xref: /openbsd-src/sys/kern/kern_sched.c (revision 7f7713105d61ae59b8d1881a6fd4c0c5ffe1c821)
1 /*	$OpenBSD: kern_sched.c,v 1.27 2012/07/10 18:20:37 kettenis Exp $	*/
2 /*
3  * Copyright (c) 2007, 2008 Artur Grabowski <art@openbsd.org>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <sys/param.h>
19 
20 #include <sys/sched.h>
21 #include <sys/proc.h>
22 #include <sys/kthread.h>
23 #include <sys/systm.h>
24 #include <sys/resourcevar.h>
25 #include <sys/signalvar.h>
26 #include <sys/mutex.h>
27 
28 #include <uvm/uvm_extern.h>
29 
30 #include <sys/malloc.h>
31 
32 
33 void sched_kthreads_create(void *);
34 
35 int sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p);
36 struct proc *sched_steal_proc(struct cpu_info *);
37 
38 /*
39  * To help choosing which cpu should run which process we keep track
40  * of cpus which are currently idle and which cpus have processes
41  * queued.
42  */
43 struct cpuset sched_idle_cpus;
44 struct cpuset sched_queued_cpus;
45 struct cpuset sched_all_cpus;
46 
47 /*
48  * Some general scheduler counters.
49  */
50 uint64_t sched_nmigrations;	/* Cpu migration counter */
51 uint64_t sched_nomigrations;	/* Cpu no migration counter */
52 uint64_t sched_noidle;		/* Times we didn't pick the idle task */
53 uint64_t sched_stolen;		/* Times we stole proc from other cpus */
54 uint64_t sched_choose;		/* Times we chose a cpu */
55 uint64_t sched_wasidle;		/* Times we came out of idle */
56 
57 /*
58  * A few notes about cpu_switchto that is implemented in MD code.
59  *
60  * cpu_switchto takes two arguments, the old proc and the proc
61  * it should switch to. The new proc will never be NULL, so we always have
62  * a saved state that we need to switch to. The old proc however can
63  * be NULL if the process is exiting. NULL for the old proc simply
64  * means "don't bother saving old state".
65  *
66  * cpu_switchto is supposed to atomically load the new state of the process
67  * including the pcb, pmap and setting curproc, the p_cpu pointer in the
68  * proc and p_stat to SONPROC. Atomically with respect to interrupts, other
69  * cpus in the system must not depend on this state being consistent.
70  * Therefore no locking is necessary in cpu_switchto other than blocking
71  * interrupts during the context switch.
72  */
73 
74 /*
75  * sched_init_cpu is called from main() for the boot cpu, then it's the
76  * responsibility of the MD code to call it for all other cpus.
77  */
78 void
79 sched_init_cpu(struct cpu_info *ci)
80 {
81 	struct schedstate_percpu *spc = &ci->ci_schedstate;
82 	int i;
83 
84 	for (i = 0; i < SCHED_NQS; i++)
85 		TAILQ_INIT(&spc->spc_qs[i]);
86 
87 	spc->spc_idleproc = NULL;
88 
89 	kthread_create_deferred(sched_kthreads_create, ci);
90 
91 	LIST_INIT(&spc->spc_deadproc);
92 
93 	/*
94 	 * Slight hack here until the cpuset code handles cpu_info
95 	 * structures.
96 	 */
97 	cpuset_init_cpu(ci);
98 	cpuset_add(&sched_all_cpus, ci);
99 }
100 
101 void
102 sched_kthreads_create(void *v)
103 {
104 	struct cpu_info *ci = v;
105 	struct schedstate_percpu *spc = &ci->ci_schedstate;
106 	static int num;
107 
108 	if (kthread_create(sched_idle, ci, &spc->spc_idleproc, "idle%d", num))
109 		panic("fork idle");
110 
111 	num++;
112 }
113 
114 void
115 sched_idle(void *v)
116 {
117 	struct schedstate_percpu *spc;
118 	struct proc *p = curproc;
119 	struct cpu_info *ci = v;
120 	int s;
121 
122 	KERNEL_UNLOCK();
123 
124 	spc = &ci->ci_schedstate;
125 
126 	/*
127 	 * First time we enter here, we're not supposed to idle,
128 	 * just go away for a while.
129 	 */
130 	SCHED_LOCK(s);
131 	cpuset_add(&sched_idle_cpus, ci);
132 	p->p_stat = SSLEEP;
133 	p->p_cpu = ci;
134 	atomic_setbits_int(&p->p_flag, P_CPUPEG);
135 	mi_switch();
136 	cpuset_del(&sched_idle_cpus, ci);
137 	SCHED_UNLOCK(s);
138 
139 	KASSERT(ci == curcpu());
140 	KASSERT(curproc == spc->spc_idleproc);
141 
142 	while (1) {
143 		while (!curcpu_is_idle()) {
144 			struct proc *dead;
145 
146 			SCHED_LOCK(s);
147 			p->p_stat = SSLEEP;
148 			mi_switch();
149 			SCHED_UNLOCK(s);
150 
151 			while ((dead = LIST_FIRST(&spc->spc_deadproc))) {
152 				LIST_REMOVE(dead, p_hash);
153 				exit2(dead);
154 			}
155 		}
156 
157 		splassert(IPL_NONE);
158 
159 		cpuset_add(&sched_idle_cpus, ci);
160 		cpu_idle_enter();
161 		while (spc->spc_whichqs == 0) {
162 			if (spc->spc_schedflags & SPCF_SHOULDHALT &&
163 			    (spc->spc_schedflags & SPCF_HALTED) == 0) {
164 				cpuset_del(&sched_idle_cpus, ci);
165 				SCHED_LOCK(s);
166 				atomic_setbits_int(&spc->spc_schedflags,
167 				    spc->spc_whichqs ? 0 : SPCF_HALTED);
168 				SCHED_UNLOCK(s);
169 				wakeup(spc);
170 			}
171 			cpu_idle_cycle();
172 		}
173 		cpu_idle_leave();
174 		cpuset_del(&sched_idle_cpus, ci);
175 	}
176 }
177 
178 /*
179  * To free our address space we have to jump through a few hoops.
180  * The freeing is done by the reaper, but until we have one reaper
181  * per cpu, we have no way of putting this proc on the deadproc list
182  * and waking up the reaper without risking having our address space and
183  * stack torn from under us before we manage to switch to another proc.
184  * Therefore we have a per-cpu list of dead processes where we put this
185  * proc and have idle clean up that list and move it to the reaper list.
186  * All this will be unnecessary once we can bind the reaper this cpu
187  * and not risk having it switch to another in case it sleeps.
188  */
189 void
190 sched_exit(struct proc *p)
191 {
192 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
193 	struct timeval tv;
194 	struct proc *idle;
195 	int s;
196 
197 	microuptime(&tv);
198 	timersub(&tv, &spc->spc_runtime, &tv);
199 	timeradd(&p->p_rtime, &tv, &p->p_rtime);
200 
201 	LIST_INSERT_HEAD(&spc->spc_deadproc, p, p_hash);
202 
203 	/* This process no longer needs to hold the kernel lock. */
204 	KERNEL_UNLOCK();
205 
206 	SCHED_LOCK(s);
207 	idle = spc->spc_idleproc;
208 	idle->p_stat = SRUN;
209 	cpu_switchto(NULL, idle);
210 	panic("cpu_switchto returned");
211 }
212 
213 /*
214  * Run queue management.
215  */
216 void
217 sched_init_runqueues(void)
218 {
219 }
220 
221 void
222 setrunqueue(struct proc *p)
223 {
224 	struct schedstate_percpu *spc;
225 	int queue = p->p_priority >> 2;
226 
227 	SCHED_ASSERT_LOCKED();
228 	spc = &p->p_cpu->ci_schedstate;
229 	spc->spc_nrun++;
230 
231 	TAILQ_INSERT_TAIL(&spc->spc_qs[queue], p, p_runq);
232 	spc->spc_whichqs |= (1 << queue);
233 	cpuset_add(&sched_queued_cpus, p->p_cpu);
234 
235 	if (cpuset_isset(&sched_idle_cpus, p->p_cpu))
236 		cpu_unidle(p->p_cpu);
237 }
238 
239 void
240 remrunqueue(struct proc *p)
241 {
242 	struct schedstate_percpu *spc;
243 	int queue = p->p_priority >> 2;
244 
245 	SCHED_ASSERT_LOCKED();
246 	spc = &p->p_cpu->ci_schedstate;
247 	spc->spc_nrun--;
248 
249 	TAILQ_REMOVE(&spc->spc_qs[queue], p, p_runq);
250 	if (TAILQ_EMPTY(&spc->spc_qs[queue])) {
251 		spc->spc_whichqs &= ~(1 << queue);
252 		if (spc->spc_whichqs == 0)
253 			cpuset_del(&sched_queued_cpus, p->p_cpu);
254 	}
255 }
256 
257 struct proc *
258 sched_chooseproc(void)
259 {
260 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
261 	struct proc *p;
262 	int queue;
263 
264 	SCHED_ASSERT_LOCKED();
265 
266 	if (spc->spc_schedflags & SPCF_SHOULDHALT) {
267 		if (spc->spc_whichqs) {
268 			for (queue = 0; queue < SCHED_NQS; queue++) {
269 				TAILQ_FOREACH(p, &spc->spc_qs[queue], p_runq) {
270 					remrunqueue(p);
271 					p->p_cpu = sched_choosecpu(p);
272 					setrunqueue(p);
273 				}
274 			}
275 		}
276 		p = spc->spc_idleproc;
277 		KASSERT(p);
278 		KASSERT(p->p_wchan == NULL);
279 		p->p_stat = SRUN;
280 		return (p);
281 	}
282 
283 again:
284 	if (spc->spc_whichqs) {
285 		queue = ffs(spc->spc_whichqs) - 1;
286 		p = TAILQ_FIRST(&spc->spc_qs[queue]);
287 		remrunqueue(p);
288 		sched_noidle++;
289 		KASSERT(p->p_stat == SRUN);
290 	} else if ((p = sched_steal_proc(curcpu())) == NULL) {
291 		p = spc->spc_idleproc;
292 		if (p == NULL) {
293                         int s;
294 			/*
295 			 * We get here if someone decides to switch during
296 			 * boot before forking kthreads, bleh.
297 			 * This is kind of like a stupid idle loop.
298 			 */
299 #ifdef MULTIPROCESSOR
300 			__mp_unlock(&sched_lock);
301 #endif
302 			spl0();
303 			delay(10);
304 			SCHED_LOCK(s);
305 			goto again;
306                 }
307 		KASSERT(p);
308 		p->p_stat = SRUN;
309 	}
310 
311 	KASSERT(p->p_wchan == NULL);
312 	return (p);
313 }
314 
315 struct cpu_info *
316 sched_choosecpu_fork(struct proc *parent, int flags)
317 {
318 	struct cpu_info *choice = NULL;
319 	fixpt_t load, best_load = ~0;
320 	int run, best_run = INT_MAX;
321 	struct cpu_info *ci;
322 	struct cpuset set;
323 
324 #if 0
325 	/*
326 	 * XXX
327 	 * Don't do this until we have a painless way to move the cpu in exec.
328 	 * Preferably when nuking the old pmap and getting a new one on a
329 	 * new cpu.
330 	 */
331 	/*
332 	 * PPWAIT forks are simple. We know that the parent will not
333 	 * run until we exec and choose another cpu, so we just steal its
334 	 * cpu.
335 	 */
336 	if (flags & FORK_PPWAIT)
337 		return (parent->p_cpu);
338 #endif
339 
340 	/*
341 	 * Look at all cpus that are currently idle and have nothing queued.
342 	 * If there are none, pick the one with least queued procs first,
343 	 * then the one with lowest load average.
344 	 */
345 	cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus);
346 	cpuset_intersection(&set, &set, &sched_all_cpus);
347 	if (cpuset_first(&set) == NULL)
348 		cpuset_copy(&set, &sched_all_cpus);
349 
350 	while ((ci = cpuset_first(&set)) != NULL) {
351 		cpuset_del(&set, ci);
352 
353 		load = ci->ci_schedstate.spc_ldavg;
354 		run = ci->ci_schedstate.spc_nrun;
355 
356 		if (choice == NULL || run < best_run ||
357 		    (run == best_run &&load < best_load)) {
358 			choice = ci;
359 			best_load = load;
360 			best_run = run;
361 		}
362 	}
363 
364 	return (choice);
365 }
366 
367 struct cpu_info *
368 sched_choosecpu(struct proc *p)
369 {
370 	struct cpu_info *choice = NULL;
371 	int last_cost = INT_MAX;
372 	struct cpu_info *ci;
373 	struct cpuset set;
374 
375 	/*
376 	 * If pegged to a cpu, don't allow it to move.
377 	 */
378 	if (p->p_flag & P_CPUPEG)
379 		return (p->p_cpu);
380 
381 	sched_choose++;
382 
383 	/*
384 	 * Look at all cpus that are currently idle and have nothing queued.
385 	 * If there are none, pick the cheapest of those.
386 	 * (idle + queued could mean that the cpu is handling an interrupt
387 	 * at this moment and haven't had time to leave idle yet).
388 	 */
389 	cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus);
390 	cpuset_intersection(&set, &set, &sched_all_cpus);
391 
392 	/*
393 	 * First, just check if our current cpu is in that set, if it is,
394 	 * this is simple.
395 	 * Also, our cpu might not be idle, but if it's the current cpu
396 	 * and it has nothing else queued and we're curproc, take it.
397 	 */
398 	if (cpuset_isset(&set, p->p_cpu) ||
399 	    (p->p_cpu == curcpu() && p->p_cpu->ci_schedstate.spc_nrun == 0 &&
400 	    curproc == p)) {
401 		sched_wasidle++;
402 		return (p->p_cpu);
403 	}
404 
405 	if (cpuset_first(&set) == NULL)
406 		cpuset_copy(&set, &sched_all_cpus);
407 
408 	while ((ci = cpuset_first(&set)) != NULL) {
409 		int cost = sched_proc_to_cpu_cost(ci, p);
410 
411 		if (choice == NULL || cost < last_cost) {
412 			choice = ci;
413 			last_cost = cost;
414 		}
415 		cpuset_del(&set, ci);
416 	}
417 
418 	if (p->p_cpu != choice)
419 		sched_nmigrations++;
420 	else
421 		sched_nomigrations++;
422 
423 	return (choice);
424 }
425 
426 /*
427  * Attempt to steal a proc from some cpu.
428  */
429 struct proc *
430 sched_steal_proc(struct cpu_info *self)
431 {
432 	struct schedstate_percpu *spc;
433 	struct proc *best = NULL;
434 	int bestcost = INT_MAX;
435 	struct cpu_info *ci;
436 	struct cpuset set;
437 
438 	KASSERT((self->ci_schedstate.spc_schedflags & SPCF_SHOULDHALT) == 0);
439 
440 	cpuset_copy(&set, &sched_queued_cpus);
441 
442 	while ((ci = cpuset_first(&set)) != NULL) {
443 		struct proc *p;
444 		int queue;
445 		int cost;
446 
447 		cpuset_del(&set, ci);
448 
449 		spc = &ci->ci_schedstate;
450 
451 		queue = ffs(spc->spc_whichqs) - 1;
452 		TAILQ_FOREACH(p, &spc->spc_qs[queue], p_runq) {
453 			if (p->p_flag & P_CPUPEG)
454 				continue;
455 
456 			cost = sched_proc_to_cpu_cost(self, p);
457 
458 			if (best == NULL || cost < bestcost) {
459 				best = p;
460 				bestcost = cost;
461 			}
462 		}
463 	}
464 	if (best == NULL)
465 		return (NULL);
466 
467 	spc = &best->p_cpu->ci_schedstate;
468 	remrunqueue(best);
469 	best->p_cpu = self;
470 
471 	sched_stolen++;
472 
473 	return (best);
474 }
475 
476 /*
477  * Base 2 logarithm of an int. returns 0 for 0 (yeye, I know).
478  */
479 static int
480 log2(unsigned int i)
481 {
482 	int ret = 0;
483 
484 	while (i >>= 1)
485 		ret++;
486 
487 	return (ret);
488 }
489 
490 /*
491  * Calculate the cost of moving the proc to this cpu.
492  *
493  * What we want is some guesstimate of how much "performance" it will
494  * cost us to move the proc here. Not just for caches and TLBs and NUMA
495  * memory, but also for the proc itself. A highly loaded cpu might not
496  * be the best candidate for this proc since it won't get run.
497  *
498  * Just total guesstimates for now.
499  */
500 
501 int sched_cost_load = 1;
502 int sched_cost_priority = 1;
503 int sched_cost_runnable = 3;
504 int sched_cost_resident = 1;
505 
506 int
507 sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p)
508 {
509 	struct schedstate_percpu *spc;
510 	int l2resident = 0;
511 	int cost;
512 
513 	spc = &ci->ci_schedstate;
514 
515 	cost = 0;
516 
517 	/*
518 	 * First, account for the priority of the proc we want to move.
519 	 * More willing to move, the lower the priority of the destination
520 	 * and the higher the priority of the proc.
521 	 */
522 	if (!cpuset_isset(&sched_idle_cpus, ci)) {
523 		cost += (p->p_priority - spc->spc_curpriority) *
524 		    sched_cost_priority;
525 		cost += sched_cost_runnable;
526 	}
527 	if (cpuset_isset(&sched_queued_cpus, ci))
528 		cost += spc->spc_nrun * sched_cost_runnable;
529 
530 	/*
531 	 * Higher load on the destination means we don't want to go there.
532 	 */
533 	cost += ((sched_cost_load * spc->spc_ldavg) >> FSHIFT);
534 
535 	/*
536 	 * If the proc is on this cpu already, lower the cost by how much
537 	 * it has been running and an estimate of its footprint.
538 	 */
539 	if (p->p_cpu == ci && p->p_slptime == 0) {
540 		l2resident =
541 		    log2(pmap_resident_count(p->p_vmspace->vm_map.pmap));
542 		cost -= l2resident * sched_cost_resident;
543 	}
544 
545 	return (cost);
546 }
547 
548 /*
549  * Peg a proc to a cpu.
550  */
551 void
552 sched_peg_curproc(struct cpu_info *ci)
553 {
554 	struct proc *p = curproc;
555 	int s;
556 
557 	SCHED_LOCK(s);
558 	p->p_priority = p->p_usrpri;
559 	p->p_stat = SRUN;
560 	p->p_cpu = ci;
561 	atomic_setbits_int(&p->p_flag, P_CPUPEG);
562 	setrunqueue(p);
563 	p->p_ru.ru_nvcsw++;
564 	mi_switch();
565 	SCHED_UNLOCK(s);
566 }
567 
568 #ifdef MULTIPROCESSOR
569 
570 void
571 sched_start_secondary_cpus(void)
572 {
573 	CPU_INFO_ITERATOR cii;
574 	struct cpu_info *ci;
575 
576 	CPU_INFO_FOREACH(cii, ci) {
577 		struct schedstate_percpu *spc = &ci->ci_schedstate;
578 
579 		if (CPU_IS_PRIMARY(ci))
580 			continue;
581 		cpuset_add(&sched_all_cpus, ci);
582 		atomic_clearbits_int(&spc->spc_schedflags,
583 		    SPCF_SHOULDHALT | SPCF_HALTED);
584 	}
585 }
586 
587 void
588 sched_stop_secondary_cpus(void)
589 {
590 	CPU_INFO_ITERATOR cii;
591 	struct cpu_info *ci;
592 
593 	/*
594 	 * Make sure we stop the secondary CPUs.
595 	 */
596 	CPU_INFO_FOREACH(cii, ci) {
597 		struct schedstate_percpu *spc = &ci->ci_schedstate;
598 
599 		if (CPU_IS_PRIMARY(ci))
600 			continue;
601 		cpuset_del(&sched_all_cpus, ci);
602 		atomic_setbits_int(&spc->spc_schedflags, SPCF_SHOULDHALT);
603 	}
604 	CPU_INFO_FOREACH(cii, ci) {
605 		struct schedstate_percpu *spc = &ci->ci_schedstate;
606 		struct sleep_state sls;
607 
608 		if (CPU_IS_PRIMARY(ci))
609 			continue;
610 		while ((spc->spc_schedflags & SPCF_HALTED) == 0) {
611 			sleep_setup(&sls, spc, PZERO, "schedstate");
612 			sleep_finish(&sls,
613 			    (spc->spc_schedflags & SPCF_HALTED) == 0);
614 		}
615 	}
616 }
617 
618 #endif
619 
620 /*
621  * Functions to manipulate cpu sets.
622  */
623 struct cpu_info *cpuset_infos[MAXCPUS];
624 static struct cpuset cpuset_all;
625 
626 void
627 cpuset_init_cpu(struct cpu_info *ci)
628 {
629 	cpuset_add(&cpuset_all, ci);
630 	cpuset_infos[CPU_INFO_UNIT(ci)] = ci;
631 }
632 
633 void
634 cpuset_clear(struct cpuset *cs)
635 {
636 	memset(cs, 0, sizeof(*cs));
637 }
638 
639 void
640 cpuset_add(struct cpuset *cs, struct cpu_info *ci)
641 {
642 	unsigned int num = CPU_INFO_UNIT(ci);
643 	atomic_setbits_int(&cs->cs_set[num/32], (1 << (num % 32)));
644 }
645 
646 void
647 cpuset_del(struct cpuset *cs, struct cpu_info *ci)
648 {
649 	unsigned int num = CPU_INFO_UNIT(ci);
650 	atomic_clearbits_int(&cs->cs_set[num/32], (1 << (num % 32)));
651 }
652 
653 int
654 cpuset_isset(struct cpuset *cs, struct cpu_info *ci)
655 {
656 	unsigned int num = CPU_INFO_UNIT(ci);
657 	return (cs->cs_set[num/32] & (1 << (num % 32)));
658 }
659 
660 void
661 cpuset_add_all(struct cpuset *cs)
662 {
663 	cpuset_copy(cs, &cpuset_all);
664 }
665 
666 void
667 cpuset_copy(struct cpuset *to, struct cpuset *from)
668 {
669 	memcpy(to, from, sizeof(*to));
670 }
671 
672 struct cpu_info *
673 cpuset_first(struct cpuset *cs)
674 {
675 	int i;
676 
677 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
678 		if (cs->cs_set[i])
679 			return (cpuset_infos[i * 32 + ffs(cs->cs_set[i]) - 1]);
680 
681 	return (NULL);
682 }
683 
684 void
685 cpuset_union(struct cpuset *to, struct cpuset *a, struct cpuset *b)
686 {
687 	int i;
688 
689 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
690 		to->cs_set[i] = a->cs_set[i] | b->cs_set[i];
691 }
692 
693 void
694 cpuset_intersection(struct cpuset *to, struct cpuset *a, struct cpuset *b)
695 {
696 	int i;
697 
698 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
699 		to->cs_set[i] = a->cs_set[i] & b->cs_set[i];
700 }
701 
702 void
703 cpuset_complement(struct cpuset *to, struct cpuset *a, struct cpuset *b)
704 {
705 	int i;
706 
707 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
708 		to->cs_set[i] = b->cs_set[i] & ~a->cs_set[i];
709 }
710