xref: /openbsd-src/sys/kern/kern_sched.c (revision 5deb34918e9da33a923b902583e8aa15c1768666)
1 /*	$OpenBSD: kern_sched.c,v 1.35 2014/09/24 09:13:20 mpi Exp $	*/
2 /*
3  * Copyright (c) 2007, 2008 Artur Grabowski <art@openbsd.org>
4  *
5  * Permission to use, copy, modify, and distribute this software for any
6  * purpose with or without fee is hereby granted, provided that the above
7  * copyright notice and this permission notice appear in all copies.
8  *
9  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
16  */
17 
18 #include <sys/param.h>
19 
20 #include <sys/sched.h>
21 #include <sys/proc.h>
22 #include <sys/kthread.h>
23 #include <sys/systm.h>
24 #include <sys/resourcevar.h>
25 #include <sys/signalvar.h>
26 #include <sys/mutex.h>
27 
28 #include <uvm/uvm_extern.h>
29 
30 #include <sys/malloc.h>
31 
32 
33 void sched_kthreads_create(void *);
34 
35 int sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p);
36 struct proc *sched_steal_proc(struct cpu_info *);
37 
38 /*
39  * To help choosing which cpu should run which process we keep track
40  * of cpus which are currently idle and which cpus have processes
41  * queued.
42  */
43 struct cpuset sched_idle_cpus;
44 struct cpuset sched_queued_cpus;
45 struct cpuset sched_all_cpus;
46 
47 /*
48  * Some general scheduler counters.
49  */
50 uint64_t sched_nmigrations;	/* Cpu migration counter */
51 uint64_t sched_nomigrations;	/* Cpu no migration counter */
52 uint64_t sched_noidle;		/* Times we didn't pick the idle task */
53 uint64_t sched_stolen;		/* Times we stole proc from other cpus */
54 uint64_t sched_choose;		/* Times we chose a cpu */
55 uint64_t sched_wasidle;		/* Times we came out of idle */
56 
57 /*
58  * A few notes about cpu_switchto that is implemented in MD code.
59  *
60  * cpu_switchto takes two arguments, the old proc and the proc
61  * it should switch to. The new proc will never be NULL, so we always have
62  * a saved state that we need to switch to. The old proc however can
63  * be NULL if the process is exiting. NULL for the old proc simply
64  * means "don't bother saving old state".
65  *
66  * cpu_switchto is supposed to atomically load the new state of the process
67  * including the pcb, pmap and setting curproc, the p_cpu pointer in the
68  * proc and p_stat to SONPROC. Atomically with respect to interrupts, other
69  * cpus in the system must not depend on this state being consistent.
70  * Therefore no locking is necessary in cpu_switchto other than blocking
71  * interrupts during the context switch.
72  */
73 
74 /*
75  * sched_init_cpu is called from main() for the boot cpu, then it's the
76  * responsibility of the MD code to call it for all other cpus.
77  */
78 void
79 sched_init_cpu(struct cpu_info *ci)
80 {
81 	struct schedstate_percpu *spc = &ci->ci_schedstate;
82 	int i;
83 
84 	for (i = 0; i < SCHED_NQS; i++)
85 		TAILQ_INIT(&spc->spc_qs[i]);
86 
87 	spc->spc_idleproc = NULL;
88 
89 	kthread_create_deferred(sched_kthreads_create, ci);
90 
91 	LIST_INIT(&spc->spc_deadproc);
92 
93 	/*
94 	 * Slight hack here until the cpuset code handles cpu_info
95 	 * structures.
96 	 */
97 	cpuset_init_cpu(ci);
98 	cpuset_add(&sched_all_cpus, ci);
99 }
100 
101 void
102 sched_kthreads_create(void *v)
103 {
104 	struct cpu_info *ci = v;
105 	struct schedstate_percpu *spc = &ci->ci_schedstate;
106 	static int num;
107 
108 	if (fork1(&proc0, FORK_SHAREVM|FORK_SHAREFILES|FORK_NOZOMBIE|
109 	    FORK_SYSTEM|FORK_SIGHAND|FORK_IDLE, NULL, 0, sched_idle, ci, NULL,
110 	    &spc->spc_idleproc))
111 		panic("fork idle");
112 
113 	/* Name it as specified. */
114 	snprintf(spc->spc_idleproc->p_comm, sizeof(spc->spc_idleproc->p_comm),
115 	    "idle%d", num);
116 
117 	num++;
118 }
119 
120 void
121 sched_idle(void *v)
122 {
123 	struct schedstate_percpu *spc;
124 	struct proc *p = curproc;
125 	struct cpu_info *ci = v;
126 	int s;
127 
128 	KERNEL_UNLOCK();
129 
130 	spc = &ci->ci_schedstate;
131 
132 	/*
133 	 * First time we enter here, we're not supposed to idle,
134 	 * just go away for a while.
135 	 */
136 	SCHED_LOCK(s);
137 	cpuset_add(&sched_idle_cpus, ci);
138 	p->p_stat = SSLEEP;
139 	p->p_cpu = ci;
140 	atomic_setbits_int(&p->p_flag, P_CPUPEG);
141 	mi_switch();
142 	cpuset_del(&sched_idle_cpus, ci);
143 	SCHED_UNLOCK(s);
144 
145 	KASSERT(ci == curcpu());
146 	KASSERT(curproc == spc->spc_idleproc);
147 
148 	while (1) {
149 		while (!curcpu_is_idle()) {
150 			struct proc *dead;
151 
152 			SCHED_LOCK(s);
153 			p->p_stat = SSLEEP;
154 			mi_switch();
155 			SCHED_UNLOCK(s);
156 
157 			while ((dead = LIST_FIRST(&spc->spc_deadproc))) {
158 				LIST_REMOVE(dead, p_hash);
159 				exit2(dead);
160 			}
161 		}
162 
163 		splassert(IPL_NONE);
164 
165 		cpuset_add(&sched_idle_cpus, ci);
166 		cpu_idle_enter();
167 		while (spc->spc_whichqs == 0) {
168 #ifdef MULTIPROCESSOR
169 			if (spc->spc_schedflags & SPCF_SHOULDHALT &&
170 			    (spc->spc_schedflags & SPCF_HALTED) == 0) {
171 				cpuset_del(&sched_idle_cpus, ci);
172 				SCHED_LOCK(s);
173 				atomic_setbits_int(&spc->spc_schedflags,
174 				    spc->spc_whichqs ? 0 : SPCF_HALTED);
175 				SCHED_UNLOCK(s);
176 				wakeup(spc);
177 			}
178 #endif
179 			cpu_idle_cycle();
180 		}
181 		cpu_idle_leave();
182 		cpuset_del(&sched_idle_cpus, ci);
183 	}
184 }
185 
186 /*
187  * To free our address space we have to jump through a few hoops.
188  * The freeing is done by the reaper, but until we have one reaper
189  * per cpu, we have no way of putting this proc on the deadproc list
190  * and waking up the reaper without risking having our address space and
191  * stack torn from under us before we manage to switch to another proc.
192  * Therefore we have a per-cpu list of dead processes where we put this
193  * proc and have idle clean up that list and move it to the reaper list.
194  * All this will be unnecessary once we can bind the reaper this cpu
195  * and not risk having it switch to another in case it sleeps.
196  */
197 void
198 sched_exit(struct proc *p)
199 {
200 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
201 	struct timespec ts;
202 	struct proc *idle;
203 	int s;
204 
205 	nanouptime(&ts);
206 	timespecsub(&ts, &spc->spc_runtime, &ts);
207 	timespecadd(&p->p_rtime, &ts, &p->p_rtime);
208 
209 	LIST_INSERT_HEAD(&spc->spc_deadproc, p, p_hash);
210 
211 	/* This process no longer needs to hold the kernel lock. */
212 	KERNEL_UNLOCK();
213 
214 	SCHED_LOCK(s);
215 	idle = spc->spc_idleproc;
216 	idle->p_stat = SRUN;
217 	cpu_switchto(NULL, idle);
218 	panic("cpu_switchto returned");
219 }
220 
221 /*
222  * Run queue management.
223  */
224 void
225 sched_init_runqueues(void)
226 {
227 }
228 
229 void
230 setrunqueue(struct proc *p)
231 {
232 	struct schedstate_percpu *spc;
233 	int queue = p->p_priority >> 2;
234 
235 	SCHED_ASSERT_LOCKED();
236 	spc = &p->p_cpu->ci_schedstate;
237 	spc->spc_nrun++;
238 
239 	TAILQ_INSERT_TAIL(&spc->spc_qs[queue], p, p_runq);
240 	spc->spc_whichqs |= (1 << queue);
241 	cpuset_add(&sched_queued_cpus, p->p_cpu);
242 
243 	if (cpuset_isset(&sched_idle_cpus, p->p_cpu))
244 		cpu_unidle(p->p_cpu);
245 }
246 
247 void
248 remrunqueue(struct proc *p)
249 {
250 	struct schedstate_percpu *spc;
251 	int queue = p->p_priority >> 2;
252 
253 	SCHED_ASSERT_LOCKED();
254 	spc = &p->p_cpu->ci_schedstate;
255 	spc->spc_nrun--;
256 
257 	TAILQ_REMOVE(&spc->spc_qs[queue], p, p_runq);
258 	if (TAILQ_EMPTY(&spc->spc_qs[queue])) {
259 		spc->spc_whichqs &= ~(1 << queue);
260 		if (spc->spc_whichqs == 0)
261 			cpuset_del(&sched_queued_cpus, p->p_cpu);
262 	}
263 }
264 
265 struct proc *
266 sched_chooseproc(void)
267 {
268 	struct schedstate_percpu *spc = &curcpu()->ci_schedstate;
269 	struct proc *p;
270 	int queue;
271 
272 	SCHED_ASSERT_LOCKED();
273 
274 #ifdef MULTIPROCESSOR
275 	if (spc->spc_schedflags & SPCF_SHOULDHALT) {
276 		if (spc->spc_whichqs) {
277 			for (queue = 0; queue < SCHED_NQS; queue++) {
278 				while ((p = TAILQ_FIRST(&spc->spc_qs[queue]))) {
279 					remrunqueue(p);
280 					p->p_cpu = sched_choosecpu(p);
281 					KASSERT(p->p_cpu != curcpu());
282 					setrunqueue(p);
283 				}
284 			}
285 		}
286 		p = spc->spc_idleproc;
287 		KASSERT(p);
288 		KASSERT(p->p_wchan == NULL);
289 		p->p_stat = SRUN;
290 		return (p);
291 	}
292 #endif
293 
294 again:
295 	if (spc->spc_whichqs) {
296 		queue = ffs(spc->spc_whichqs) - 1;
297 		p = TAILQ_FIRST(&spc->spc_qs[queue]);
298 		remrunqueue(p);
299 		sched_noidle++;
300 		KASSERT(p->p_stat == SRUN);
301 	} else if ((p = sched_steal_proc(curcpu())) == NULL) {
302 		p = spc->spc_idleproc;
303 		if (p == NULL) {
304                         int s;
305 			/*
306 			 * We get here if someone decides to switch during
307 			 * boot before forking kthreads, bleh.
308 			 * This is kind of like a stupid idle loop.
309 			 */
310 #ifdef MULTIPROCESSOR
311 			__mp_unlock(&sched_lock);
312 #endif
313 			spl0();
314 			delay(10);
315 			SCHED_LOCK(s);
316 			goto again;
317                 }
318 		KASSERT(p);
319 		p->p_stat = SRUN;
320 	}
321 
322 	KASSERT(p->p_wchan == NULL);
323 	return (p);
324 }
325 
326 struct cpu_info *
327 sched_choosecpu_fork(struct proc *parent, int flags)
328 {
329 #ifdef MULTIPROCESSOR
330 	struct cpu_info *choice = NULL;
331 	fixpt_t load, best_load = ~0;
332 	int run, best_run = INT_MAX;
333 	struct cpu_info *ci;
334 	struct cpuset set;
335 
336 #if 0
337 	/*
338 	 * XXX
339 	 * Don't do this until we have a painless way to move the cpu in exec.
340 	 * Preferably when nuking the old pmap and getting a new one on a
341 	 * new cpu.
342 	 */
343 	/*
344 	 * PPWAIT forks are simple. We know that the parent will not
345 	 * run until we exec and choose another cpu, so we just steal its
346 	 * cpu.
347 	 */
348 	if (flags & FORK_PPWAIT)
349 		return (parent->p_cpu);
350 #endif
351 
352 	/*
353 	 * Look at all cpus that are currently idle and have nothing queued.
354 	 * If there are none, pick the one with least queued procs first,
355 	 * then the one with lowest load average.
356 	 */
357 	cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus);
358 	cpuset_intersection(&set, &set, &sched_all_cpus);
359 	if (cpuset_first(&set) == NULL)
360 		cpuset_copy(&set, &sched_all_cpus);
361 
362 	while ((ci = cpuset_first(&set)) != NULL) {
363 		cpuset_del(&set, ci);
364 
365 		load = ci->ci_schedstate.spc_ldavg;
366 		run = ci->ci_schedstate.spc_nrun;
367 
368 		if (choice == NULL || run < best_run ||
369 		    (run == best_run &&load < best_load)) {
370 			choice = ci;
371 			best_load = load;
372 			best_run = run;
373 		}
374 	}
375 
376 	return (choice);
377 #else
378 	return (curcpu());
379 #endif
380 }
381 
382 struct cpu_info *
383 sched_choosecpu(struct proc *p)
384 {
385 #ifdef MULTIPROCESSOR
386 	struct cpu_info *choice = NULL;
387 	int last_cost = INT_MAX;
388 	struct cpu_info *ci;
389 	struct cpuset set;
390 
391 	/*
392 	 * If pegged to a cpu, don't allow it to move.
393 	 */
394 	if (p->p_flag & P_CPUPEG)
395 		return (p->p_cpu);
396 
397 	sched_choose++;
398 
399 	/*
400 	 * Look at all cpus that are currently idle and have nothing queued.
401 	 * If there are none, pick the cheapest of those.
402 	 * (idle + queued could mean that the cpu is handling an interrupt
403 	 * at this moment and haven't had time to leave idle yet).
404 	 */
405 	cpuset_complement(&set, &sched_queued_cpus, &sched_idle_cpus);
406 	cpuset_intersection(&set, &set, &sched_all_cpus);
407 
408 	/*
409 	 * First, just check if our current cpu is in that set, if it is,
410 	 * this is simple.
411 	 * Also, our cpu might not be idle, but if it's the current cpu
412 	 * and it has nothing else queued and we're curproc, take it.
413 	 */
414 	if (cpuset_isset(&set, p->p_cpu) ||
415 	    (p->p_cpu == curcpu() && p->p_cpu->ci_schedstate.spc_nrun == 0 &&
416 	    (p->p_cpu->ci_schedstate.spc_schedflags & SPCF_SHOULDHALT) == 0 &&
417 	    curproc == p)) {
418 		sched_wasidle++;
419 		return (p->p_cpu);
420 	}
421 
422 	if (cpuset_first(&set) == NULL)
423 		cpuset_copy(&set, &sched_all_cpus);
424 
425 	while ((ci = cpuset_first(&set)) != NULL) {
426 		int cost = sched_proc_to_cpu_cost(ci, p);
427 
428 		if (choice == NULL || cost < last_cost) {
429 			choice = ci;
430 			last_cost = cost;
431 		}
432 		cpuset_del(&set, ci);
433 	}
434 
435 	if (p->p_cpu != choice)
436 		sched_nmigrations++;
437 	else
438 		sched_nomigrations++;
439 
440 	return (choice);
441 #else
442 	return (curcpu());
443 #endif
444 }
445 
446 /*
447  * Attempt to steal a proc from some cpu.
448  */
449 struct proc *
450 sched_steal_proc(struct cpu_info *self)
451 {
452 	struct proc *best = NULL;
453 #ifdef MULTIPROCESSOR
454 	struct schedstate_percpu *spc;
455 	int bestcost = INT_MAX;
456 	struct cpu_info *ci;
457 	struct cpuset set;
458 
459 	KASSERT((self->ci_schedstate.spc_schedflags & SPCF_SHOULDHALT) == 0);
460 
461 	cpuset_copy(&set, &sched_queued_cpus);
462 
463 	while ((ci = cpuset_first(&set)) != NULL) {
464 		struct proc *p;
465 		int queue;
466 		int cost;
467 
468 		cpuset_del(&set, ci);
469 
470 		spc = &ci->ci_schedstate;
471 
472 		queue = ffs(spc->spc_whichqs) - 1;
473 		TAILQ_FOREACH(p, &spc->spc_qs[queue], p_runq) {
474 			if (p->p_flag & P_CPUPEG)
475 				continue;
476 
477 			cost = sched_proc_to_cpu_cost(self, p);
478 
479 			if (best == NULL || cost < bestcost) {
480 				best = p;
481 				bestcost = cost;
482 			}
483 		}
484 	}
485 	if (best == NULL)
486 		return (NULL);
487 
488 	spc = &best->p_cpu->ci_schedstate;
489 	remrunqueue(best);
490 	best->p_cpu = self;
491 
492 	sched_stolen++;
493 #endif
494 	return (best);
495 }
496 
497 #ifdef MULTIPROCESSOR
498 /*
499  * Base 2 logarithm of an int. returns 0 for 0 (yeye, I know).
500  */
501 static int
502 log2(unsigned int i)
503 {
504 	int ret = 0;
505 
506 	while (i >>= 1)
507 		ret++;
508 
509 	return (ret);
510 }
511 
512 /*
513  * Calculate the cost of moving the proc to this cpu.
514  *
515  * What we want is some guesstimate of how much "performance" it will
516  * cost us to move the proc here. Not just for caches and TLBs and NUMA
517  * memory, but also for the proc itself. A highly loaded cpu might not
518  * be the best candidate for this proc since it won't get run.
519  *
520  * Just total guesstimates for now.
521  */
522 
523 int sched_cost_load = 1;
524 int sched_cost_priority = 1;
525 int sched_cost_runnable = 3;
526 int sched_cost_resident = 1;
527 #endif
528 
529 int
530 sched_proc_to_cpu_cost(struct cpu_info *ci, struct proc *p)
531 {
532 	int cost = 0;
533 #ifdef MULTIPROCESSOR
534 	struct schedstate_percpu *spc;
535 	int l2resident = 0;
536 
537 	spc = &ci->ci_schedstate;
538 
539 	/*
540 	 * First, account for the priority of the proc we want to move.
541 	 * More willing to move, the lower the priority of the destination
542 	 * and the higher the priority of the proc.
543 	 */
544 	if (!cpuset_isset(&sched_idle_cpus, ci)) {
545 		cost += (p->p_priority - spc->spc_curpriority) *
546 		    sched_cost_priority;
547 		cost += sched_cost_runnable;
548 	}
549 	if (cpuset_isset(&sched_queued_cpus, ci))
550 		cost += spc->spc_nrun * sched_cost_runnable;
551 
552 	/*
553 	 * Higher load on the destination means we don't want to go there.
554 	 */
555 	cost += ((sched_cost_load * spc->spc_ldavg) >> FSHIFT);
556 
557 	/*
558 	 * If the proc is on this cpu already, lower the cost by how much
559 	 * it has been running and an estimate of its footprint.
560 	 */
561 	if (p->p_cpu == ci && p->p_slptime == 0) {
562 		l2resident =
563 		    log2(pmap_resident_count(p->p_vmspace->vm_map.pmap));
564 		cost -= l2resident * sched_cost_resident;
565 	}
566 #endif
567 	return (cost);
568 }
569 
570 /*
571  * Peg a proc to a cpu.
572  */
573 void
574 sched_peg_curproc(struct cpu_info *ci)
575 {
576 	struct proc *p = curproc;
577 	int s;
578 
579 	SCHED_LOCK(s);
580 	p->p_priority = p->p_usrpri;
581 	p->p_stat = SRUN;
582 	p->p_cpu = ci;
583 	atomic_setbits_int(&p->p_flag, P_CPUPEG);
584 	setrunqueue(p);
585 	p->p_ru.ru_nvcsw++;
586 	mi_switch();
587 	SCHED_UNLOCK(s);
588 }
589 
590 #ifdef MULTIPROCESSOR
591 
592 void
593 sched_start_secondary_cpus(void)
594 {
595 	CPU_INFO_ITERATOR cii;
596 	struct cpu_info *ci;
597 
598 	CPU_INFO_FOREACH(cii, ci) {
599 		struct schedstate_percpu *spc = &ci->ci_schedstate;
600 
601 		if (CPU_IS_PRIMARY(ci))
602 			continue;
603 		cpuset_add(&sched_all_cpus, ci);
604 		atomic_clearbits_int(&spc->spc_schedflags,
605 		    SPCF_SHOULDHALT | SPCF_HALTED);
606 	}
607 }
608 
609 void
610 sched_stop_secondary_cpus(void)
611 {
612 	CPU_INFO_ITERATOR cii;
613 	struct cpu_info *ci;
614 
615 	/*
616 	 * Make sure we stop the secondary CPUs.
617 	 */
618 	CPU_INFO_FOREACH(cii, ci) {
619 		struct schedstate_percpu *spc = &ci->ci_schedstate;
620 
621 		if (CPU_IS_PRIMARY(ci))
622 			continue;
623 		cpuset_del(&sched_all_cpus, ci);
624 		atomic_setbits_int(&spc->spc_schedflags, SPCF_SHOULDHALT);
625 	}
626 	CPU_INFO_FOREACH(cii, ci) {
627 		struct schedstate_percpu *spc = &ci->ci_schedstate;
628 		struct sleep_state sls;
629 
630 		if (CPU_IS_PRIMARY(ci))
631 			continue;
632 		while ((spc->spc_schedflags & SPCF_HALTED) == 0) {
633 			sleep_setup(&sls, spc, PZERO, "schedstate");
634 			sleep_finish(&sls,
635 			    (spc->spc_schedflags & SPCF_HALTED) == 0);
636 		}
637 	}
638 }
639 
640 #endif
641 
642 /*
643  * Functions to manipulate cpu sets.
644  */
645 struct cpu_info *cpuset_infos[MAXCPUS];
646 static struct cpuset cpuset_all;
647 
648 void
649 cpuset_init_cpu(struct cpu_info *ci)
650 {
651 	cpuset_add(&cpuset_all, ci);
652 	cpuset_infos[CPU_INFO_UNIT(ci)] = ci;
653 }
654 
655 void
656 cpuset_clear(struct cpuset *cs)
657 {
658 	memset(cs, 0, sizeof(*cs));
659 }
660 
661 void
662 cpuset_add(struct cpuset *cs, struct cpu_info *ci)
663 {
664 	unsigned int num = CPU_INFO_UNIT(ci);
665 	atomic_setbits_int(&cs->cs_set[num/32], (1 << (num % 32)));
666 }
667 
668 void
669 cpuset_del(struct cpuset *cs, struct cpu_info *ci)
670 {
671 	unsigned int num = CPU_INFO_UNIT(ci);
672 	atomic_clearbits_int(&cs->cs_set[num/32], (1 << (num % 32)));
673 }
674 
675 int
676 cpuset_isset(struct cpuset *cs, struct cpu_info *ci)
677 {
678 	unsigned int num = CPU_INFO_UNIT(ci);
679 	return (cs->cs_set[num/32] & (1 << (num % 32)));
680 }
681 
682 void
683 cpuset_add_all(struct cpuset *cs)
684 {
685 	cpuset_copy(cs, &cpuset_all);
686 }
687 
688 void
689 cpuset_copy(struct cpuset *to, struct cpuset *from)
690 {
691 	memcpy(to, from, sizeof(*to));
692 }
693 
694 struct cpu_info *
695 cpuset_first(struct cpuset *cs)
696 {
697 	int i;
698 
699 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
700 		if (cs->cs_set[i])
701 			return (cpuset_infos[i * 32 + ffs(cs->cs_set[i]) - 1]);
702 
703 	return (NULL);
704 }
705 
706 void
707 cpuset_union(struct cpuset *to, struct cpuset *a, struct cpuset *b)
708 {
709 	int i;
710 
711 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
712 		to->cs_set[i] = a->cs_set[i] | b->cs_set[i];
713 }
714 
715 void
716 cpuset_intersection(struct cpuset *to, struct cpuset *a, struct cpuset *b)
717 {
718 	int i;
719 
720 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
721 		to->cs_set[i] = a->cs_set[i] & b->cs_set[i];
722 }
723 
724 void
725 cpuset_complement(struct cpuset *to, struct cpuset *a, struct cpuset *b)
726 {
727 	int i;
728 
729 	for (i = 0; i < CPUSET_ASIZE(ncpus); i++)
730 		to->cs_set[i] = b->cs_set[i] & ~a->cs_set[i];
731 }
732