xref: /openbsd-src/sys/kern/kern_sched.c (revision 76e7c40e8276d973d8030fe2aad05ecbf2cea0ad)
1 /*	$OpenBSD: kern_sched.c,v 1.59 2019/10/15 10:05:43 mpi Exp $	*/
2 /*
3  * Copyright (c) 2007, 2008 Artur Grabowski <art@openbsd.org>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <sys/param.h>
19 
20 #include <sys/sched.h>
21 #include <sys/proc.h>
22 #include <sys/kthread.h>
23 #include <sys/systm.h>
24 #include <sys/resourcevar.h>
25 #include <sys/signalvar.h>
26 #include <sys/mutex.h>
27 #include <sys/task.h>
28 #include <sys/smr.h>
29 
30 #include <uvm/uvm_extern.h>
31 
32 void sched_kthreads_create(void *);
33 
34 int sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p);
35 struct proc *sched_steal_proc(struct cpu_info *);
36 
37 /*
38  * To help choosing which cpu should run which process we keep track
39  * of cpus which are currently idle and which cpus have processes
40  * queued.
41  */
42 struct cpuset sched_idle_cpus;
43 struct cpuset sched_queued_cpus;
44 struct cpuset sched_all_cpus;
45 
46 /*
47  * Some general scheduler counters.
48  */
49 uint64_t sched_nmigrations;	/* Cpu migration counter */
50 uint64_t sched_nomigrations;	/* Cpu no migration counter */
51 uint64_t sched_noidle;		/* Times we didn't pick the idle task */
52 uint64_t sched_stolen;		/* Times we stole proc from other cpus */
53 uint64_t sched_choose;		/* Times we chose a cpu */
54 uint64_t sched_wasidle;		/* Times we came out of idle */
55 
56 #ifdef MULTIPROCESSOR
57 struct taskq *sbartq;
58 #endif
59 
60 int sched_smt;
61 
62 /*
63  * A few notes about cpu_switchto that is implemented in MD code.
64  *
65  * cpu_switchto takes two arguments, the old proc and the proc
66  * it should switch to. The new proc will never be NULL, so we always have
67  * a saved state that we need to switch to. The old proc however can
68  * be NULL if the process is exiting. NULL for the old proc simply
69  * means "don't bother saving old state".
70  *
71  * cpu_switchto is supposed to atomically load the new state of the process
72  * including the pcb, pmap and setting curproc, the p_cpu pointer in the
73  * proc and p_stat to SONPROC. Atomically with respect to interrupts, other
74  * cpus in the system must not depend on this state being consistent.
75  * Therefore no locking is necessary in cpu_switchto other than blocking
76  * interrupts during the context switch.
77  */
78 
79 /*
80  * sched_init_cpu is called from main() for the boot cpu, then it's the
81  * responsibility of the MD code to call it for all other cpus.
82  */
83 void
84 sched_init_cpu(struct cpu_info *ci)
85 {
86 	struct schedstate_percpu *spc = &ci->ci_schedstate;
87 	int i;
88 
89 	for (i = 0; i < SCHED_NQS; i++)
90 		TAILQ_INIT(&spc->spc_qs[i]);
91 
92 	spc->spc_idleproc = NULL;
93 
94 	kthread_create_deferred(sched_kthreads_create, ci);
95 
96 	LIST_INIT(&spc->spc_deadproc);
97 	SIMPLEQ_INIT(&spc->spc_deferred);
98 
99 	/*
100 	 * Slight hack here until the cpuset code handles cpu_info
101 	 * structures.
102 	 */
103 	cpuset_init_cpu(ci);
104 
105 #ifdef __HAVE_CPU_TOPOLOGY
106 	if (!sched_smt && ci->ci_smt_id > 0)
107 		return;
108 #endif
109 	cpuset_add(&sched_all_cpus, ci);
110 }
111 
112 void
113 sched_kthreads_create(void *v)
114 {
115 	struct cpu_info *ci = v;
116 	struct schedstate_percpu *spc = &ci->ci_schedstate;
117 	static int num;
118 
119 	if (fork1(&proc0, FORK_SHAREVM|FORK_SHAREFILES|FORK_NOZOMBIE|
120 	    FORK_SYSTEM|FORK_SIGHAND|FORK_IDLE, sched_idle, ci, NULL,
121 	    &spc->spc_idleproc))
122 		panic("fork idle");
123 
124 	/* Name it as specified. */
125 	snprintf(spc->spc_idleproc->p_p->ps_comm,
126 	    sizeof(spc->spc_idleproc->p_p->ps_comm),
127 	    "idle%d", num);
128 
129 	num++;
130 }
131 
132 void
133 sched_idle(void *v)
134 {
135 	struct schedstate_percpu *spc;
136 	struct proc *p = curproc;
137 	struct cpu_info *ci = v;
138 	int s;
139 
140 	KERNEL_UNLOCK();
141 
142 	spc = &ci->ci_schedstate;
143 
144 	/*
145 	 * First time we enter here, we're not supposed to idle,
146 	 * just go away for a while.
147 	 */
148 	SCHED_LOCK(s);
149 	cpuset_add(&sched_idle_cpus, ci);
150 	p->p_stat = SSLEEP;
151 	p->p_cpu = ci;
152 	atomic_setbits_int(&p->p_flag, P_CPUPEG);
153 	mi_switch();
154 	cpuset_del(&sched_idle_cpus, ci);
155 	SCHED_UNLOCK(s);
156 
157 	KASSERT(ci == curcpu());
158 	KASSERT(curproc == spc->spc_idleproc);
159 
160 	while (1) {
161 		while (!cpu_is_idle(curcpu())) {
162 			struct proc *dead;
163 
164 			SCHED_LOCK(s);
165 			p->p_stat = SSLEEP;
166 			mi_switch();
167 			SCHED_UNLOCK(s);
168 
169 			while ((dead = LIST_FIRST(&spc->spc_deadproc))) {
170 				LIST_REMOVE(dead, p_hash);
171 				exit2(dead);
172 			}
173 		}
174 
175 		splassert(IPL_NONE);
176 
177 		smr_idle();
178 
179 		cpuset_add(&sched_idle_cpus, ci);
180 		cpu_idle_enter();
181 		while (spc->spc_whichqs == 0) {
182 #ifdef MULTIPROCESSOR
183 			if (spc->spc_schedflags & SPCF_SHOULDHALT &&
184 			    (spc->spc_schedflags & SPCF_HALTED) == 0) {
185 				cpuset_del(&sched_idle_cpus, ci);
186 				SCHED_LOCK(s);
187 				atomic_setbits_int(&spc->spc_schedflags,
188 				    spc->spc_whichqs ? 0 : SPCF_HALTED);
189 				SCHED_UNLOCK(s);
190 				wakeup(spc);
191 			}
192 #endif
193 			cpu_idle_cycle();
194 		}
195 		cpu_idle_leave();
196 		cpuset_del(&sched_idle_cpus, ci);
197 	}
198 }
199 
200 /*
201  * To free our address space we have to jump through a few hoops.
202  * The freeing is done by the reaper, but until we have one reaper
203  * per cpu, we have no way of putting this proc on the deadproc list
204  * and waking up the reaper without risking having our address space and
205  * stack torn from under us before we manage to switch to another proc.
206  * Therefore we have a per-cpu list of dead processes where we put this
207  * proc and have idle clean up that list and move it to the reaper list.
208  * All this will be unnecessary once we can bind the reaper this cpu
209  * and not risk having it switch to another in case it sleeps.
210  */
211 void
212 sched_exit(struct proc *p)
213 {
214 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
215 	struct timespec ts;
216 	struct proc *idle;
217 	int s;
218 
219 	nanouptime(&ts);
220 	timespecsub(&ts, &spc->spc_runtime, &ts);
221 	timespecadd(&p->p_rtime, &ts, &p->p_rtime);
222 
223 	LIST_INSERT_HEAD(&spc->spc_deadproc, p, p_hash);
224 
225 #ifdef MULTIPROCESSOR
226 	/* This process no longer needs to hold the kernel lock. */
227 	KERNEL_ASSERT_LOCKED();
228 	__mp_release_all(&kernel_lock);
229 #endif
230 
231 	SCHED_LOCK(s);
232 	idle = spc->spc_idleproc;
233 	idle->p_stat = SRUN;
234 	cpu_switchto(NULL, idle);
235 	panic("cpu_switchto returned");
236 }
237 
238 /*
239  * Run queue management.
240  */
241 void
242 sched_init_runqueues(void)
243 {
244 }
245 
246 void
247 setrunqueue(struct cpu_info *ci, struct proc *p, uint8_t prio)
248 {
249 	struct schedstate_percpu *spc;
250 	int queue = prio >> 2;
251 
252 	if (ci == NULL)
253 		ci = sched_choosecpu(p);
254 
255 	KASSERT(ci != NULL);
256 	SCHED_ASSERT_LOCKED();
257 
258 	p->p_cpu = ci;
259 	p->p_stat = SRUN;
260 	p->p_priority = prio;
261 
262 	spc = &p->p_cpu->ci_schedstate;
263 	spc->spc_nrun++;
264 
265 	TAILQ_INSERT_TAIL(&spc->spc_qs[queue], p, p_runq);
266 	spc->spc_whichqs |= (1 << queue);
267 	cpuset_add(&sched_queued_cpus, p->p_cpu);
268 
269 	if (cpuset_isset(&sched_idle_cpus, p->p_cpu))
270 		cpu_unidle(p->p_cpu);
271 }
272 
273 void
274 remrunqueue(struct proc *p)
275 {
276 	struct schedstate_percpu *spc;
277 	int queue = p->p_priority >> 2;
278 
279 	SCHED_ASSERT_LOCKED();
280 	spc = &p->p_cpu->ci_schedstate;
281 	spc->spc_nrun--;
282 
283 	TAILQ_REMOVE(&spc->spc_qs[queue], p, p_runq);
284 	if (TAILQ_EMPTY(&spc->spc_qs[queue])) {
285 		spc->spc_whichqs &= ~(1 << queue);
286 		if (spc->spc_whichqs == 0)
287 			cpuset_del(&sched_queued_cpus, p->p_cpu);
288 	}
289 }
290 
291 struct proc *
292 sched_chooseproc(void)
293 {
294 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
295 	struct proc *p;
296 	int queue;
297 
298 	SCHED_ASSERT_LOCKED();
299 
300 #ifdef MULTIPROCESSOR
301 	if (spc->spc_schedflags & SPCF_SHOULDHALT) {
302 		if (spc->spc_whichqs) {
303 			for (queue = 0; queue < SCHED_NQS; queue++) {
304 				while ((p = TAILQ_FIRST(&spc->spc_qs[queue]))) {
305 					remrunqueue(p);
306 					setrunqueue(NULL, p, p->p_priority);
307 					if (p->p_cpu == curcpu()) {
308 						KASSERT(p->p_flag & P_CPUPEG);
309 						goto again;
310 					}
311 				}
312 			}
313 		}
314 		p = spc->spc_idleproc;
315 		KASSERT(p);
316 		KASSERT(p->p_wchan == NULL);
317 		p->p_stat = SRUN;
318 		return (p);
319 	}
320 #endif
321 
322 again:
323 	if (spc->spc_whichqs) {
324 		queue = ffs(spc->spc_whichqs) - 1;
325 		p = TAILQ_FIRST(&spc->spc_qs[queue]);
326 		remrunqueue(p);
327 		sched_noidle++;
328 		if (p->p_stat != SRUN)
329 			panic("thread %d not in SRUN: %d", p->p_tid, p->p_stat);
330 	} else if ((p = sched_steal_proc(curcpu())) == NULL) {
331 		p = spc->spc_idleproc;
332 		if (p == NULL) {
333                         int s;
334 			/*
335 			 * We get here if someone decides to switch during
336 			 * boot before forking kthreads, bleh.
337 			 * This is kind of like a stupid idle loop.
338 			 */
339 #ifdef MULTIPROCESSOR
340 			__mp_unlock(&sched_lock);
341 #endif
342 			spl0();
343 			delay(10);
344 			SCHED_LOCK(s);
345 			goto again;
346                 }
347 		KASSERT(p);
348 		p->p_stat = SRUN;
349 	}
350 
351 	KASSERT(p->p_wchan == NULL);
352 	return (p);
353 }
354 
355 struct cpu_info *
356 sched_choosecpu_fork(struct proc *parent, int flags)
357 {
358 #ifdef MULTIPROCESSOR
359 	struct cpu_info *choice = NULL;
360 	fixpt_t load, best_load = ~0;
361 	int run, best_run = INT_MAX;
362 	struct cpu_info *ci;
363 	struct cpuset set;
364 
365 #if 0
366 	/*
367 	 * XXX
368 	 * Don't do this until we have a painless way to move the cpu in exec.
369 	 * Preferably when nuking the old pmap and getting a new one on a
370 	 * new cpu.
371 	 */
372 	/*
373 	 * PPWAIT forks are simple. We know that the parent will not
374 	 * run until we exec and choose another cpu, so we just steal its
375 	 * cpu.
376 	 */
377 	if (flags & FORK_PPWAIT)
378 		return (parent->p_cpu);
379 #endif
380 
381 	/*
382 	 * Look at all cpus that are currently idle and have nothing queued.
383 	 * If there are none, pick the one with least queued procs first,
384 	 * then the one with lowest load average.
385 	 */
386 	cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus);
387 	cpuset_intersection(&set, &set, &sched_all_cpus);
388 	if (cpuset_first(&set) == NULL)
389 		cpuset_copy(&set, &sched_all_cpus);
390 
391 	while ((ci = cpuset_first(&set)) != NULL) {
392 		cpuset_del(&set, ci);
393 
394 		load = ci->ci_schedstate.spc_ldavg;
395 		run = ci->ci_schedstate.spc_nrun;
396 
397 		if (choice == NULL || run < best_run ||
398 		    (run == best_run &&load < best_load)) {
399 			choice = ci;
400 			best_load = load;
401 			best_run = run;
402 		}
403 	}
404 
405 	return (choice);
406 #else
407 	return (curcpu());
408 #endif
409 }
410 
411 struct cpu_info *
412 sched_choosecpu(struct proc *p)
413 {
414 #ifdef MULTIPROCESSOR
415 	struct cpu_info *choice = NULL;
416 	int last_cost = INT_MAX;
417 	struct cpu_info *ci;
418 	struct cpuset set;
419 
420 	/*
421 	 * If pegged to a cpu, don't allow it to move.
422 	 */
423 	if (p->p_flag & P_CPUPEG)
424 		return (p->p_cpu);
425 
426 	sched_choose++;
427 
428 	/*
429 	 * Look at all cpus that are currently idle and have nothing queued.
430 	 * If there are none, pick the cheapest of those.
431 	 * (idle + queued could mean that the cpu is handling an interrupt
432 	 * at this moment and haven't had time to leave idle yet).
433 	 */
434 	cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus);
435 	cpuset_intersection(&set, &set, &sched_all_cpus);
436 
437 	/*
438 	 * First, just check if our current cpu is in that set, if it is,
439 	 * this is simple.
440 	 * Also, our cpu might not be idle, but if it's the current cpu
441 	 * and it has nothing else queued and we're curproc, take it.
442 	 */
443 	if (cpuset_isset(&set, p->p_cpu) ||
444 	    (p->p_cpu == curcpu() && p->p_cpu->ci_schedstate.spc_nrun == 0 &&
445 	    (p->p_cpu->ci_schedstate.spc_schedflags & SPCF_SHOULDHALT) == 0 &&
446 	    curproc == p)) {
447 		sched_wasidle++;
448 		return (p->p_cpu);
449 	}
450 
451 	if (cpuset_first(&set) == NULL)
452 		cpuset_copy(&set, &sched_all_cpus);
453 
454 	while ((ci = cpuset_first(&set)) != NULL) {
455 		int cost = sched_proc_to_cpu_cost(ci, p);
456 
457 		if (choice == NULL || cost < last_cost) {
458 			choice = ci;
459 			last_cost = cost;
460 		}
461 		cpuset_del(&set, ci);
462 	}
463 
464 	if (p->p_cpu != choice)
465 		sched_nmigrations++;
466 	else
467 		sched_nomigrations++;
468 
469 	return (choice);
470 #else
471 	return (curcpu());
472 #endif
473 }
474 
475 /*
476  * Attempt to steal a proc from some cpu.
477  */
478 struct proc *
479 sched_steal_proc(struct cpu_info *self)
480 {
481 	struct proc *best = NULL;
482 #ifdef MULTIPROCESSOR
483 	struct schedstate_percpu *spc;
484 	int bestcost = INT_MAX;
485 	struct cpu_info *ci;
486 	struct cpuset set;
487 
488 	KASSERT((self->ci_schedstate.spc_schedflags & SPCF_SHOULDHALT) == 0);
489 
490 	/* Don't steal if we don't want to schedule processes in this CPU. */
491 	if (!cpuset_isset(&sched_all_cpus, self))
492 		return (NULL);
493 
494 	cpuset_copy(&set, &sched_queued_cpus);
495 
496 	while ((ci = cpuset_first(&set)) != NULL) {
497 		struct proc *p;
498 		int queue;
499 		int cost;
500 
501 		cpuset_del(&set, ci);
502 
503 		spc = &ci->ci_schedstate;
504 
505 		queue = ffs(spc->spc_whichqs) - 1;
506 		TAILQ_FOREACH(p, &spc->spc_qs[queue], p_runq) {
507 			if (p->p_flag & P_CPUPEG)
508 				continue;
509 
510 			cost = sched_proc_to_cpu_cost(self, p);
511 
512 			if (best == NULL || cost < bestcost) {
513 				best = p;
514 				bestcost = cost;
515 			}
516 		}
517 	}
518 	if (best == NULL)
519 		return (NULL);
520 
521 	spc = &best->p_cpu->ci_schedstate;
522 	remrunqueue(best);
523 	best->p_cpu = self;
524 
525 	sched_stolen++;
526 #endif
527 	return (best);
528 }
529 
530 #ifdef MULTIPROCESSOR
531 /*
532  * Base 2 logarithm of an int. returns 0 for 0 (yeye, I know).
533  */
534 static int
535 log2(unsigned int i)
536 {
537 	int ret = 0;
538 
539 	while (i >>= 1)
540 		ret++;
541 
542 	return (ret);
543 }
544 
545 /*
546  * Calculate the cost of moving the proc to this cpu.
547  *
548  * What we want is some guesstimate of how much "performance" it will
549  * cost us to move the proc here. Not just for caches and TLBs and NUMA
550  * memory, but also for the proc itself. A highly loaded cpu might not
551  * be the best candidate for this proc since it won't get run.
552  *
553  * Just total guesstimates for now.
554  */
555 
556 int sched_cost_load = 1;
557 int sched_cost_priority = 1;
558 int sched_cost_runnable = 3;
559 int sched_cost_resident = 1;
560 #endif
561 
562 int
563 sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p)
564 {
565 	int cost = 0;
566 #ifdef MULTIPROCESSOR
567 	struct schedstate_percpu *spc;
568 	int l2resident = 0;
569 
570 	spc = &ci->ci_schedstate;
571 
572 	/*
573 	 * First, account for the priority of the proc we want to move.
574 	 * More willing to move, the lower the priority of the destination
575 	 * and the higher the priority of the proc.
576 	 */
577 	if (!cpuset_isset(&sched_idle_cpus, ci)) {
578 		cost += (p->p_priority - spc->spc_curpriority) *
579 		    sched_cost_priority;
580 		cost += sched_cost_runnable;
581 	}
582 	if (cpuset_isset(&sched_queued_cpus, ci))
583 		cost += spc->spc_nrun * sched_cost_runnable;
584 
585 	/*
586 	 * Try to avoid the primary cpu as it handles hardware interrupts.
587 	 *
588 	 * XXX Needs to be revisited when we distribute interrupts
589 	 * over cpus.
590 	 */
591 	if (CPU_IS_PRIMARY(ci))
592 		cost += sched_cost_runnable;
593 
594 	/*
595 	 * Higher load on the destination means we don't want to go there.
596 	 */
597 	cost += ((sched_cost_load * spc->spc_ldavg) >> FSHIFT);
598 
599 	/*
600 	 * If the proc is on this cpu already, lower the cost by how much
601 	 * it has been running and an estimate of its footprint.
602 	 */
603 	if (p->p_cpu == ci && p->p_slptime == 0) {
604 		l2resident =
605 		    log2(pmap_resident_count(p->p_vmspace->vm_map.pmap));
606 		cost -= l2resident * sched_cost_resident;
607 	}
608 #endif
609 	return (cost);
610 }
611 
612 /*
613  * Peg a proc to a cpu.
614  */
615 void
616 sched_peg_curproc(struct cpu_info *ci)
617 {
618 	struct proc *p = curproc;
619 	int s;
620 
621 	SCHED_LOCK(s);
622 	atomic_setbits_int(&p->p_flag, P_CPUPEG);
623 	setrunqueue(ci, p, p->p_usrpri);
624 	p->p_ru.ru_nvcsw++;
625 	mi_switch();
626 	SCHED_UNLOCK(s);
627 }
628 
629 #ifdef MULTIPROCESSOR
630 
631 void
632 sched_start_secondary_cpus(void)
633 {
634 	CPU_INFO_ITERATOR cii;
635 	struct cpu_info *ci;
636 
637 	CPU_INFO_FOREACH(cii, ci) {
638 		struct schedstate_percpu *spc = &ci->ci_schedstate;
639 
640 		if (CPU_IS_PRIMARY(ci))
641 			continue;
642 		atomic_clearbits_int(&spc->spc_schedflags,
643 		    SPCF_SHOULDHALT | SPCF_HALTED);
644 #ifdef __HAVE_CPU_TOPOLOGY
645 		if (!sched_smt && ci->ci_smt_id > 0)
646 			continue;
647 #endif
648 		cpuset_add(&sched_all_cpus, ci);
649 	}
650 }
651 
652 void
653 sched_stop_secondary_cpus(void)
654 {
655 	CPU_INFO_ITERATOR cii;
656 	struct cpu_info *ci;
657 
658 	/*
659 	 * Make sure we stop the secondary CPUs.
660 	 */
661 	CPU_INFO_FOREACH(cii, ci) {
662 		struct schedstate_percpu *spc = &ci->ci_schedstate;
663 
664 		if (CPU_IS_PRIMARY(ci))
665 			continue;
666 		cpuset_del(&sched_all_cpus, ci);
667 		atomic_setbits_int(&spc->spc_schedflags, SPCF_SHOULDHALT);
668 	}
669 	CPU_INFO_FOREACH(cii, ci) {
670 		struct schedstate_percpu *spc = &ci->ci_schedstate;
671 		struct sleep_state sls;
672 
673 		if (CPU_IS_PRIMARY(ci))
674 			continue;
675 		while ((spc->spc_schedflags & SPCF_HALTED) == 0) {
676 			sleep_setup(&sls, spc, PZERO, "schedstate");
677 			sleep_finish(&sls,
678 			    (spc->spc_schedflags & SPCF_HALTED) == 0);
679 		}
680 	}
681 }
682 
683 struct sched_barrier_state {
684 	struct cpu_info *ci;
685 	struct cond cond;
686 };
687 
688 void
689 sched_barrier_task(void *arg)
690 {
691 	struct sched_barrier_state *sb = arg;
692 	struct cpu_info *ci = sb->ci;
693 
694 	sched_peg_curproc(ci);
695 	cond_signal(&sb->cond);
696 	atomic_clearbits_int(&curproc->p_flag, P_CPUPEG);
697 }
698 
699 void
700 sched_barrier(struct cpu_info *ci)
701 {
702 	struct sched_barrier_state sb;
703 	struct task task;
704 	CPU_INFO_ITERATOR cii;
705 
706 	if (ci == NULL) {
707 		CPU_INFO_FOREACH(cii, ci) {
708 			if (CPU_IS_PRIMARY(ci))
709 				break;
710 		}
711 	}
712 	KASSERT(ci != NULL);
713 
714 	if (ci == curcpu())
715 		return;
716 
717 	sb.ci = ci;
718 	cond_init(&sb.cond);
719 	task_set(&task, sched_barrier_task, &sb);
720 
721 	task_add(systqmp, &task);
722 	cond_wait(&sb.cond, "sbar");
723 }
724 
725 #else
726 
727 void
728 sched_barrier(struct cpu_info *ci)
729 {
730 }
731 
732 #endif
733 
734 /*
735  * Functions to manipulate cpu sets.
736  */
737 struct cpu_info *cpuset_infos[MAXCPUS];
738 static struct cpuset cpuset_all;
739 
740 void
741 cpuset_init_cpu(struct cpu_info *ci)
742 {
743 	cpuset_add(&cpuset_all, ci);
744 	cpuset_infos[CPU_INFO_UNIT(ci)] = ci;
745 }
746 
747 void
748 cpuset_clear(struct cpuset *cs)
749 {
750 	memset(cs, 0, sizeof(*cs));
751 }
752 
753 void
754 cpuset_add(struct cpuset *cs, struct cpu_info *ci)
755 {
756 	unsigned int num = CPU_INFO_UNIT(ci);
757 	atomic_setbits_int(&cs->cs_set[num/32], (1 << (num % 32)));
758 }
759 
760 void
761 cpuset_del(struct cpuset *cs, struct cpu_info *ci)
762 {
763 	unsigned int num = CPU_INFO_UNIT(ci);
764 	atomic_clearbits_int(&cs->cs_set[num/32], (1 << (num % 32)));
765 }
766 
767 int
768 cpuset_isset(struct cpuset *cs, struct cpu_info *ci)
769 {
770 	unsigned int num = CPU_INFO_UNIT(ci);
771 	return (cs->cs_set[num/32] & (1 << (num % 32)));
772 }
773 
774 void
775 cpuset_add_all(struct cpuset *cs)
776 {
777 	cpuset_copy(cs, &cpuset_all);
778 }
779 
780 void
781 cpuset_copy(struct cpuset *to, struct cpuset *from)
782 {
783 	memcpy(to, from, sizeof(*to));
784 }
785 
786 struct cpu_info *
787 cpuset_first(struct cpuset *cs)
788 {
789 	int i;
790 
791 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
792 		if (cs->cs_set[i])
793 			return (cpuset_infos[i * 32 + ffs(cs->cs_set[i]) - 1]);
794 
795 	return (NULL);
796 }
797 
798 void
799 cpuset_union(struct cpuset *to, struct cpuset *a, struct cpuset *b)
800 {
801 	int i;
802 
803 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
804 		to->cs_set[i] = a->cs_set[i] | b->cs_set[i];
805 }
806 
807 void
808 cpuset_intersection(struct cpuset *to, struct cpuset *a, struct cpuset *b)
809 {
810 	int i;
811 
812 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
813 		to->cs_set[i] = a->cs_set[i] & b->cs_set[i];
814 }
815 
816 void
817 cpuset_complement(struct cpuset *to, struct cpuset *a, struct cpuset *b)
818 {
819 	int i;
820 
821 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
822 		to->cs_set[i] = b->cs_set[i] & ~a->cs_set[i];
823 }
824 
825 int
826 cpuset_cardinality(struct cpuset *cs)
827 {
828 	int cardinality, i, n;
829 
830 	cardinality = 0;
831 
832 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
833 		for (n = cs->cs_set[i]; n != 0; n &= n - 1)
834 			cardinality++;
835 
836 	return (cardinality);
837 }
838 
839 int
840 sysctl_hwncpuonline(void)
841 {
842 	return cpuset_cardinality(&sched_all_cpus);
843 }
844 
845 int
846 cpu_is_online(struct cpu_info *ci)
847 {
848 	return cpuset_isset(&sched_all_cpus, ci);
849 }
850 
851 #ifdef __HAVE_CPU_TOPOLOGY
852 
853 #include <sys/sysctl.h>
854 
855 int
856 sysctl_hwsmt(void *oldp, size_t *oldlenp, void *newp, size_t newlen)
857 {
858 	CPU_INFO_ITERATOR cii;
859 	struct cpu_info *ci;
860 	int err, newsmt;
861 
862 	newsmt = sched_smt;
863 	err = sysctl_int(oldp, oldlenp, newp, newlen, &newsmt);
864 	if (err)
865 		return err;
866 	if (newsmt > 1)
867 		newsmt = 1;
868 	if (newsmt < 0)
869 		newsmt = 0;
870 	if (newsmt == sched_smt)
871 		return 0;
872 
873 	sched_smt = newsmt;
874 	CPU_INFO_FOREACH(cii, ci) {
875 		if (CPU_IS_PRIMARY(ci))
876 			continue;
877 		if (ci->ci_smt_id == 0)
878 			continue;
879 		if (sched_smt)
880 			cpuset_add(&sched_all_cpus, ci);
881 		else
882 			cpuset_del(&sched_all_cpus, ci);
883 	}
884 
885 	return 0;
886 }
887 
888 #endif
889