1 /* $OpenBSD: kern_sched.c,v 1.20 2010/05/14 18:47:56 kettenis Exp $ */ 2 /* 3 * Copyright (c) 2007, 2008 Artur Grabowski <art@openbsd.org> 4 * 5 * Permission to use, copy, modify, and distribute this software for any 6 * purpose with or without fee is hereby granted, provided that the above 7 * copyright notice and this permission notice appear in all copies. 8 * 9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 16 */ 17 18 #include <sys/param.h> 19 20 #include <sys/sched.h> 21 #include <sys/proc.h> 22 #include <sys/kthread.h> 23 #include <sys/systm.h> 24 #include <sys/resourcevar.h> 25 #include <sys/signalvar.h> 26 #include <sys/mutex.h> 27 28 #include <uvm/uvm_extern.h> 29 30 #include <sys/malloc.h> 31 32 33 void sched_kthreads_create(void *); 34 35 int sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p); 36 struct proc *sched_steal_proc(struct cpu_info *); 37 38 /* 39 * To help choosing which cpu should run which process we keep track 40 * of cpus which are currently idle and which cpus have processes 41 * queued. 42 */ 43 struct cpuset sched_idle_cpus; 44 struct cpuset sched_queued_cpus; 45 46 /* 47 * A few notes about cpu_switchto that is implemented in MD code. 48 * 49 * cpu_switchto takes two arguments, the old proc and the proc 50 * it should switch to. The new proc will never be NULL, so we always have 51 * a saved state that we need to switch to. The old proc however can 52 * be NULL if the process is exiting. NULL for the old proc simply 53 * means "don't bother saving old state". 54 * 55 * cpu_switchto is supposed to atomically load the new state of the process 56 * including the pcb, pmap and setting curproc, the p_cpu pointer in the 57 * proc and p_stat to SONPROC. Atomically with respect to interrupts, other 58 * cpus in the system must not depend on this state being consistent. 59 * Therefore no locking is necessary in cpu_switchto other than blocking 60 * interrupts during the context switch. 61 */ 62 63 /* 64 * sched_init_cpu is called from main() for the boot cpu, then it's the 65 * responsibility of the MD code to call it for all other cpus. 66 */ 67 void 68 sched_init_cpu(struct cpu_info *ci) 69 { 70 struct schedstate_percpu *spc = &ci->ci_schedstate; 71 int i; 72 73 for (i = 0; i < SCHED_NQS; i++) 74 TAILQ_INIT(&spc->spc_qs[i]); 75 76 spc->spc_idleproc = NULL; 77 78 kthread_create_deferred(sched_kthreads_create, ci); 79 80 LIST_INIT(&spc->spc_deadproc); 81 82 /* 83 * Slight hack here until the cpuset code handles cpu_info 84 * structures. 85 */ 86 cpuset_init_cpu(ci); 87 } 88 89 void 90 sched_kthreads_create(void *v) 91 { 92 struct cpu_info *ci = v; 93 struct schedstate_percpu *spc = &ci->ci_schedstate; 94 static int num; 95 96 if (kthread_create(sched_idle, ci, &spc->spc_idleproc, "idle%d", num)) 97 panic("fork idle"); 98 99 num++; 100 } 101 102 void 103 sched_idle(void *v) 104 { 105 struct schedstate_percpu *spc; 106 struct proc *p = curproc; 107 struct cpu_info *ci = v; 108 int s; 109 110 KERNEL_PROC_UNLOCK(p); 111 112 spc = &ci->ci_schedstate; 113 114 /* 115 * First time we enter here, we're not supposed to idle, 116 * just go away for a while. 117 */ 118 SCHED_LOCK(s); 119 cpuset_add(&sched_idle_cpus, ci); 120 p->p_stat = SSLEEP; 121 p->p_cpu = ci; 122 atomic_setbits_int(&p->p_flag, P_CPUPEG); 123 mi_switch(); 124 cpuset_del(&sched_idle_cpus, ci); 125 SCHED_UNLOCK(s); 126 127 KASSERT(ci == curcpu()); 128 KASSERT(curproc == spc->spc_idleproc); 129 130 while (1) { 131 while (!curcpu_is_idle()) { 132 struct proc *dead; 133 134 SCHED_LOCK(s); 135 p->p_stat = SSLEEP; 136 mi_switch(); 137 SCHED_UNLOCK(s); 138 139 while ((dead = LIST_FIRST(&spc->spc_deadproc))) { 140 LIST_REMOVE(dead, p_hash); 141 exit2(dead); 142 } 143 } 144 145 splassert(IPL_NONE); 146 147 cpuset_add(&sched_idle_cpus, ci); 148 cpu_idle_enter(); 149 while (spc->spc_whichqs == 0) { 150 if (spc->spc_schedflags & SPCF_SHOULDHALT) { 151 atomic_setbits_int(&spc->spc_schedflags, 152 SPCF_HALTED); 153 wakeup(spc); 154 } 155 cpu_idle_cycle(); 156 } 157 cpu_idle_leave(); 158 cpuset_del(&sched_idle_cpus, ci); 159 } 160 } 161 162 /* 163 * To free our address space we have to jump through a few hoops. 164 * The freeing is done by the reaper, but until we have one reaper 165 * per cpu, we have no way of putting this proc on the deadproc list 166 * and waking up the reaper without risking having our address space and 167 * stack torn from under us before we manage to switch to another proc. 168 * Therefore we have a per-cpu list of dead processes where we put this 169 * proc and have idle clean up that list and move it to the reaper list. 170 * All this will be unnecessary once we can bind the reaper this cpu 171 * and not risk having it switch to another in case it sleeps. 172 */ 173 void 174 sched_exit(struct proc *p) 175 { 176 struct schedstate_percpu *spc = &curcpu()->ci_schedstate; 177 struct timeval tv; 178 struct proc *idle; 179 int s; 180 181 microuptime(&tv); 182 timersub(&tv, &spc->spc_runtime, &tv); 183 timeradd(&p->p_rtime, &tv, &p->p_rtime); 184 185 LIST_INSERT_HEAD(&spc->spc_deadproc, p, p_hash); 186 187 /* This process no longer needs to hold the kernel lock. */ 188 KERNEL_PROC_UNLOCK(p); 189 190 SCHED_LOCK(s); 191 idle = spc->spc_idleproc; 192 idle->p_stat = SRUN; 193 cpu_switchto(NULL, idle); 194 panic("cpu_switchto returned"); 195 } 196 197 /* 198 * Run queue management. 199 */ 200 void 201 sched_init_runqueues(void) 202 { 203 } 204 205 void 206 setrunqueue(struct proc *p) 207 { 208 struct schedstate_percpu *spc; 209 int queue = p->p_priority >> 2; 210 211 SCHED_ASSERT_LOCKED(); 212 spc = &p->p_cpu->ci_schedstate; 213 spc->spc_nrun++; 214 215 TAILQ_INSERT_TAIL(&spc->spc_qs[queue], p, p_runq); 216 spc->spc_whichqs |= (1 << queue); 217 cpuset_add(&sched_queued_cpus, p->p_cpu); 218 219 if (cpuset_isset(&sched_idle_cpus, p->p_cpu)) 220 cpu_unidle(p->p_cpu); 221 } 222 223 void 224 remrunqueue(struct proc *p) 225 { 226 struct schedstate_percpu *spc; 227 int queue = p->p_priority >> 2; 228 229 SCHED_ASSERT_LOCKED(); 230 spc = &p->p_cpu->ci_schedstate; 231 spc->spc_nrun--; 232 233 TAILQ_REMOVE(&spc->spc_qs[queue], p, p_runq); 234 if (TAILQ_EMPTY(&spc->spc_qs[queue])) { 235 spc->spc_whichqs &= ~(1 << queue); 236 if (spc->spc_whichqs == 0) 237 cpuset_del(&sched_queued_cpus, p->p_cpu); 238 } 239 } 240 241 struct proc * 242 sched_chooseproc(void) 243 { 244 struct schedstate_percpu *spc = &curcpu()->ci_schedstate; 245 struct proc *p; 246 int queue; 247 248 SCHED_ASSERT_LOCKED(); 249 250 if (spc->spc_schedflags & SPCF_SHOULDHALT) { 251 p = spc->spc_idleproc; 252 KASSERT(p); 253 p->p_stat = SRUN; 254 return (p); 255 } 256 257 again: 258 if (spc->spc_whichqs) { 259 queue = ffs(spc->spc_whichqs) - 1; 260 p = TAILQ_FIRST(&spc->spc_qs[queue]); 261 remrunqueue(p); 262 } else if ((p = sched_steal_proc(curcpu())) == NULL) { 263 p = spc->spc_idleproc; 264 if (p == NULL) { 265 int s; 266 /* 267 * We get here if someone decides to switch during 268 * boot before forking kthreads, bleh. 269 * This is kind of like a stupid idle loop. 270 */ 271 #ifdef MULTIPROCESSOR 272 __mp_unlock(&sched_lock); 273 #endif 274 spl0(); 275 delay(10); 276 SCHED_LOCK(s); 277 goto again; 278 } 279 KASSERT(p); 280 p->p_stat = SRUN; 281 } 282 283 return (p); 284 } 285 286 uint64_t sched_nmigrations; 287 uint64_t sched_noidle; 288 uint64_t sched_stolen; 289 290 uint64_t sched_choose; 291 uint64_t sched_wasidle; 292 uint64_t sched_nomigrations; 293 294 struct cpu_info * 295 sched_choosecpu_fork(struct proc *parent, int flags) 296 { 297 struct cpu_info *choice = NULL; 298 fixpt_t load, best_load = ~0; 299 int run, best_run = INT_MAX; 300 struct cpu_info *ci; 301 struct cpuset set; 302 303 #if 0 304 /* 305 * XXX 306 * Don't do this until we have a painless way to move the cpu in exec. 307 * Preferably when nuking the old pmap and getting a new one on a 308 * new cpu. 309 */ 310 /* 311 * PPWAIT forks are simple. We know that the parent will not 312 * run until we exec and choose another cpu, so we just steal its 313 * cpu. 314 */ 315 if (flags & FORK_PPWAIT) 316 return (parent->p_cpu); 317 #endif 318 319 /* 320 * Look at all cpus that are currently idle and have nothing queued. 321 * If there are none, pick the one with least queued procs first, 322 * then the one with lowest load average. 323 */ 324 cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus); 325 if (cpuset_first(&set) == NULL) 326 cpuset_add_all(&set); 327 328 while ((ci = cpuset_first(&set)) != NULL) { 329 cpuset_del(&set, ci); 330 331 load = ci->ci_schedstate.spc_ldavg; 332 run = ci->ci_schedstate.spc_nrun; 333 334 if (choice == NULL || run < best_run || 335 (run == best_run &&load < best_load)) { 336 choice = ci; 337 best_load = load; 338 best_run = run; 339 } 340 } 341 342 return (choice); 343 } 344 345 struct cpu_info * 346 sched_choosecpu(struct proc *p) 347 { 348 struct cpu_info *choice = NULL; 349 int last_cost = INT_MAX; 350 struct cpu_info *ci; 351 struct cpuset set; 352 353 /* 354 * If pegged to a cpu, don't allow it to move. 355 */ 356 if (p->p_flag & P_CPUPEG) 357 return (p->p_cpu); 358 359 sched_choose++; 360 361 /* 362 * Look at all cpus that are currently idle and have nothing queued. 363 * If there are none, pick the cheapest of those. 364 * (idle + queued could mean that the cpu is handling an interrupt 365 * at this moment and haven't had time to leave idle yet). 366 */ 367 cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus); 368 369 /* 370 * First, just check if our current cpu is in that set, if it is, 371 * this is simple. 372 * Also, our cpu might not be idle, but if it's the current cpu 373 * and it has nothing else queued and we're curproc, take it. 374 */ 375 if (cpuset_isset(&set, p->p_cpu) || 376 (p->p_cpu == curcpu() && p->p_cpu->ci_schedstate.spc_nrun == 0 && 377 curproc == p)) { 378 sched_wasidle++; 379 return (p->p_cpu); 380 } 381 382 if (cpuset_first(&set) == NULL) 383 cpuset_add_all(&set); 384 385 while ((ci = cpuset_first(&set)) != NULL) { 386 int cost = sched_proc_to_cpu_cost(ci, p); 387 388 if (choice == NULL || cost < last_cost) { 389 choice = ci; 390 last_cost = cost; 391 } 392 cpuset_del(&set, ci); 393 } 394 395 if (p->p_cpu != choice) 396 sched_nmigrations++; 397 else 398 sched_nomigrations++; 399 400 return (choice); 401 } 402 403 /* 404 * Attempt to steal a proc from some cpu. 405 */ 406 struct proc * 407 sched_steal_proc(struct cpu_info *self) 408 { 409 struct schedstate_percpu *spc; 410 struct proc *best = NULL; 411 int bestcost = INT_MAX; 412 struct cpu_info *ci; 413 struct cpuset set; 414 415 cpuset_copy(&set, &sched_queued_cpus); 416 417 while ((ci = cpuset_first(&set)) != NULL) { 418 struct proc *p; 419 int queue; 420 int cost; 421 422 cpuset_del(&set, ci); 423 424 spc = &ci->ci_schedstate; 425 426 queue = ffs(spc->spc_whichqs) - 1; 427 TAILQ_FOREACH(p, &spc->spc_qs[queue], p_runq) { 428 if (p->p_flag & P_CPUPEG) 429 continue; 430 431 cost = sched_proc_to_cpu_cost(self, p); 432 433 if (best == NULL || cost < bestcost) { 434 best = p; 435 bestcost = cost; 436 } 437 } 438 } 439 if (best == NULL) 440 return (NULL); 441 442 spc = &best->p_cpu->ci_schedstate; 443 remrunqueue(best); 444 best->p_cpu = self; 445 446 sched_stolen++; 447 448 return (best); 449 } 450 451 /* 452 * Base 2 logarithm of an int. returns 0 for 0 (yeye, I know). 453 */ 454 static int 455 log2(unsigned int i) 456 { 457 int ret = 0; 458 459 while (i >>= 1) 460 ret++; 461 462 return (ret); 463 } 464 465 /* 466 * Calculate the cost of moving the proc to this cpu. 467 * 468 * What we want is some guesstimate of how much "performance" it will 469 * cost us to move the proc here. Not just for caches and TLBs and NUMA 470 * memory, but also for the proc itself. A highly loaded cpu might not 471 * be the best candidate for this proc since it won't get run. 472 * 473 * Just total guesstimates for now. 474 */ 475 476 int sched_cost_load = 1; 477 int sched_cost_priority = 1; 478 int sched_cost_runnable = 3; 479 int sched_cost_resident = 1; 480 481 int 482 sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p) 483 { 484 struct schedstate_percpu *spc; 485 int l2resident = 0; 486 int cost; 487 488 spc = &ci->ci_schedstate; 489 490 cost = 0; 491 492 /* 493 * First, account for the priority of the proc we want to move. 494 * More willing to move, the lower the priority of the destination 495 * and the higher the priority of the proc. 496 */ 497 if (!cpuset_isset(&sched_idle_cpus, ci)) { 498 cost += (p->p_priority - spc->spc_curpriority) * 499 sched_cost_priority; 500 cost += sched_cost_runnable; 501 } 502 if (cpuset_isset(&sched_queued_cpus, ci)) { 503 cost += spc->spc_nrun * sched_cost_runnable; 504 } 505 506 /* 507 * Higher load on the destination means we don't want to go there. 508 */ 509 cost += ((sched_cost_load * spc->spc_ldavg) >> FSHIFT); 510 511 /* 512 * If the proc is on this cpu already, lower the cost by how much 513 * it has been running and an estimate of its footprint. 514 */ 515 if (p->p_cpu == ci && p->p_slptime == 0) { 516 l2resident = 517 log2(pmap_resident_count(p->p_vmspace->vm_map.pmap)); 518 cost -= l2resident * sched_cost_resident; 519 } 520 521 return (cost); 522 } 523 524 /* 525 * Peg a proc to a cpu. 526 */ 527 void 528 sched_peg_curproc(struct cpu_info *ci) 529 { 530 struct proc *p = curproc; 531 int s; 532 533 SCHED_LOCK(s); 534 p->p_priority = p->p_usrpri; 535 p->p_stat = SRUN; 536 p->p_cpu = ci; 537 atomic_setbits_int(&p->p_flag, P_CPUPEG); 538 setrunqueue(p); 539 p->p_stats->p_ru.ru_nvcsw++; 540 mi_switch(); 541 SCHED_UNLOCK(s); 542 } 543 544 #ifdef MULTIPROCESSOR 545 546 void 547 sched_start_secondary_cpus(void) 548 { 549 CPU_INFO_ITERATOR cii; 550 struct cpu_info *ci; 551 552 CPU_INFO_FOREACH(cii, ci) { 553 struct schedstate_percpu *spc = &ci->ci_schedstate; 554 555 if (CPU_IS_PRIMARY(ci)) 556 continue; 557 atomic_clearbits_int(&spc->spc_schedflags, 558 SPCF_SHOULDHALT | SPCF_HALTED); 559 } 560 } 561 562 void 563 sched_stop_secondary_cpus(void) 564 { 565 CPU_INFO_ITERATOR cii; 566 struct cpu_info *ci; 567 568 /* 569 * Make sure we stop the secondary CPUs. 570 */ 571 CPU_INFO_FOREACH(cii, ci) { 572 struct schedstate_percpu *spc = &ci->ci_schedstate; 573 574 if (CPU_IS_PRIMARY(ci)) 575 continue; 576 atomic_setbits_int(&spc->spc_schedflags, SPCF_SHOULDHALT); 577 } 578 CPU_INFO_FOREACH(cii, ci) { 579 struct schedstate_percpu *spc = &ci->ci_schedstate; 580 struct sleep_state sls; 581 582 if (CPU_IS_PRIMARY(ci)) 583 continue; 584 while ((spc->spc_schedflags & SPCF_HALTED) == 0) { 585 sleep_setup(&sls, spc, PZERO, "schedstate"); 586 sleep_finish(&sls, 587 (spc->spc_schedflags & SPCF_HALTED) == 0); 588 } 589 } 590 } 591 592 #endif 593 594 /* 595 * Functions to manipulate cpu sets. 596 */ 597 struct cpu_info *cpuset_infos[MAXCPUS]; 598 static struct cpuset cpuset_all; 599 600 void 601 cpuset_init_cpu(struct cpu_info *ci) 602 { 603 cpuset_add(&cpuset_all, ci); 604 cpuset_infos[CPU_INFO_UNIT(ci)] = ci; 605 } 606 607 void 608 cpuset_clear(struct cpuset *cs) 609 { 610 memset(cs, 0, sizeof(*cs)); 611 } 612 613 /* 614 * XXX - implement it on SP architectures too 615 */ 616 #ifndef CPU_INFO_UNIT 617 #define CPU_INFO_UNIT 0 618 #endif 619 620 void 621 cpuset_add(struct cpuset *cs, struct cpu_info *ci) 622 { 623 unsigned int num = CPU_INFO_UNIT(ci); 624 atomic_setbits_int(&cs->cs_set[num/32], (1 << (num % 32))); 625 } 626 627 void 628 cpuset_del(struct cpuset *cs, struct cpu_info *ci) 629 { 630 unsigned int num = CPU_INFO_UNIT(ci); 631 atomic_clearbits_int(&cs->cs_set[num/32], (1 << (num % 32))); 632 } 633 634 int 635 cpuset_isset(struct cpuset *cs, struct cpu_info *ci) 636 { 637 unsigned int num = CPU_INFO_UNIT(ci); 638 return (cs->cs_set[num/32] & (1 << (num % 32))); 639 } 640 641 void 642 cpuset_add_all(struct cpuset *cs) 643 { 644 cpuset_copy(cs, &cpuset_all); 645 } 646 647 void 648 cpuset_copy(struct cpuset *to, struct cpuset *from) 649 { 650 memcpy(to, from, sizeof(*to)); 651 } 652 653 struct cpu_info * 654 cpuset_first(struct cpuset *cs) 655 { 656 int i; 657 658 for (i = 0; i < CPUSET_ASIZE(ncpus); i++) 659 if (cs->cs_set[i]) 660 return (cpuset_infos[i * 32 + ffs(cs->cs_set[i]) - 1]); 661 662 return (NULL); 663 } 664 665 void 666 cpuset_union(struct cpuset *to, struct cpuset *a, struct cpuset *b) 667 { 668 int i; 669 670 for (i = 0; i < CPUSET_ASIZE(ncpus); i++) 671 to->cs_set[i] = a->cs_set[i] | b->cs_set[i]; 672 } 673 674 void 675 cpuset_intersection(struct cpuset *to, struct cpuset *a, struct cpuset *b) 676 { 677 int i; 678 679 for (i = 0; i < CPUSET_ASIZE(ncpus); i++) 680 to->cs_set[i] = a->cs_set[i] & b->cs_set[i]; 681 } 682 683 void 684 cpuset_complement(struct cpuset *to, struct cpuset *a, struct cpuset *b) 685 { 686 int i; 687 688 for (i = 0; i < CPUSET_ASIZE(ncpus); i++) 689 to->cs_set[i] = b->cs_set[i] & ~a->cs_set[i]; 690 } 691