xref: /openbsd-src/sys/kern/kern_sched.c (revision ae3cb403620ab940fbaabb3055fac045a63d56b7)
1 /*	$OpenBSD: kern_sched.c,v 1.47 2017/12/14 23:21:04 dlg Exp $	*/
2 /*
3  * Copyright (c) 2007, 2008 Artur Grabowski <art@openbsd.org>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <sys/param.h>
19 
20 #include <sys/sched.h>
21 #include <sys/proc.h>
22 #include <sys/kthread.h>
23 #include <sys/systm.h>
24 #include <sys/resourcevar.h>
25 #include <sys/signalvar.h>
26 #include <sys/mutex.h>
27 #include <sys/task.h>
28 
29 #include <uvm/uvm_extern.h>
30 
31 void sched_kthreads_create(void *);
32 
33 int sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p);
34 struct proc *sched_steal_proc(struct cpu_info *);
35 
36 /*
37  * To help choosing which cpu should run which process we keep track
38  * of cpus which are currently idle and which cpus have processes
39  * queued.
40  */
41 struct cpuset sched_idle_cpus;
42 struct cpuset sched_queued_cpus;
43 struct cpuset sched_all_cpus;
44 
45 /*
46  * Some general scheduler counters.
47  */
48 uint64_t sched_nmigrations;	/* Cpu migration counter */
49 uint64_t sched_nomigrations;	/* Cpu no migration counter */
50 uint64_t sched_noidle;		/* Times we didn't pick the idle task */
51 uint64_t sched_stolen;		/* Times we stole proc from other cpus */
52 uint64_t sched_choose;		/* Times we chose a cpu */
53 uint64_t sched_wasidle;		/* Times we came out of idle */
54 
55 #ifdef MULTIPROCESSOR
56 struct taskq *sbartq;
57 #endif
58 
59 /*
60  * A few notes about cpu_switchto that is implemented in MD code.
61  *
62  * cpu_switchto takes two arguments, the old proc and the proc
63  * it should switch to. The new proc will never be NULL, so we always have
64  * a saved state that we need to switch to. The old proc however can
65  * be NULL if the process is exiting. NULL for the old proc simply
66  * means "don't bother saving old state".
67  *
68  * cpu_switchto is supposed to atomically load the new state of the process
69  * including the pcb, pmap and setting curproc, the p_cpu pointer in the
70  * proc and p_stat to SONPROC. Atomically with respect to interrupts, other
71  * cpus in the system must not depend on this state being consistent.
72  * Therefore no locking is necessary in cpu_switchto other than blocking
73  * interrupts during the context switch.
74  */
75 
76 /*
77  * sched_init_cpu is called from main() for the boot cpu, then it's the
78  * responsibility of the MD code to call it for all other cpus.
79  */
80 void
81 sched_init_cpu(struct cpu_info *ci)
82 {
83 	struct schedstate_percpu *spc = &ci->ci_schedstate;
84 	int i;
85 
86 	for (i = 0; i < SCHED_NQS; i++)
87 		TAILQ_INIT(&spc->spc_qs[i]);
88 
89 	spc->spc_idleproc = NULL;
90 
91 	kthread_create_deferred(sched_kthreads_create, ci);
92 
93 	LIST_INIT(&spc->spc_deadproc);
94 
95 	/*
96 	 * Slight hack here until the cpuset code handles cpu_info
97 	 * structures.
98 	 */
99 	cpuset_init_cpu(ci);
100 	cpuset_add(&sched_all_cpus, ci);
101 }
102 
103 void
104 sched_kthreads_create(void *v)
105 {
106 	struct cpu_info *ci = v;
107 	struct schedstate_percpu *spc = &ci->ci_schedstate;
108 	static int num;
109 
110 	if (fork1(&proc0, FORK_SHAREVM|FORK_SHAREFILES|FORK_NOZOMBIE|
111 	    FORK_SYSTEM|FORK_SIGHAND|FORK_IDLE, sched_idle, ci, NULL,
112 	    &spc->spc_idleproc))
113 		panic("fork idle");
114 
115 	/* Name it as specified. */
116 	snprintf(spc->spc_idleproc->p_p->ps_comm,
117 	    sizeof(spc->spc_idleproc->p_p->ps_comm),
118 	    "idle%d", num);
119 
120 	num++;
121 }
122 
123 void
124 sched_idle(void *v)
125 {
126 	struct schedstate_percpu *spc;
127 	struct proc *p = curproc;
128 	struct cpu_info *ci = v;
129 	int s;
130 
131 	KERNEL_UNLOCK();
132 
133 	spc = &ci->ci_schedstate;
134 
135 	/*
136 	 * First time we enter here, we're not supposed to idle,
137 	 * just go away for a while.
138 	 */
139 	SCHED_LOCK(s);
140 	cpuset_add(&sched_idle_cpus, ci);
141 	p->p_stat = SSLEEP;
142 	p->p_cpu = ci;
143 	atomic_setbits_int(&p->p_flag, P_CPUPEG);
144 	mi_switch();
145 	cpuset_del(&sched_idle_cpus, ci);
146 	SCHED_UNLOCK(s);
147 
148 	KASSERT(ci == curcpu());
149 	KASSERT(curproc == spc->spc_idleproc);
150 
151 	while (1) {
152 		while (!cpu_is_idle(curcpu())) {
153 			struct proc *dead;
154 
155 			SCHED_LOCK(s);
156 			p->p_stat = SSLEEP;
157 			mi_switch();
158 			SCHED_UNLOCK(s);
159 
160 			while ((dead = LIST_FIRST(&spc->spc_deadproc))) {
161 				LIST_REMOVE(dead, p_hash);
162 				exit2(dead);
163 			}
164 		}
165 
166 		splassert(IPL_NONE);
167 
168 		cpuset_add(&sched_idle_cpus, ci);
169 		cpu_idle_enter();
170 		while (spc->spc_whichqs == 0) {
171 #ifdef MULTIPROCESSOR
172 			if (spc->spc_schedflags & SPCF_SHOULDHALT &&
173 			    (spc->spc_schedflags & SPCF_HALTED) == 0) {
174 				cpuset_del(&sched_idle_cpus, ci);
175 				SCHED_LOCK(s);
176 				atomic_setbits_int(&spc->spc_schedflags,
177 				    spc->spc_whichqs ? 0 : SPCF_HALTED);
178 				SCHED_UNLOCK(s);
179 				wakeup(spc);
180 			}
181 #endif
182 			cpu_idle_cycle();
183 		}
184 		cpu_idle_leave();
185 		cpuset_del(&sched_idle_cpus, ci);
186 	}
187 }
188 
189 /*
190  * To free our address space we have to jump through a few hoops.
191  * The freeing is done by the reaper, but until we have one reaper
192  * per cpu, we have no way of putting this proc on the deadproc list
193  * and waking up the reaper without risking having our address space and
194  * stack torn from under us before we manage to switch to another proc.
195  * Therefore we have a per-cpu list of dead processes where we put this
196  * proc and have idle clean up that list and move it to the reaper list.
197  * All this will be unnecessary once we can bind the reaper this cpu
198  * and not risk having it switch to another in case it sleeps.
199  */
200 void
201 sched_exit(struct proc *p)
202 {
203 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
204 	struct timespec ts;
205 	struct proc *idle;
206 	int s;
207 
208 	nanouptime(&ts);
209 	timespecsub(&ts, &spc->spc_runtime, &ts);
210 	timespecadd(&p->p_rtime, &ts, &p->p_rtime);
211 
212 	LIST_INSERT_HEAD(&spc->spc_deadproc, p, p_hash);
213 
214 	/* This process no longer needs to hold the kernel lock. */
215 	KERNEL_UNLOCK();
216 
217 	SCHED_LOCK(s);
218 	idle = spc->spc_idleproc;
219 	idle->p_stat = SRUN;
220 	cpu_switchto(NULL, idle);
221 	panic("cpu_switchto returned");
222 }
223 
224 /*
225  * Run queue management.
226  */
227 void
228 sched_init_runqueues(void)
229 {
230 }
231 
232 void
233 setrunqueue(struct proc *p)
234 {
235 	struct schedstate_percpu *spc;
236 	int queue = p->p_priority >> 2;
237 
238 	SCHED_ASSERT_LOCKED();
239 	spc = &p->p_cpu->ci_schedstate;
240 	spc->spc_nrun++;
241 
242 	TAILQ_INSERT_TAIL(&spc->spc_qs[queue], p, p_runq);
243 	spc->spc_whichqs |= (1 << queue);
244 	cpuset_add(&sched_queued_cpus, p->p_cpu);
245 
246 	if (cpuset_isset(&sched_idle_cpus, p->p_cpu))
247 		cpu_unidle(p->p_cpu);
248 }
249 
250 void
251 remrunqueue(struct proc *p)
252 {
253 	struct schedstate_percpu *spc;
254 	int queue = p->p_priority >> 2;
255 
256 	SCHED_ASSERT_LOCKED();
257 	spc = &p->p_cpu->ci_schedstate;
258 	spc->spc_nrun--;
259 
260 	TAILQ_REMOVE(&spc->spc_qs[queue], p, p_runq);
261 	if (TAILQ_EMPTY(&spc->spc_qs[queue])) {
262 		spc->spc_whichqs &= ~(1 << queue);
263 		if (spc->spc_whichqs == 0)
264 			cpuset_del(&sched_queued_cpus, p->p_cpu);
265 	}
266 }
267 
268 struct proc *
269 sched_chooseproc(void)
270 {
271 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
272 	struct proc *p;
273 	int queue;
274 
275 	SCHED_ASSERT_LOCKED();
276 
277 #ifdef MULTIPROCESSOR
278 	if (spc->spc_schedflags & SPCF_SHOULDHALT) {
279 		if (spc->spc_whichqs) {
280 			for (queue = 0; queue < SCHED_NQS; queue++) {
281 				while ((p = TAILQ_FIRST(&spc->spc_qs[queue]))) {
282 					remrunqueue(p);
283 					p->p_cpu = sched_choosecpu(p);
284 					setrunqueue(p);
285 					if (p->p_cpu == curcpu()) {
286 						KASSERT(p->p_flag & P_CPUPEG);
287 						goto again;
288 					}
289 				}
290 			}
291 		}
292 		p = spc->spc_idleproc;
293 		KASSERT(p);
294 		KASSERT(p->p_wchan == NULL);
295 		p->p_stat = SRUN;
296 		return (p);
297 	}
298 #endif
299 
300 again:
301 	if (spc->spc_whichqs) {
302 		queue = ffs(spc->spc_whichqs) - 1;
303 		p = TAILQ_FIRST(&spc->spc_qs[queue]);
304 		remrunqueue(p);
305 		sched_noidle++;
306 		KASSERT(p->p_stat == SRUN);
307 	} else if ((p = sched_steal_proc(curcpu())) == NULL) {
308 		p = spc->spc_idleproc;
309 		if (p == NULL) {
310                         int s;
311 			/*
312 			 * We get here if someone decides to switch during
313 			 * boot before forking kthreads, bleh.
314 			 * This is kind of like a stupid idle loop.
315 			 */
316 #ifdef MULTIPROCESSOR
317 			__mp_unlock(&sched_lock);
318 #endif
319 			spl0();
320 			delay(10);
321 			SCHED_LOCK(s);
322 			goto again;
323                 }
324 		KASSERT(p);
325 		p->p_stat = SRUN;
326 	}
327 
328 	KASSERT(p->p_wchan == NULL);
329 	return (p);
330 }
331 
332 struct cpu_info *
333 sched_choosecpu_fork(struct proc *parent, int flags)
334 {
335 #ifdef MULTIPROCESSOR
336 	struct cpu_info *choice = NULL;
337 	fixpt_t load, best_load = ~0;
338 	int run, best_run = INT_MAX;
339 	struct cpu_info *ci;
340 	struct cpuset set;
341 
342 #if 0
343 	/*
344 	 * XXX
345 	 * Don't do this until we have a painless way to move the cpu in exec.
346 	 * Preferably when nuking the old pmap and getting a new one on a
347 	 * new cpu.
348 	 */
349 	/*
350 	 * PPWAIT forks are simple. We know that the parent will not
351 	 * run until we exec and choose another cpu, so we just steal its
352 	 * cpu.
353 	 */
354 	if (flags & FORK_PPWAIT)
355 		return (parent->p_cpu);
356 #endif
357 
358 	/*
359 	 * Look at all cpus that are currently idle and have nothing queued.
360 	 * If there are none, pick the one with least queued procs first,
361 	 * then the one with lowest load average.
362 	 */
363 	cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus);
364 	cpuset_intersection(&set, &set, &sched_all_cpus);
365 	if (cpuset_first(&set) == NULL)
366 		cpuset_copy(&set, &sched_all_cpus);
367 
368 	while ((ci = cpuset_first(&set)) != NULL) {
369 		cpuset_del(&set, ci);
370 
371 		load = ci->ci_schedstate.spc_ldavg;
372 		run = ci->ci_schedstate.spc_nrun;
373 
374 		if (choice == NULL || run < best_run ||
375 		    (run == best_run &&load < best_load)) {
376 			choice = ci;
377 			best_load = load;
378 			best_run = run;
379 		}
380 	}
381 
382 	return (choice);
383 #else
384 	return (curcpu());
385 #endif
386 }
387 
388 struct cpu_info *
389 sched_choosecpu(struct proc *p)
390 {
391 #ifdef MULTIPROCESSOR
392 	struct cpu_info *choice = NULL;
393 	int last_cost = INT_MAX;
394 	struct cpu_info *ci;
395 	struct cpuset set;
396 
397 	/*
398 	 * If pegged to a cpu, don't allow it to move.
399 	 */
400 	if (p->p_flag & P_CPUPEG)
401 		return (p->p_cpu);
402 
403 	sched_choose++;
404 
405 	/*
406 	 * Look at all cpus that are currently idle and have nothing queued.
407 	 * If there are none, pick the cheapest of those.
408 	 * (idle + queued could mean that the cpu is handling an interrupt
409 	 * at this moment and haven't had time to leave idle yet).
410 	 */
411 	cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus);
412 	cpuset_intersection(&set, &set, &sched_all_cpus);
413 
414 	/*
415 	 * First, just check if our current cpu is in that set, if it is,
416 	 * this is simple.
417 	 * Also, our cpu might not be idle, but if it's the current cpu
418 	 * and it has nothing else queued and we're curproc, take it.
419 	 */
420 	if (cpuset_isset(&set, p->p_cpu) ||
421 	    (p->p_cpu == curcpu() && p->p_cpu->ci_schedstate.spc_nrun == 0 &&
422 	    (p->p_cpu->ci_schedstate.spc_schedflags & SPCF_SHOULDHALT) == 0 &&
423 	    curproc == p)) {
424 		sched_wasidle++;
425 		return (p->p_cpu);
426 	}
427 
428 	if (cpuset_first(&set) == NULL)
429 		cpuset_copy(&set, &sched_all_cpus);
430 
431 	while ((ci = cpuset_first(&set)) != NULL) {
432 		int cost = sched_proc_to_cpu_cost(ci, p);
433 
434 		if (choice == NULL || cost < last_cost) {
435 			choice = ci;
436 			last_cost = cost;
437 		}
438 		cpuset_del(&set, ci);
439 	}
440 
441 	if (p->p_cpu != choice)
442 		sched_nmigrations++;
443 	else
444 		sched_nomigrations++;
445 
446 	return (choice);
447 #else
448 	return (curcpu());
449 #endif
450 }
451 
452 /*
453  * Attempt to steal a proc from some cpu.
454  */
455 struct proc *
456 sched_steal_proc(struct cpu_info *self)
457 {
458 	struct proc *best = NULL;
459 #ifdef MULTIPROCESSOR
460 	struct schedstate_percpu *spc;
461 	int bestcost = INT_MAX;
462 	struct cpu_info *ci;
463 	struct cpuset set;
464 
465 	KASSERT((self->ci_schedstate.spc_schedflags & SPCF_SHOULDHALT) == 0);
466 
467 	cpuset_copy(&set, &sched_queued_cpus);
468 
469 	while ((ci = cpuset_first(&set)) != NULL) {
470 		struct proc *p;
471 		int queue;
472 		int cost;
473 
474 		cpuset_del(&set, ci);
475 
476 		spc = &ci->ci_schedstate;
477 
478 		queue = ffs(spc->spc_whichqs) - 1;
479 		TAILQ_FOREACH(p, &spc->spc_qs[queue], p_runq) {
480 			if (p->p_flag & P_CPUPEG)
481 				continue;
482 
483 			cost = sched_proc_to_cpu_cost(self, p);
484 
485 			if (best == NULL || cost < bestcost) {
486 				best = p;
487 				bestcost = cost;
488 			}
489 		}
490 	}
491 	if (best == NULL)
492 		return (NULL);
493 
494 	spc = &best->p_cpu->ci_schedstate;
495 	remrunqueue(best);
496 	best->p_cpu = self;
497 
498 	sched_stolen++;
499 #endif
500 	return (best);
501 }
502 
503 #ifdef MULTIPROCESSOR
504 /*
505  * Base 2 logarithm of an int. returns 0 for 0 (yeye, I know).
506  */
507 static int
508 log2(unsigned int i)
509 {
510 	int ret = 0;
511 
512 	while (i >>= 1)
513 		ret++;
514 
515 	return (ret);
516 }
517 
518 /*
519  * Calculate the cost of moving the proc to this cpu.
520  *
521  * What we want is some guesstimate of how much "performance" it will
522  * cost us to move the proc here. Not just for caches and TLBs and NUMA
523  * memory, but also for the proc itself. A highly loaded cpu might not
524  * be the best candidate for this proc since it won't get run.
525  *
526  * Just total guesstimates for now.
527  */
528 
529 int sched_cost_load = 1;
530 int sched_cost_priority = 1;
531 int sched_cost_runnable = 3;
532 int sched_cost_resident = 1;
533 #endif
534 
535 int
536 sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p)
537 {
538 	int cost = 0;
539 #ifdef MULTIPROCESSOR
540 	struct schedstate_percpu *spc;
541 	int l2resident = 0;
542 
543 	spc = &ci->ci_schedstate;
544 
545 	/*
546 	 * First, account for the priority of the proc we want to move.
547 	 * More willing to move, the lower the priority of the destination
548 	 * and the higher the priority of the proc.
549 	 */
550 	if (!cpuset_isset(&sched_idle_cpus, ci)) {
551 		cost += (p->p_priority - spc->spc_curpriority) *
552 		    sched_cost_priority;
553 		cost += sched_cost_runnable;
554 	}
555 	if (cpuset_isset(&sched_queued_cpus, ci))
556 		cost += spc->spc_nrun * sched_cost_runnable;
557 
558 	/*
559 	 * Try to avoid the primary cpu as it handles hardware interrupts.
560 	 *
561 	 * XXX Needs to be revisited when we distribute interrupts
562 	 * over cpus.
563 	 */
564 	if (CPU_IS_PRIMARY(ci))
565 		cost += sched_cost_runnable;
566 
567 	/*
568 	 * Higher load on the destination means we don't want to go there.
569 	 */
570 	cost += ((sched_cost_load * spc->spc_ldavg) >> FSHIFT);
571 
572 	/*
573 	 * If the proc is on this cpu already, lower the cost by how much
574 	 * it has been running and an estimate of its footprint.
575 	 */
576 	if (p->p_cpu == ci && p->p_slptime == 0) {
577 		l2resident =
578 		    log2(pmap_resident_count(p->p_vmspace->vm_map.pmap));
579 		cost -= l2resident * sched_cost_resident;
580 	}
581 #endif
582 	return (cost);
583 }
584 
585 /*
586  * Peg a proc to a cpu.
587  */
588 void
589 sched_peg_curproc(struct cpu_info *ci)
590 {
591 	struct proc *p = curproc;
592 	int s;
593 
594 	SCHED_LOCK(s);
595 	p->p_priority = p->p_usrpri;
596 	p->p_stat = SRUN;
597 	p->p_cpu = ci;
598 	atomic_setbits_int(&p->p_flag, P_CPUPEG);
599 	setrunqueue(p);
600 	p->p_ru.ru_nvcsw++;
601 	mi_switch();
602 	SCHED_UNLOCK(s);
603 }
604 
605 #ifdef MULTIPROCESSOR
606 
607 void
608 sched_start_secondary_cpus(void)
609 {
610 	CPU_INFO_ITERATOR cii;
611 	struct cpu_info *ci;
612 
613 	CPU_INFO_FOREACH(cii, ci) {
614 		struct schedstate_percpu *spc = &ci->ci_schedstate;
615 
616 		if (CPU_IS_PRIMARY(ci))
617 			continue;
618 		cpuset_add(&sched_all_cpus, ci);
619 		atomic_clearbits_int(&spc->spc_schedflags,
620 		    SPCF_SHOULDHALT | SPCF_HALTED);
621 	}
622 }
623 
624 void
625 sched_stop_secondary_cpus(void)
626 {
627 	CPU_INFO_ITERATOR cii;
628 	struct cpu_info *ci;
629 
630 	/*
631 	 * Make sure we stop the secondary CPUs.
632 	 */
633 	CPU_INFO_FOREACH(cii, ci) {
634 		struct schedstate_percpu *spc = &ci->ci_schedstate;
635 
636 		if (CPU_IS_PRIMARY(ci))
637 			continue;
638 		cpuset_del(&sched_all_cpus, ci);
639 		atomic_setbits_int(&spc->spc_schedflags, SPCF_SHOULDHALT);
640 	}
641 	CPU_INFO_FOREACH(cii, ci) {
642 		struct schedstate_percpu *spc = &ci->ci_schedstate;
643 		struct sleep_state sls;
644 
645 		if (CPU_IS_PRIMARY(ci))
646 			continue;
647 		while ((spc->spc_schedflags & SPCF_HALTED) == 0) {
648 			sleep_setup(&sls, spc, PZERO, "schedstate");
649 			sleep_finish(&sls,
650 			    (spc->spc_schedflags & SPCF_HALTED) == 0);
651 		}
652 	}
653 }
654 
655 struct sched_barrier_state {
656 	struct cpu_info *ci;
657 	struct cond cond;
658 };
659 
660 void
661 sched_barrier_task(void *arg)
662 {
663 	struct sched_barrier_state *sb = arg;
664 	struct cpu_info *ci = sb->ci;
665 
666 	sched_peg_curproc(ci);
667 	cond_signal(&sb->cond);
668 	atomic_clearbits_int(&curproc->p_flag, P_CPUPEG);
669 }
670 
671 void
672 sched_barrier(struct cpu_info *ci)
673 {
674 	struct sched_barrier_state sb;
675 	struct task task;
676 	CPU_INFO_ITERATOR cii;
677 
678 	if (ci == NULL) {
679 		CPU_INFO_FOREACH(cii, ci) {
680 			if (CPU_IS_PRIMARY(ci))
681 				break;
682 		}
683 	}
684 	KASSERT(ci != NULL);
685 
686 	if (ci == curcpu())
687 		return;
688 
689 	sb.ci = ci;
690 	cond_init(&sb.cond);
691 	task_set(&task, sched_barrier_task, &sb);
692 
693 	task_add(systqmp, &task);
694 	cond_wait(&sb.cond, "sbar");
695 }
696 
697 #else
698 
699 void
700 sched_barrier(struct cpu_info *ci)
701 {
702 }
703 
704 #endif
705 
706 /*
707  * Functions to manipulate cpu sets.
708  */
709 struct cpu_info *cpuset_infos[MAXCPUS];
710 static struct cpuset cpuset_all;
711 
712 void
713 cpuset_init_cpu(struct cpu_info *ci)
714 {
715 	cpuset_add(&cpuset_all, ci);
716 	cpuset_infos[CPU_INFO_UNIT(ci)] = ci;
717 }
718 
719 void
720 cpuset_clear(struct cpuset *cs)
721 {
722 	memset(cs, 0, sizeof(*cs));
723 }
724 
725 void
726 cpuset_add(struct cpuset *cs, struct cpu_info *ci)
727 {
728 	unsigned int num = CPU_INFO_UNIT(ci);
729 	atomic_setbits_int(&cs->cs_set[num/32], (1 << (num % 32)));
730 }
731 
732 void
733 cpuset_del(struct cpuset *cs, struct cpu_info *ci)
734 {
735 	unsigned int num = CPU_INFO_UNIT(ci);
736 	atomic_clearbits_int(&cs->cs_set[num/32], (1 << (num % 32)));
737 }
738 
739 int
740 cpuset_isset(struct cpuset *cs, struct cpu_info *ci)
741 {
742 	unsigned int num = CPU_INFO_UNIT(ci);
743 	return (cs->cs_set[num/32] & (1 << (num % 32)));
744 }
745 
746 void
747 cpuset_add_all(struct cpuset *cs)
748 {
749 	cpuset_copy(cs, &cpuset_all);
750 }
751 
752 void
753 cpuset_copy(struct cpuset *to, struct cpuset *from)
754 {
755 	memcpy(to, from, sizeof(*to));
756 }
757 
758 struct cpu_info *
759 cpuset_first(struct cpuset *cs)
760 {
761 	int i;
762 
763 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
764 		if (cs->cs_set[i])
765 			return (cpuset_infos[i * 32 + ffs(cs->cs_set[i]) - 1]);
766 
767 	return (NULL);
768 }
769 
770 void
771 cpuset_union(struct cpuset *to, struct cpuset *a, struct cpuset *b)
772 {
773 	int i;
774 
775 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
776 		to->cs_set[i] = a->cs_set[i] | b->cs_set[i];
777 }
778 
779 void
780 cpuset_intersection(struct cpuset *to, struct cpuset *a, struct cpuset *b)
781 {
782 	int i;
783 
784 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
785 		to->cs_set[i] = a->cs_set[i] & b->cs_set[i];
786 }
787 
788 void
789 cpuset_complement(struct cpuset *to, struct cpuset *a, struct cpuset *b)
790 {
791 	int i;
792 
793 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
794 		to->cs_set[i] = b->cs_set[i] & ~a->cs_set[i];
795 }
796