled
893  * type = SPROPAGATED	propagated to this thread, so don't propagate again
894  */
895 void
896 ptsignal(struct proc *p, int signum, enum signal_type type)
897 {
898 	int s, prop;
899 	sig_t action;
900 	int mask;
901 	int *siglist;
902 	struct process *pr = p->p_p;
903 	struct proc *q;
904 	int wakeparent = 0;
905 
906 	KERNEL_ASSERT_LOCKED();
907 
908 #ifdef DIAGNOSTIC
909 	if ((u_int)signum >= NSIG || signum == 0)
910 		panic("psignal signal number");
911 #endif
912 
913 	/* Ignore signal if the target process is exiting */
914 	if (pr->ps_flags & PS_EXITING)
915 		return;
916 
917 	mask = sigmask(signum);
918 
919 	if (type == SPROCESS) {
920 		/* Accept SIGKILL to coredumping processes */
921 		if (pr->ps_flags & PS_COREDUMP && signum == SIGKILL) {
922 			atomic_setbits_int(&pr->ps_siglist, mask);
923 			return;
924 		}
925 
926 		/*
927 		 * If the current thread can process the signal
928 		 * immediately (it's unblocked) then have it take it.
929 		 */
930 		q = curproc;
931 		if (q != NULL && q->p_p == pr && (q->p_flag & P_WEXIT) == 0 &&
932 		    (q->p_sigmask & mask) == 0)
933 			p = q;
934 		else {
935 			/*
936 			 * A process-wide signal can be diverted to a
937 			 * different thread that's in sigwait() for this
938 			 * signal.  If there isn't such a thread, then
939 			 * pick a thread that doesn't have it blocked so
940 			 * that the stop/kill consideration isn't
941 			 * delayed.  Otherwise, mark it pending on the
942 			 * main thread.
943 			 */
944 			TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
945 				/* ignore exiting threads */
946 				if (q->p_flag & P_WEXIT)
947 					continue;
948 
949 				/* skip threads that have the signal blocked */
950 				if ((q->p_sigmask & mask) != 0)
951 					continue;
952 
953 				/* okay, could send to this thread */
954 				p = q;
955 
956 				/*
957 				 * sigsuspend, sigwait, ppoll/pselect, etc?
958 				 * Definitely go to this thread, as it's
959 				 * already blocked in the kernel.
960 				 */
961 				if (q->p_flag & P_SIGSUSPEND)
962 					break;
963 			}
964 		}
965 	}
966 
967 	if (type != SPROPAGATED)
968 		KNOTE(&pr->ps_klist, NOTE_SIGNAL | signum);
969 
970 	prop = sigprop[signum];
971 
972 	/*
973 	 * If proc is traced, always give parent a chance.
974 	 */
975 	if (pr->ps_flags & PS_TRACED) {
976 		action = SIG_DFL;
977 	} else {
978 		/*
979 		 * If the signal is being ignored,
980 		 * then we forget about it immediately.
981 		 * (Note: we don't set SIGCONT in ps_sigignore,
982 		 * and if it is set to SIG_IGN,
983 		 * action will be SIG_DFL here.)
984 		 */
985 		if (pr->ps_sigacts->ps_sigignore & mask)
986 			return;
987 		if (p->p_sigmask & mask) {
988 			action = SIG_HOLD;
989 		} else if (pr->ps_sigacts->ps_sigcatch & mask) {
990 			action = SIG_CATCH;
991 		} else {
992 			action = SIG_DFL;
993 
994 			if (prop & SA_KILL && pr->ps_nice > NZERO)
995 				 pr->ps_nice = NZERO;
996 
997 			/*
998 			 * If sending a tty stop signal to a member of an
999 			 * orphaned process group, discard the signal here if
1000 			 * the action is default; don't stop the process below
1001 			 * if sleeping, and don't clear any pending SIGCONT.
1002 			 */
1003 			if (prop & SA_TTYSTOP && pr->ps_pgrp->pg_jobc == 0)
1004 				return;
1005 		}
1006 	}
1007 	/*
1008 	 * If delivered to process, mark as pending there.  Continue and stop
1009 	 * signals will be propagated to all threads.  So they are always
1010 	 * marked at thread level.
1011 	 */
1012 	siglist = (type == SPROCESS) ? &pr->ps_siglist : &p->p_siglist;
1013 	if (prop & SA_CONT) {
1014 		siglist = &p->p_siglist;
1015 		atomic_clearbits_int(siglist, STOPSIGMASK);
1016 	}
1017 	if (prop & SA_STOP) {
1018 		siglist = &p->p_siglist;
1019 		atomic_clearbits_int(siglist, CONTSIGMASK);
1020 		atomic_clearbits_int(&p->p_flag, P_CONTINUED);
1021 	}
1022 	atomic_setbits_int(siglist, mask);
1023 
1024 	/*
1025 	 * XXX delay processing of SA_STOP signals unless action == SIG_DFL?
1026 	 */
1027 	if (prop & (SA_CONT | SA_STOP) && type != SPROPAGATED)
1028 		TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link)
1029 			if (q != p)
1030 				ptsignal(q, signum, SPROPAGATED);
1031 
1032 	/*
1033 	 * Defer further processing for signals which are held,
1034 	 * except that stopped processes must be continued by SIGCONT.
1035 	 */
1036 	if (action == SIG_HOLD && ((prop & SA_CONT) == 0 || p->p_stat != SSTOP))
1037 		return;
1038 
1039 	SCHED_LOCK(s);
1040 
1041 	switch (p->p_stat) {
1042 
1043 	case SSLEEP:
1044 		/*
1045 		 * If process is sleeping uninterruptibly
1046 		 * we can't interrupt the sleep... the signal will
1047 		 * be noticed when the process returns through
1048 		 * trap() or syscall().
1049 		 */
1050 		if ((p->p_flag & P_SINTR) == 0)
1051 			goto out;
1052 		/*
1053 		 * Process is sleeping and traced... make it runnable
1054 		 * so it can discover the signal in cursig() and stop
1055 		 * for the parent.
1056 		 */
1057 		if (pr->ps_flags & PS_TRACED)
1058 			goto run;
1059 		/*
1060 		 * If SIGCONT is default (or ignored) and process is
1061 		 * asleep, we are finished; the process should not
1062 		 * be awakened.
1063 		 */
1064 		if ((prop & SA_CONT) && action == SIG_DFL) {
1065 			atomic_clearbits_int(siglist, mask);
1066 			goto out;
1067 		}
1068 		/*
1069 		 * When a sleeping process receives a stop
1070 		 * signal, process immediately if possible.
1071 		 */
1072 		if ((prop & SA_STOP) && action == SIG_DFL) {
1073 			/*
1074 			 * If a child holding parent blocked,
1075 			 * stopping could cause deadlock.
1076 			 */
1077 			if (pr->ps_flags & PS_PPWAIT)
1078 				goto out;
1079 			atomic_clearbits_int(siglist, mask);
1080 			pr->ps_xsig = signum;
1081 			proc_stop(p, 0);
1082 			goto out;
1083 		}
1084 		/*
1085 		 * All other (caught or default) signals
1086 		 * cause the process to run.
1087 		 */
1088 		goto runfast;
1089 		/* NOTREACHED */
1090 
1091 	case SSTOP:
1092 		/*
1093 		 * If traced process is already stopped,
1094 		 * then no further action is necessary.
1095 		 */
1096 		if (pr->ps_flags & PS_TRACED)
1097 			goto out;
1098 
1099 		/*
1100 		 * Kill signal always sets processes running.
1101 		 */
1102 		if (signum == SIGKILL) {
1103 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1104 			goto runfast;
1105 		}
1106 
1107 		if (prop & SA_CONT) {
1108 			/*
1109 			 * If SIGCONT is default (or ignored), we continue the
1110 			 * process but don't leave the signal in p_siglist, as
1111 			 * it has no further action.  If SIGCONT is held, we
1112 			 * continue the process and leave the signal in
1113 			 * p_siglist.  If the process catches SIGCONT, let it
1114 			 * handle the signal itself.  If it isn't waiting on
1115 			 * an event, then it goes back to run state.
1116 			 * Otherwise, process goes back to sleep state.
1117 			 */
1118 			atomic_setbits_int(&p->p_flag, P_CONTINUED);
1119 			atomic_clearbits_int(&p->p_flag, P_SUSPSIG);
1120 			wakeparent = 1;
1121 			if (action == SIG_DFL)
1122 				atomic_clearbits_int(siglist, mask);
1123 			if (action == SIG_CATCH)
1124 				goto runfast;
1125 			if (p->p_wchan == NULL)
1126 				goto run;
1127 			p->p_stat = SSLEEP;
1128 			goto out;
1129 		}
1130 
1131 		if (prop & SA_STOP) {
1132 			/*
1133 			 * Already stopped, don't need to stop again.
1134 			 * (If we did the shell could get confused.)
1135 			 */
1136 			atomic_clearbits_int(siglist, mask);
1137 			goto out;
1138 		}
1139 
1140 		/*
1141 		 * If process is sleeping interruptibly, then simulate a
1142 		 * wakeup so that when it is continued, it will be made
1143 		 * runnable and can look at the signal.  But don't make
1144 		 * the process runnable, leave it stopped.
1145 		 */
1146 		if (p->p_flag & P_SINTR)
1147 			unsleep(p);
1148 		goto out;
1149 
1150 	case SONPROC:
1151 		signotify(p);
1152 		/* FALLTHROUGH */
1153 	default:
1154 		/*
1155 		 * SRUN, SIDL, SDEAD do nothing with the signal,
1156 		 * other than kicking ourselves if we are running.
1157 		 * It will either never be noticed, or noticed very soon.
1158 		 */
1159 		goto out;
1160 	}
1161 	/* NOTREACHED */
1162 
1163 runfast:
1164 	/*
1165 	 * Raise priority to at least PUSER.
1166 	 */
1167 	if (p->p_usrpri > PUSER)
1168 		p->p_usrpri = PUSER;
1169 run:
1170 	setrunnable(p);
1171 out:
1172 	SCHED_UNLOCK(s);
1173 	if (wakeparent)
1174 		wakeup(pr->ps_pptr);
1175 }
1176 
1177 /*
1178  * Determine signal that should be delivered to process p, the current
1179  * process, 0 if none.
1180  *
1181  * If the current process has received a signal (should be caught or cause
1182  * termination, should interrupt current syscall), return the signal number.
1183  * Stop signals with default action are processed immediately, then cleared;
1184  * they aren't returned.  This is checked after each entry to the system for
1185  * a syscall or trap. The normal call sequence is
1186  *
1187  *	while (signum = cursig(curproc))
1188  *		postsig(signum);
1189  *
1190  * Assumes that if the P_SINTR flag is set, we're holding both the
1191  * kernel and scheduler locks.
1192  */
1193 int
1194 cursig(struct proc *p)
1195 {
1196 	struct process *pr = p->p_p;
1197 	int sigpending, signum, mask, prop;
1198 	int dolock = (p->p_flag & P_SINTR) == 0;
1199 	int s;
1200 
1201 	KERNEL_ASSERT_LOCKED();
1202 
1203 	sigpending = (p->p_siglist | pr->ps_siglist);
1204 	if (sigpending == 0)
1205 		return 0;
1206 
1207 	if (!ISSET(pr->ps_flags, PS_TRACED) && SIGPENDING(p) == 0)
1208 		return 0;
1209 
1210 	for (;;) {
1211 		mask = SIGPENDING(p);
1212 		if (pr->ps_flags & PS_PPWAIT)
1213 			mask &= ~STOPSIGMASK;
1214 		if (mask == 0)	 	/* no signal to send */
1215 			return (0);
1216 		signum = ffs((long)mask);
1217 		mask = sigmask(signum);
1218 		atomic_clearbits_int(&p->p_siglist, mask);
1219 		atomic_clearbits_int(&pr->ps_siglist, mask);
1220 
1221 		/*
1222 		 * We should see pending but ignored signals
1223 		 * only if PS_TRACED was on when they were posted.
1224 		 */
1225 		if (mask & pr->ps_sigacts->ps_sigignore &&
1226 		    (pr->ps_flags & PS_TRACED) == 0)
1227 			continue;
1228 
1229 		/*
1230 		 * If traced, always stop, and stay stopped until released
1231 		 * by the debugger.  If our parent process is waiting for
1232 		 * us, don't hang as we could deadlock.
1233 		 */
1234 		if (((pr->ps_flags & (PS_TRACED | PS_PPWAIT)) == PS_TRACED) &&
1235 		    signum != SIGKILL) {
1236 			pr->ps_xsig = signum;
1237 
1238 			single_thread_set(p, SINGLE_SUSPEND, 0);
1239 
1240 			if (dolock)
1241 				SCHED_LOCK(s);
1242 			proc_stop(p, 1);
1243 			if (dolock)
1244 				SCHED_UNLOCK(s);
1245 
1246 			single_thread_clear(p, 0);
1247 
1248 			/*
1249 			 * If we are no longer being traced, or the parent
1250 			 * didn't give us a signal, look for more signals.
1251 			 */
1252 			if ((pr->ps_flags & PS_TRACED) == 0 ||
1253 			    pr->ps_xsig == 0)
1254 				continue;
1255 
1256 			/*
1257 			 * If the new signal is being masked, look for other
1258 			 * signals.
1259 			 */
1260 			signum = pr->ps_xsig;
1261 			mask = sigmask(signum);
1262 			if ((p->p_sigmask & mask) != 0)
1263 				continue;
1264 
1265 			/* take the signal! */
1266 			atomic_clearbits_int(&p->p_siglist, mask);
1267 			atomic_clearbits_int(&pr->ps_siglist, mask);
1268 		}
1269 
1270 		prop = sigprop[signum];
1271 
1272 		/*
1273 		 * Decide whether the signal should be returned.
1274 		 * Return the signal's number, or fall through
1275 		 * to clear it from the pending mask.
1276 		 */
1277 		switch ((long)pr->ps_sigacts->ps_sigact[signum]) {
1278 		case (long)SIG_DFL:
1279 			/*
1280 			 * Don't take default actions on system processes.
1281 			 */
1282 			if (pr->ps_pid <= 1) {
1283 #ifdef DIAGNOSTIC
1284 				/*
1285 				 * Are you sure you want to ignore SIGSEGV
1286 				 * in init? XXX
1287 				 */
1288 				printf("Process (pid %d) got signal"
1289 				    " %d\n", pr->ps_pid, signum);
1290 #endif
1291 				break;		/* == ignore */
1292 			}
1293 			/*
1294 			 * If there is a pending stop signal to process
1295 			 * with default action, stop here,
1296 			 * then clear the signal.  However,
1297 			 * if process is member of an orphaned
1298 			 * process group, ignore tty stop signals.
1299 			 */
1300 			if (prop & SA_STOP) {
1301 				if (pr->ps_flags & PS_TRACED ||
1302 		    		    (pr->ps_pgrp->pg_jobc == 0 &&
1303 				    prop & SA_TTYSTOP))
1304 					break;	/* == ignore */
1305 				pr->ps_xsig = signum;
1306 				if (dolock)
1307 					SCHED_LOCK(s);
1308 				proc_stop(p, 1);
1309 				if (dolock)
1310 					SCHED_UNLOCK(s);
1311 				break;
1312 			} else if (prop & SA_IGNORE) {
1313 				/*
1314 				 * Except for SIGCONT, shouldn't get here.
1315 				 * Default action is to ignore; drop it.
1316 				 */
1317 				break;		/* == ignore */
1318 			} else
1319 				goto keep;
1320 			/* NOTREACHED */
1321 		case (long)SIG_IGN:
1322 			/*
1323 			 * Masking above should prevent us ever trying
1324 			 * to take action on an ignored signal other
1325 			 * than SIGCONT, unless process is traced.
1326 			 */
1327 			if ((prop & SA_CONT) == 0 &&
1328 			    (pr->ps_flags & PS_TRACED) == 0)
1329 				printf("%s\n", __func__);
1330 			break;		/* == ignore */
1331 		default:
1332 			/*
1333 			 * This signal has an action, let
1334 			 * postsig() process it.
1335 			 */
1336 			goto keep;
1337 		}
1338 	}
1339 	/* NOTREACHED */
1340 
1341 keep:
1342 	atomic_setbits_int(&p->p_siglist, mask); /*leave the signal for later */
1343 	return (signum);
1344 }
1345 
1346 /*
1347  * Put the argument process into the stopped state and notify the parent
1348  * via wakeup.  Signals are handled elsewhere.  The process must not be
1349  * on the run queue.
1350  */
1351 void
1352 proc_stop(struct proc *p, int sw)
1353 {
1354 	struct process *pr = p->p_p;
1355 
1356 #ifdef MULTIPROCESSOR
1357 	SCHED_ASSERT_LOCKED();
1358 #endif
1359 
1360 	p->p_stat = SSTOP;
1361 	atomic_clearbits_int(&pr->ps_flags, PS_WAITED);
1362 	atomic_setbits_int(&pr->ps_flags, PS_STOPPED);
1363 	atomic_setbits_int(&p->p_flag, P_SUSPSIG);
1364 	/*
1365 	 * We need this soft interrupt to be handled fast.
1366 	 * Extra calls to softclock don't hurt.
1367 	 */
1368 	softintr_schedule(proc_stop_si);
1369 	if (sw)
1370 		mi_switch();
1371 }
1372 
1373 /*
1374  * Called from a soft interrupt to send signals to the parents of stopped
1375  * processes.
1376  * We can't do this in proc_stop because it's called with nasty locks held
1377  * and we would need recursive scheduler lock to deal with that.
1378  */
1379 void
1380 proc_stop_sweep(void *v)
1381 {
1382 	struct process *pr;
1383 
1384 	LIST_FOREACH(pr, &allprocess, ps_list) {
1385 		if ((pr->ps_flags & PS_STOPPED) == 0)
1386 			continue;
1387 		atomic_clearbits_int(&pr->ps_flags, PS_STOPPED);
1388 
1389 		if ((pr->ps_pptr->ps_sigacts->ps_sigflags & SAS_NOCLDSTOP) == 0)
1390 			prsignal(pr->ps_pptr, SIGCHLD);
1391 		wakeup(pr->ps_pptr);
1392 	}
1393 }
1394 
1395 /*
1396  * Take the action for the specified signal
1397  * from the current set of pending signals.
1398  */
1399 void
1400 postsig(struct proc *p, int signum)
1401 {
1402 	struct process *pr = p->p_p;
1403 	struct sigacts *ps = pr->ps_sigacts;
1404 	sig_t action;
1405 	u_long trapno;
1406 	int mask, returnmask;
1407 	sigset_t catchmask;
1408 	siginfo_t si;
1409 	union sigval sigval;
1410 	int s, code, info, onstack, reset;
1411 
1412 	KASSERT(signum != 0);
1413 	KERNEL_ASSERT_LOCKED();
1414 
1415 	mask = sigmask(signum);
1416 	atomic_clearbits_int(&p->p_siglist, mask);
1417 	action = ps->ps_sigact[signum];
1418 	catchmask = ps->ps_catchmask[signum];
1419 	info = (ps->ps_siginfo & mask) != 0;
1420 	onstack = (ps->ps_sigonstack & mask) != 0;
1421 	reset = (ps->ps_sigreset & mask) != 0;
1422 	sigval.sival_ptr = NULL;
1423 
1424 	if (p->p_sisig != signum) {
1425 		trapno = 0;
1426 		code = SI_USER;
1427 		sigval.sival_ptr = NULL;
1428 	} else {
1429 		trapno = p->p_sitrapno;
1430 		code = p->p_sicode;
1431 		sigval = p->p_sigval;
1432 	}
1433 	initsiginfo(&si, signum, trapno, code, sigval);
1434 
1435 #ifdef KTRACE
1436 	if (KTRPOINT(p, KTR_PSIG)) {
1437 		ktrpsig(p, signum, action, p->p_flag & P_SIGSUSPEND ?
1438 		    p->p_oldmask : p->p_sigmask, code, &si);
1439 	}
1440 #endif
1441 	if (action == SIG_DFL) {
1442 		/*
1443 		 * Default action, where the default is to kill
1444 		 * the process.  (Other cases were ignored above.)
1445 		 */
1446 		sigexit(p, signum);
1447 		/* NOTREACHED */
1448 	} else {
1449 		/*
1450 		 * If we get here, the signal must be caught.
1451 		 */
1452 #ifdef DIAGNOSTIC
1453 		if (action == SIG_IGN || (p->p_sigmask & mask))
1454 			panic("postsig action");
1455 #endif
1456 		/*
1457 		 * Set the new mask value and also defer further
1458 		 * occurrences of this signal.
1459 		 *
1460 		 * Special case: user has done a sigpause.  Here the
1461 		 * current mask is not of interest, but rather the
1462 		 * mask from before the sigpause is what we want
1463 		 * restored after the signal processing is completed.
1464 		 */
1465 #ifdef MULTIPROCESSOR
1466 		s = splsched();
1467 #else
1468 		s = splhigh();
1469 #endif
1470 		if (p->p_flag & P_SIGSUSPEND) {
1471 			atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1472 			returnmask = p->p_oldmask;
1473 		} else {
1474 			returnmask = p->p_sigmask;
1475 		}
1476 		if (p->p_sisig == signum) {
1477 			p->p_sisig = 0;
1478 			p->p_sitrapno = 0;
1479 			p->p_sicode = SI_USER;
1480 			p->p_sigval.sival_ptr = NULL;
1481 		}
1482 
1483 		if (sendsig(action, signum, returnmask, &si, info, onstack)) {
1484 			sigexit(p, SIGILL);
1485 			/* NOTREACHED */
1486 		}
1487 		postsig_done(p, signum, catchmask, reset);
1488 		splx(s);
1489 	}
1490 }
1491 
1492 /*
1493  * Force the current process to exit with the specified signal, dumping core
1494  * if appropriate.  We bypass the normal tests for masked and caught signals,
1495  * allowing unrecoverable failures to terminate the process without changing
1496  * signal state.  Mark the accounting record with the signal termination.
1497  * If dumping core, save the signal number for the debugger.  Calls exit and
1498  * does not return.
1499  */
1500 void
1501 sigexit(struct proc *p, int signum)
1502 {
1503 	/* Mark process as going away */
1504 	atomic_setbits_int(&p->p_flag, P_WEXIT);
1505 
1506 	p->p_p->ps_acflag |= AXSIG;
1507 	if (sigprop[signum] & SA_CORE) {
1508 		p->p_sisig = signum;
1509 
1510 		/* if there are other threads, pause them */
1511 		if (P_HASSIBLING(p))
1512 			single_thread_set(p, SINGLE_SUSPEND, 1);
1513 
1514 		if (coredump(p) == 0)
1515 			signum |= WCOREFLAG;
1516 	}
1517 	exit1(p, 0, signum, EXIT_NORMAL);
1518 	/* NOTREACHED */
1519 }
1520 
1521 /*
1522  * Send uncatchable SIGABRT for coredump.
1523  */
1524 void
1525 sigabort(struct proc *p)
1526 {
1527 	struct sigaction sa;
1528 
1529 	memset(&sa, 0, sizeof sa);
1530 	sa.sa_handler = SIG_DFL;
1531 	setsigvec(p, SIGABRT, &sa);
1532 	atomic_clearbits_int(&p->p_sigmask, sigmask(SIGABRT));
1533 	psignal(p, SIGABRT);
1534 }
1535 
1536 /*
1537  * Return 1 if `sig', a given signal, is ignored or masked for `p', a given
1538  * thread, and 0 otherwise.
1539  */
1540 int
1541 sigismasked(struct proc *p, int sig)
1542 {
1543 	struct process *pr = p->p_p;
1544 
1545 	if ((pr->ps_sigacts->ps_sigignore & sigmask(sig)) ||
1546 	    (p->p_sigmask & sigmask(sig)))
1547 	    	return 1;
1548 
1549 	return 0;
1550 }
1551 
1552 int nosuidcoredump = 1;
1553 
1554 struct coredump_iostate {
1555 	struct proc *io_proc;
1556 	struct vnode *io_vp;
1557 	struct ucred *io_cred;
1558 	off_t io_offset;
1559 };
1560 
1561 /*
1562  * Dump core, into a file named "progname.core", unless the process was
1563  * setuid/setgid.
1564  */
1565 int
1566 coredump(struct proc *p)
1567 {
1568 #ifdef SMALL_KERNEL
1569 	return EPERM;
1570 #else
1571 	struct process *pr = p->p_p;
1572 	struct vnode *vp;
1573 	struct ucred *cred = p->p_ucred;
1574 	struct vmspace *vm = p->p_vmspace;
1575 	struct nameidata nd;
1576 	struct vattr vattr;
1577 	struct coredump_iostate	io;
1578 	int error, len, incrash = 0;
1579 	char *name;
1580 	const char *dir = "/var/crash";
1581 
1582 	atomic_setbits_int(&pr->ps_flags, PS_COREDUMP);
1583 
1584 	/* Don't dump if will exceed file size limit. */
1585 	if (USPACE + ptoa(vm->vm_dsize + vm->vm_ssize) >= lim_cur(RLIMIT_CORE))
1586 		return (EFBIG);
1587 
1588 	name = pool_get(&namei_pool, PR_WAITOK);
1589 
1590 	/*
1591 	 * If the process has inconsistent uids, nosuidcoredump
1592 	 * determines coredump placement policy.
1593 	 */
1594 	if (((pr->ps_flags & PS_SUGID) && (error = suser(p))) ||
1595 	   ((pr->ps_flags & PS_SUGID) && nosuidcoredump)) {
1596 		if (nosuidcoredump == 3) {
1597 			/*
1598 			 * If the program directory does not exist, dumps of
1599 			 * that core will silently fail.
1600 			 */
1601 			len = snprintf(name, MAXPATHLEN, "%s/%s/%u.core",
1602 			    dir, pr->ps_comm, pr->ps_pid);
1603 			incrash = KERNELPATH;
1604 		} else if (nosuidcoredump == 2) {
1605 			len = snprintf(name, MAXPATHLEN, "%s/%s.core",
1606 			    dir, pr->ps_comm);
1607 			incrash = KERNELPATH;
1608 		} else {
1609 			pool_put(&namei_pool, name);
1610 			return (EPERM);
1611 		}
1612 	} else
1613 		len = snprintf(name, MAXPATHLEN, "%s.core", pr->ps_comm);
1614 
1615 	if (len >= MAXPATHLEN) {
1616 		pool_put(&namei_pool, name);
1617 		return (EACCES);
1618 	}
1619 
1620 	/*
1621 	 * Control the UID used to write out.  The normal case uses
1622 	 * the real UID.  If the sugid case is going to write into the
1623 	 * controlled directory, we do so as root.
1624 	 */
1625 	if (incrash == 0) {
1626 		cred = crdup(cred);
1627 		cred->cr_uid = cred->cr_ruid;
1628 		cred->cr_gid = cred->cr_rgid;
1629 	} else {
1630 		if (p->p_fd->fd_rdir) {
1631 			vrele(p->p_fd->fd_rdir);
1632 			p->p_fd->fd_rdir = NULL;
1633 		}
1634 		p->p_ucred = crdup(p->p_ucred);
1635 		crfree(cred);
1636 		cred = p->p_ucred;
1637 		crhold(cred);
1638 		cred->cr_uid = 0;
1639 		cred->cr_gid = 0;
1640 	}
1641 
1642 	/* incrash should be 0 or KERNELPATH only */
1643 	NDINIT(&nd, 0, incrash, UIO_SYSSPACE, name, p);
1644 
1645 	error = vn_open(&nd, O_CREAT | FWRITE | O_NOFOLLOW | O_NONBLOCK,
1646 	    S_IRUSR | S_IWUSR);
1647 
1648 	if (error)
1649 		goto out;
1650 
1651 	/*
1652 	 * Don't dump to non-regular files, files with links, or files
1653 	 * owned by someone else.
1654 	 */
1655 	vp = nd.ni_vp;
1656 	if ((error = VOP_GETATTR(vp, &vattr, cred, p)) != 0) {
1657 		VOP_UNLOCK(vp);
1658 		vn_close(vp, FWRITE, cred, p);
1659 		goto out;
1660 	}
1661 	if (vp->v_type != VREG || vattr.va_nlink != 1 ||
1662 	    vattr.va_mode & ((VREAD | VWRITE) >> 3 | (VREAD | VWRITE) >> 6) ||
1663 	    vattr.va_uid != cred->cr_uid) {
1664 		error = EACCES;
1665 		VOP_UNLOCK(vp);
1666 		vn_close(vp, FWRITE, cred, p);
1667 		goto out;
1668 	}
1669 	VATTR_NULL(&vattr);
1670 	vattr.va_size = 0;
1671 	VOP_SETATTR(vp, &vattr, cred, p);
1672 	pr->ps_acflag |= ACORE;
1673 
1674 	io.io_proc = p;
1675 	io.io_vp = vp;
1676 	io.io_cred = cred;
1677 	io.io_offset = 0;
1678 	VOP_UNLOCK(vp);
1679 	vref(vp);
1680 	error = vn_close(vp, FWRITE, cred, p);
1681 	if (error == 0)
1682 		error = coredump_elf(p, &io);
1683 	vrele(vp);
1684 out:
1685 	crfree(cred);
1686 	pool_put(&namei_pool, name);
1687 	return (error);
1688 #endif
1689 }
1690 
1691 #ifndef SMALL_KERNEL
1692 int
1693 coredump_write(void *cookie, enum uio_seg segflg, const void *data, size_t len)
1694 {
1695 	struct coredump_iostate *io = cookie;
1696 	off_t coffset = 0;
1697 	size_t csize;
1698 	int chunk, error;
1699 
1700 	csize = len;
1701 	do {
1702 		if (sigmask(SIGKILL) &
1703 		    (io->io_proc->p_siglist | io->io_proc->p_p->ps_siglist))
1704 			return (EINTR);
1705 
1706 		/* Rest of the loop sleeps with lock held, so... */
1707 		yield();
1708 
1709 		chunk = MIN(csize, MAXPHYS);
1710 		error = vn_rdwr(UIO_WRITE, io->io_vp,
1711 		    (caddr_t)data + coffset, chunk,
1712 		    io->io_offset + coffset, segflg,
1713 		    IO_UNIT, io->io_cred, NULL, io->io_proc);
1714 		if (error) {
1715 			struct process *pr = io->io_proc->p_p;
1716 
1717 			if (error == ENOSPC)
1718 				log(LOG_ERR,
1719 				    "coredump of %s(%d) failed, filesystem full\n",
1720 				    pr->ps_comm, pr->ps_pid);
1721 			else
1722 				log(LOG_ERR,
1723 				    "coredump of %s(%d), write failed: errno %d\n",
1724 				    pr->ps_comm, pr->ps_pid, error);
1725 			return (error);
1726 		}
1727 
1728 		coffset += chunk;
1729 		csize -= chunk;
1730 	} while (csize > 0);
1731 
1732 	io->io_offset += len;
1733 	return (0);
1734 }
1735 
1736 void
1737 coredump_unmap(void *cookie, vaddr_t start, vaddr_t end)
1738 {
1739 	struct coredump_iostate *io = cookie;
1740 
1741 	uvm_unmap(&io->io_proc->p_vmspace->vm_map, start, end);
1742 }
1743 
1744 #endif	/* !SMALL_KERNEL */
1745 
1746 /*
1747  * Nonexistent system call-- signal process (may want to handle it).
1748  * Flag error in case process won't see signal immediately (blocked or ignored).
1749  */
1750 int
1751 sys_nosys(struct proc *p, void *v, register_t *retval)
1752 {
1753 
1754 	ptsignal(p, SIGSYS, STHREAD);
1755 	return (ENOSYS);
1756 }
1757 
1758 int
1759 sys___thrsigdivert(struct proc *p, void *v, register_t *retval)
1760 {
1761 	static int sigwaitsleep;
1762 	struct sys___thrsigdivert_args /* {
1763 		syscallarg(sigset_t) sigmask;
1764 		syscallarg(siginfo_t *) info;
1765 		syscallarg(const struct timespec *) timeout;
1766 	} */ *uap = v;
1767 	sigset_t mask = SCARG(uap, sigmask) &~ sigcantmask;
1768 	siginfo_t si;
1769 	uint64_t nsecs = INFSLP;
1770 	int timeinvalid = 0;
1771 	int error = 0;
1772 
1773 	memset(&si, 0, sizeof(si));
1774 
1775 	if (SCARG(uap, timeout) != NULL) {
1776 		struct timespec ts;
1777 		if ((error = copyin(SCARG(uap, timeout), &ts, sizeof(ts))) != 0)
1778 			return (error);
1779 #ifdef KTRACE
1780 		if (KTRPOINT(p, KTR_STRUCT))
1781 			ktrreltimespec(p, &ts);
1782 #endif
1783 		if (!timespecisvalid(&ts))
1784 			timeinvalid = 1;
1785 		else
1786 			nsecs = TIMESPEC_TO_NSEC(&ts);
1787 	}
1788 
1789 	dosigsuspend(p, p->p_sigmask &~ mask);
1790 	for (;;) {
1791 		si.si_signo = cursig(p);
1792 		if (si.si_signo != 0) {
1793 			sigset_t smask = sigmask(si.si_signo);
1794 			if (smask & mask) {
1795 				atomic_clearbits_int(&p->p_siglist, smask);
1796 				error = 0;
1797 				break;
1798 			}
1799 		}
1800 
1801 		/* per-POSIX, delay this error until after the above */
1802 		if (timeinvalid)
1803 			error = EINVAL;
1804 		/* per-POSIX, return immediatly if timeout is zero-valued */
1805 		if (nsecs == 0)
1806 			error = EAGAIN;
1807 
1808 		if (error != 0)
1809 			break;
1810 
1811 		error = tsleep_nsec(&sigwaitsleep, PPAUSE|PCATCH, "sigwait",
1812 		    nsecs);
1813 	}
1814 
1815 	if (error == 0) {
1816 		*retval = si.si_signo;
1817 		if (SCARG(uap, info) != NULL)
1818 			error = copyout(&si, SCARG(uap, info), sizeof(si));
1819 	} else if (error == ERESTART && SCARG(uap, timeout) != NULL) {
1820 		/*
1821 		 * Restarting is wrong if there's a timeout, as it'll be
1822 		 * for the same interval again
1823 		 */
1824 		error = EINTR;
1825 	}
1826 
1827 	return (error);
1828 }
1829 
1830 void
1831 initsiginfo(siginfo_t *si, int sig, u_long trapno, int code, union sigval val)
1832 {
1833 	memset(si, 0, sizeof(*si));
1834 
1835 	si->si_signo = sig;
1836 	si->si_code = code;
1837 	if (code == SI_USER) {
1838 		si->si_value = val;
1839 	} else {
1840 		switch (sig) {
1841 		case SIGSEGV:
1842 		case SIGILL:
1843 		case SIGBUS:
1844 		case SIGFPE:
1845 			si->si_addr = val.sival_ptr;
1846 			si->si_trapno = trapno;
1847 			break;
1848 		case SIGXFSZ:
1849 			break;
1850 		}
1851 	}
1852 }
1853 
1854 int
1855 filt_sigattach(struct knote *kn)
1856 {
1857 	struct process *pr = curproc->p_p;
1858 	int s;
1859 
1860 	if (kn->kn_id >= NSIG)
1861 		return EINVAL;
1862 
1863 	kn->kn_ptr.p_process = pr;
1864 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
1865 
1866 	s = splhigh();
1867 	klist_insert_locked(&pr->ps_klist, kn);
1868 	splx(s);
1869 
1870 	return (0);
1871 }
1872 
1873 void
1874 filt_sigdetach(struct knote *kn)
1875 {
1876 	struct process *pr = kn->kn_ptr.p_process;
1877 	int s;
1878 
1879 	s = splhigh();
1880 	klist_remove_locked(&pr->ps_klist, kn);
1881 	splx(s);
1882 }
1883 
1884 /*
1885  * signal knotes are shared with proc knotes, so we apply a mask to
1886  * the hint in order to differentiate them from process hints.  This
1887  * could be avoided by using a signal-specific knote list, but probably
1888  * isn't worth the trouble.
1889  */
1890 int
1891 filt_signal(struct knote *kn, long hint)
1892 {
1893 
1894 	if (hint & NOTE_SIGNAL) {
1895 		hint &= ~NOTE_SIGNAL;
1896 
1897 		if (kn->kn_id == hint)
1898 			kn->kn_data++;
1899 	}
1900 	return (kn->kn_data != 0);
1901 }
1902 
1903 void
1904 userret(struct proc *p)
1905 {
1906 	int signum;
1907 
1908 	/* send SIGPROF or SIGVTALRM if their timers interrupted this thread */
1909 	if (p->p_flag & P_PROFPEND) {
1910 		atomic_clearbits_int(&p->p_flag, P_PROFPEND);
1911 		KERNEL_LOCK();
1912 		psignal(p, SIGPROF);
1913 		KERNEL_UNLOCK();
1914 	}
1915 	if (p->p_flag & P_ALRMPEND) {
1916 		atomic_clearbits_int(&p->p_flag, P_ALRMPEND);
1917 		KERNEL_LOCK();
1918 		psignal(p, SIGVTALRM);
1919 		KERNEL_UNLOCK();
1920 	}
1921 
1922 	if (SIGPENDING(p) != 0) {
1923 		KERNEL_LOCK();
1924 		while ((signum = cursig(p)) != 0)
1925 			postsig(p, signum);
1926 		KERNEL_UNLOCK();
1927 	}
1928 
1929 	/*
1930 	 * If P_SIGSUSPEND is still set here, then we still need to restore
1931 	 * the original sigmask before returning to userspace.  Also, this
1932 	 * might unmask some pending signals, so we need to check a second
1933 	 * time for signals to post.
1934 	 */
1935 	if (p->p_flag & P_SIGSUSPEND) {
1936 		atomic_clearbits_int(&p->p_flag, P_SIGSUSPEND);
1937 		p->p_sigmask = p->p_oldmask;
1938 
1939 		KERNEL_LOCK();
1940 		while ((signum = cursig(p)) != 0)
1941 			postsig(p, signum);
1942 		KERNEL_UNLOCK();
1943 	}
1944 
1945 	if (p->p_flag & P_SUSPSINGLE)
1946 		single_thread_check(p, 0);
1947 
1948 	WITNESS_WARN(WARN_PANIC, NULL, "userret: returning");
1949 
1950 	p->p_cpu->ci_schedstate.spc_curpriority = p->p_usrpri;
1951 }
1952 
1953 int
1954 single_thread_check_locked(struct proc *p, int deep, int s)
1955 {
1956 	struct process *pr = p->p_p;
1957 
1958 	SCHED_ASSERT_LOCKED();
1959 
1960 	if (pr->ps_single != NULL && pr->ps_single != p) {
1961 		do {
1962 			/* if we're in deep, we need to unwind to the edge */
1963 			if (deep) {
1964 				if (pr->ps_flags & PS_SINGLEUNWIND)
1965 					return (ERESTART);
1966 				if (pr->ps_flags & PS_SINGLEEXIT)
1967 					return (EINTR);
1968 			}
1969 
1970 			if (pr->ps_single == NULL)
1971 				continue;
1972 
1973 			if (atomic_dec_int_nv(&pr->ps_singlecount) == 0)
1974 				wakeup(&pr->ps_singlecount);
1975 
1976 			if (pr->ps_flags & PS_SINGLEEXIT) {
1977 				SCHED_UNLOCK(s);
1978 				KERNEL_LOCK();
1979 				exit1(p, 0, 0, EXIT_THREAD_NOCHECK);
1980 				/* NOTREACHED */
1981 			}
1982 
1983 			/* not exiting and don't need to unwind, so suspend */
1984 			p->p_stat = SSTOP;
1985 			mi_switch();
1986 		} while (pr->ps_single != NULL);
1987 	}
1988 
1989 	return (0);
1990 }
1991 
1992 int
1993 single_thread_check(struct proc *p, int deep)
1994 {
1995 	int s, error;
1996 
1997 	SCHED_LOCK(s);
1998 	error = single_thread_check_locked(p, deep, s);
1999 	SCHED_UNLOCK(s);
2000 
2001 	return error;
2002 }
2003 
2004 /*
2005  * Stop other threads in the process.  The mode controls how and
2006  * where the other threads should stop:
2007  *  - SINGLE_SUSPEND: stop wherever they are, will later either be told to exit
2008  *    (by setting to SINGLE_EXIT) or be released (via single_thread_clear())
2009  *  - SINGLE_UNWIND: just unwind to kernel boundary, will be told to exit
2010  *    or released as with SINGLE_SUSPEND
2011  *  - SINGLE_EXIT: unwind to kernel boundary and exit
2012  */
2013 int
2014 single_thread_set(struct proc *p, enum single_thread_mode mode, int wait)
2015 {
2016 	struct process *pr = p->p_p;
2017 	struct proc *q;
2018 	int error, s;
2019 
2020 	KASSERT(curproc == p);
2021 
2022 	SCHED_LOCK(s);
2023 	error = single_thread_check_locked(p, (mode == SINGLE_UNWIND), s);
2024 	if (error) {
2025 		SCHED_UNLOCK(s);
2026 		return error;
2027 	}
2028 
2029 	switch (mode) {
2030 	case SINGLE_SUSPEND:
2031 		break;
2032 	case SINGLE_UNWIND:
2033 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
2034 		break;
2035 	case SINGLE_EXIT:
2036 		atomic_setbits_int(&pr->ps_flags, PS_SINGLEEXIT);
2037 		atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND);
2038 		break;
2039 #ifdef DIAGNOSTIC
2040 	default:
2041 		panic("single_thread_mode = %d", mode);
2042 #endif
2043 	}
2044 	pr->ps_singlecount = 0;
2045 	membar_producer();
2046 	pr->ps_single = p;
2047 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2048 		if (q == p)
2049 			continue;
2050 		if (q->p_flag & P_WEXIT) {
2051 			if (mode == SINGLE_EXIT) {
2052 				if (q->p_stat == SSTOP) {
2053 					setrunnable(q);
2054 					atomic_inc_int(&pr->ps_singlecount);
2055 				}
2056 			}
2057 			continue;
2058 		}
2059 		atomic_setbits_int(&q->p_flag, P_SUSPSINGLE);
2060 		switch (q->p_stat) {
2061 		case SIDL:
2062 		case SRUN:
2063 			atomic_inc_int(&pr->ps_singlecount);
2064 			break;
2065 		case SSLEEP:
2066 			/* if it's not interruptible, then just have to wait */
2067 			if (q->p_flag & P_SINTR) {
2068 				/* merely need to suspend?  just stop it */
2069 				if (mode == SINGLE_SUSPEND) {
2070 					q->p_stat = SSTOP;
2071 					break;
2072 				}
2073 				/* need to unwind or exit, so wake it */
2074 				setrunnable(q);
2075 			}
2076 			atomic_inc_int(&pr->ps_singlecount);
2077 			break;
2078 		case SSTOP:
2079 			if (mode == SINGLE_EXIT) {
2080 				setrunnable(q);
2081 				atomic_inc_int(&pr->ps_singlecount);
2082 			}
2083 			break;
2084 		case SDEAD:
2085 			break;
2086 		case SONPROC:
2087 			atomic_inc_int(&pr->ps_singlecount);
2088 			signotify(q);
2089 			break;
2090 		}
2091 	}
2092 	SCHED_UNLOCK(s);
2093 
2094 	if (wait)
2095 		single_thread_wait(pr, 1);
2096 
2097 	return 0;
2098 }
2099 
2100 /*
2101  * Wait for other threads to stop. If recheck is false then the function
2102  * returns non-zero if the caller needs to restart the check else 0 is
2103  * returned. If recheck is true the return value is always 0.
2104  */
2105 int
2106 single_thread_wait(struct process *pr, int recheck)
2107 {
2108 	struct sleep_state sls;
2109 	int wait;
2110 
2111 	/* wait until they're all suspended */
2112 	wait = pr->ps_singlecount > 0;
2113 	while (wait) {
2114 		sleep_setup(&sls, &pr->ps_singlecount, PWAIT, "suspend", 0);
2115 		wait = pr->ps_singlecount > 0;
2116 		sleep_finish(&sls, wait);
2117 		if (!recheck)
2118 			break;
2119 	}
2120 
2121 	return wait;
2122 }
2123 
2124 void
2125 single_thread_clear(struct proc *p, int flag)
2126 {
2127 	struct process *pr = p->p_p;
2128 	struct proc *q;
2129 	int s;
2130 
2131 	KASSERT(pr->ps_single == p);
2132 	KASSERT(curproc == p);
2133 
2134 	SCHED_LOCK(s);
2135 	pr->ps_single = NULL;
2136 	atomic_clearbits_int(&pr->ps_flags, PS_SINGLEUNWIND | PS_SINGLEEXIT);
2137 	TAILQ_FOREACH(q, &pr->ps_threads, p_thr_link) {
2138 		if (q == p || (q->p_flag & P_SUSPSINGLE) == 0)
2139 			continue;
2140 		atomic_clearbits_int(&q->p_flag, P_SUSPSINGLE);
2141 
2142 		/*
2143 		 * if the thread was only stopped for single threading
2144 		 * then clearing that either makes it runnable or puts
2145 		 * it back into some sleep queue
2146 		 */
2147 		if (q->p_stat == SSTOP && (q->p_flag & flag) == 0) {
2148 			if (q->p_wchan == NULL)
2149 				setrunnable(q);
2150 			else
2151 				q->p_stat = SSLEEP;
2152 		}
2153 	}
2154 	SCHED_UNLOCK(s);
2155 }
2156 
2157 void
2158 sigio_del(struct sigiolst *rmlist)
2159 {
2160 	struct sigio *sigio;
2161 
2162 	while ((sigio = LIST_FIRST(rmlist)) != NULL) {
2163 		LIST_REMOVE(sigio, sio_pgsigio);
2164 		crfree(sigio->sio_ucred);
2165 		free(sigio, M_SIGIO, sizeof(*sigio));
2166 	}
2167 }
2168 
2169 void
2170 sigio_unlink(struct sigio_ref *sir, struct sigiolst *rmlist)
2171 {
2172 	struct sigio *sigio;
2173 
2174 	MUTEX_ASSERT_LOCKED(&sigio_lock);
2175 
2176 	sigio = sir->sir_sigio;
2177 	if (sigio != NULL) {
2178 		KASSERT(sigio->sio_myref == sir);
2179 		sir->sir_sigio = NULL;
2180 
2181 		if (sigio->sio_pgid > 0)
2182 			sigio->sio_proc = NULL;
2183 		else
2184 			sigio->sio_pgrp = NULL;
2185 		LIST_REMOVE(sigio, sio_pgsigio);
2186 
2187 		LIST_INSERT_HEAD(rmlist, sigio, sio_pgsigio);
2188 	}
2189 }
2190 
2191 void
2192 sigio_free(struct sigio_ref *sir)
2193 {
2194 	struct sigiolst rmlist;
2195 
2196 	if (sir->sir_sigio == NULL)
2197 		return;
2198 
2199 	LIST_INIT(&rmlist);
2200 
2201 	mtx_enter(&sigio_lock);
2202 	sigio_unlink(sir, &rmlist);
2203 	mtx_leave(&sigio_lock);
2204 
2205 	sigio_del(&rmlist);
2206 }
2207 
2208 void
2209 sigio_freelist(struct sigiolst *sigiolst)
2210 {
2211 	struct sigiolst rmlist;
2212 	struct sigio *sigio;
2213 
2214 	if (LIST_EMPTY(sigiolst))
2215 		return;
2216 
2217 	LIST_INIT(&rmlist);
2218 
2219 	mtx_enter(&sigio_lock);
2220 	while ((sigio = LIST_FIRST(sigiolst)) != NULL)
2221 		sigio_unlink(sigio->sio_myref, &rmlist);
2222 	mtx_leave(&sigio_lock);
2223 
2224 	sigio_del(&rmlist);
2225 }
2226 
2227 int
2228 sigio_setown(struct sigio_ref *sir, u_long cmd, caddr_t data)
2229 {
2230 	struct sigiolst rmlist;
2231 	struct proc *p = curproc;
2232 	struct pgrp *pgrp = NULL;
2233 	struct process *pr = NULL;
2234 	struct sigio *sigio;
2235 	int error;
2236 	pid_t pgid = *(int *)data;
2237 
2238 	if (pgid == 0) {
2239 		sigio_free(sir);
2240 		return (0);
2241 	}
2242 
2243 	if (cmd == TIOCSPGRP) {
2244 		if (pgid < 0)
2245 			return (EINVAL);
2246 		pgid = -pgid;
2247 	}
2248 
2249 	sigio = malloc(sizeof(*sigio), M_SIGIO, M_WAITOK);
2250 	sigio->sio_pgid = pgid;
2251 	sigio->sio_ucred = crhold(p->p_ucred);
2252 	sigio->sio_myref = sir;
2253 
2254 	LIST_INIT(&rmlist);
2255 
2256 	/*
2257 	 * The kernel lock, and not sleeping between prfind()/pgfind() and
2258 	 * linking of the sigio ensure that the process or process group does
2259 	 * not disappear unexpectedly.
2260 	 */
2261 	KERNEL_LOCK();
2262 	mtx_enter(&sigio_lock);
2263 
2264 	if (pgid > 0) {
2265 		pr = prfind(pgid);
2266 		if (pr == NULL) {
2267 			error = ESRCH;
2268 			goto fail;
2269 		}
2270 
2271 		/*
2272 		 * Policy - Don't allow a process to FSETOWN a process
2273 		 * in another session.
2274 		 *
2275 		 * Remove this test to allow maximum flexibility or
2276 		 * restrict FSETOWN to the current process or process
2277 		 * group for maximum safety.
2278 		 */
2279 		if (pr->ps_session != p->p_p->ps_session) {
2280 			error = EPERM;
2281 			goto fail;
2282 		}
2283 
2284 		if ((pr->ps_flags & PS_EXITING) != 0) {
2285 			error = ESRCH;
2286 			goto fail;
2287 		}
2288 	} else /* if (pgid < 0) */ {
2289 		pgrp = pgfind(-pgid);
2290 		if (pgrp == NULL) {
2291 			error = ESRCH;
2292 			goto fail;
2293 		}
2294 
2295 		/*
2296 		 * Policy - Don't allow a process to FSETOWN a process
2297 		 * in another session.
2298 		 *
2299 		 * Remove this test to allow maximum flexibility or
2300 		 * restrict FSETOWN to the current process or process
2301 		 * group for maximum safety.
2302 		 */
2303 		if (pgrp->pg_session != p->p_p->ps_session) {
2304 			error = EPERM;
2305 			goto fail;
2306 		}
2307 	}
2308 
2309 	if (pgid > 0) {
2310 		sigio->sio_proc = pr;
2311 		LIST_INSERT_HEAD(&pr->ps_sigiolst, sigio, sio_pgsigio);
2312 	} else {
2313 		sigio->sio_pgrp = pgrp;
2314 		LIST_INSERT_HEAD(&pgrp->pg_sigiolst, sigio, sio_pgsigio);
2315 	}
2316 
2317 	sigio_unlink(sir, &rmlist);
2318 	sir->sir_sigio = sigio;
2319 
2320 	mtx_leave(&sigio_lock);
2321 	KERNEL_UNLOCK();
2322 
2323 	sigio_del(&rmlist);
2324 
2325 	return (0);
2326 
2327 fail:
2328 	mtx_leave(&sigio_lock);
2329 	KERNEL_UNLOCK();
2330 
2331 	crfree(sigio->sio_ucred);
2332 	free(sigio, M_SIGIO, sizeof(*sigio));
2333 
2334 	return (error);
2335 }
2336 
2337 void
2338 sigio_getown(struct sigio_ref *sir, u_long cmd, caddr_t data)
2339 {
2340 	struct sigio *sigio;
2341 	pid_t pgid = 0;
2342 
2343 	mtx_enter(&sigio_lock);
2344 	sigio = sir->sir_sigio;
2345 	if (sigio != NULL)
2346 		pgid = sigio->sio_pgid;
2347 	mtx_leave(&sigio_lock);
2348 
2349 	if (cmd == TIOCGPGRP)
2350 		pgid = -pgid;
2351 
2352 	*(int *)data = pgid;
2353 }
2354 
2355 void
2356 sigio_copy(struct sigio_ref *dst, struct sigio_ref *src)
2357 {
2358 	struct sigiolst rmlist;
2359 	struct sigio *newsigio, *sigio;
2360 
2361 	sigio_free(dst);
2362 
2363 	if (src->sir_sigio == NULL)
2364 		return;
2365 
2366 	newsigio = malloc(sizeof(*newsigio), M_SIGIO, M_WAITOK);
2367 	LIST_INIT(&rmlist);
2368 
2369 	mtx_enter(&sigio_lock);
2370 
2371 	sigio = src->sir_sigio;
2372 	if (sigio == NULL) {
2373 		mtx_leave(&sigio_lock);
2374 		free(newsigio, M_SIGIO, sizeof(*newsigio));
2375 		return;
2376 	}
2377 
2378 	newsigio->sio_pgid = sigio->sio_pgid;
2379 	newsigio->sio_ucred = crhold(sigio->sio_ucred);
2380 	newsigio->sio_myref = dst;
2381 	if (newsigio->sio_pgid > 0) {
2382 		newsigio->sio_proc = sigio->sio_proc;
2383 		LIST_INSERT_HEAD(&newsigio->sio_proc->ps_sigiolst, newsigio,
2384 		    sio_pgsigio);
2385 	} else {
2386 		newsigio->sio_pgrp = sigio->sio_pgrp;
2387 		LIST_INSERT_HEAD(&newsigio->sio_pgrp->pg_sigiolst, newsigio,
2388 		    sio_pgsigio);
2389 	}
2390 
2391 	sigio_unlink(dst, &rmlist);
2392 	dst->sir_sigio = newsigio;
2393 
2394 	mtx_leave(&sigio_lock);
2395 
2396 	sigio_del(&rmlist);
2397 }
2398