1 /* $OpenBSD: kern_malloc.c,v 1.132 2018/01/02 06:07:21 guenther Exp $ */ 2 /* $NetBSD: kern_malloc.c,v 1.15.4.2 1996/06/13 17:10:56 cgd Exp $ */ 3 4 /* 5 * Copyright (c) 1987, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 33 */ 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/stdint.h> 39 #include <sys/systm.h> 40 #include <sys/sysctl.h> 41 #include <sys/time.h> 42 #include <sys/mutex.h> 43 #include <sys/rwlock.h> 44 45 #include <uvm/uvm_extern.h> 46 47 static 48 #ifndef SMALL_KERNEL 49 __inline__ 50 #endif 51 long BUCKETINDX(size_t sz) 52 { 53 long b, d; 54 55 /* note that this relies upon MINALLOCSIZE being 1 << MINBUCKET */ 56 b = 7 + MINBUCKET; d = 4; 57 while (d != 0) { 58 if (sz <= (1 << b)) 59 b -= d; 60 else 61 b += d; 62 d >>= 1; 63 } 64 if (sz <= (1 << b)) 65 b += 0; 66 else 67 b += 1; 68 return b; 69 } 70 71 static struct vm_map kmem_map_store; 72 struct vm_map *kmem_map = NULL; 73 74 /* 75 * Default number of pages in kmem_map. We attempt to calculate this 76 * at run-time, but allow it to be either patched or set in the kernel 77 * config file. 78 */ 79 #ifndef NKMEMPAGES 80 #define NKMEMPAGES 0 81 #endif 82 u_int nkmempages = NKMEMPAGES; 83 84 /* 85 * Defaults for lower- and upper-bounds for the kmem_map page count. 86 * Can be overridden by kernel config options. 87 */ 88 #ifndef NKMEMPAGES_MIN 89 #define NKMEMPAGES_MIN 0 90 #endif 91 u_int nkmempages_min = 0; 92 93 #ifndef NKMEMPAGES_MAX 94 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT 95 #endif 96 u_int nkmempages_max = 0; 97 98 struct mutex malloc_mtx = MUTEX_INITIALIZER(IPL_VM); 99 struct kmembuckets bucket[MINBUCKET + 16]; 100 #ifdef KMEMSTATS 101 struct kmemstats kmemstats[M_LAST]; 102 #endif 103 struct kmemusage *kmemusage; 104 char *kmembase, *kmemlimit; 105 char buckstring[16 * sizeof("123456,")]; 106 int buckstring_init = 0; 107 #if defined(KMEMSTATS) || defined(DIAGNOSTIC) || defined(FFS_SOFTUPDATES) 108 char *memname[] = INITKMEMNAMES; 109 char *memall = NULL; 110 struct rwlock sysctl_kmemlock = RWLOCK_INITIALIZER("sysctlklk"); 111 #endif 112 113 /* 114 * Normally the freelist structure is used only to hold the list pointer 115 * for free objects. However, when running with diagnostics, the first 116 * 8 bytes of the structure is unused except for diagnostic information, 117 * and the free list pointer is at offset 8 in the structure. Since the 118 * first 8 bytes is the portion of the structure most often modified, this 119 * helps to detect memory reuse problems and avoid free list corruption. 120 */ 121 struct kmem_freelist { 122 int32_t kf_spare0; 123 int16_t kf_type; 124 int16_t kf_spare1; 125 XSIMPLEQ_ENTRY(kmem_freelist) kf_flist; 126 }; 127 128 #ifdef DIAGNOSTIC 129 /* 130 * This structure provides a set of masks to catch unaligned frees. 131 */ 132 const long addrmask[] = { 0, 133 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 134 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 135 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 136 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 137 }; 138 139 #endif /* DIAGNOSTIC */ 140 141 #ifndef SMALL_KERNEL 142 struct timeval malloc_errintvl = { 5, 0 }; 143 struct timeval malloc_lasterr; 144 #endif 145 146 /* 147 * Allocate a block of memory 148 */ 149 void * 150 malloc(size_t size, int type, int flags) 151 { 152 struct kmembuckets *kbp; 153 struct kmemusage *kup; 154 struct kmem_freelist *freep; 155 long indx, npg, allocsize; 156 caddr_t va, cp; 157 int s; 158 #ifdef DIAGNOSTIC 159 int freshalloc; 160 char *savedtype; 161 #endif 162 #ifdef KMEMSTATS 163 struct kmemstats *ksp = &kmemstats[type]; 164 int wake; 165 166 if (((unsigned long)type) <= 1 || ((unsigned long)type) >= M_LAST) 167 panic("malloc: bogus type %d", type); 168 #endif 169 170 KASSERT(flags & (M_WAITOK | M_NOWAIT)); 171 172 #ifdef DIAGNOSTIC 173 if ((flags & M_NOWAIT) == 0) { 174 extern int pool_debug; 175 assertwaitok(); 176 if (pool_debug == 2) 177 yield(); 178 } 179 #endif 180 181 if (size > 65535 * PAGE_SIZE) { 182 if (flags & M_CANFAIL) { 183 #ifndef SMALL_KERNEL 184 /* XXX lock */ 185 if (ratecheck(&malloc_lasterr, &malloc_errintvl)) 186 printf("malloc(): allocation too large, " 187 "type = %d, size = %lu\n", type, size); 188 #endif 189 return (NULL); 190 } else 191 panic("malloc: allocation too large, " 192 "type = %d, size = %lu\n", type, size); 193 } 194 195 indx = BUCKETINDX(size); 196 if (size > MAXALLOCSAVE) 197 allocsize = round_page(size); 198 else 199 allocsize = 1 << indx; 200 kbp = &bucket[indx]; 201 mtx_enter(&malloc_mtx); 202 #ifdef KMEMSTATS 203 while (ksp->ks_memuse >= ksp->ks_limit) { 204 if (flags & M_NOWAIT) { 205 mtx_leave(&malloc_mtx); 206 return (NULL); 207 } 208 if (ksp->ks_limblocks < 65535) 209 ksp->ks_limblocks++; 210 msleep(ksp, &malloc_mtx, PSWP+2, memname[type], 0); 211 } 212 ksp->ks_memuse += allocsize; /* account for this early */ 213 ksp->ks_size |= 1 << indx; 214 #endif 215 if (XSIMPLEQ_FIRST(&kbp->kb_freelist) == NULL) { 216 mtx_leave(&malloc_mtx); 217 npg = atop(round_page(allocsize)); 218 s = splvm(); 219 va = (caddr_t)uvm_km_kmemalloc_pla(kmem_map, NULL, 220 (vsize_t)ptoa(npg), 0, 221 ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) | 222 ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0), 223 no_constraint.ucr_low, no_constraint.ucr_high, 224 0, 0, 0); 225 splx(s); 226 if (va == NULL) { 227 /* 228 * Kmem_malloc() can return NULL, even if it can 229 * wait, if there is no map space available, because 230 * it can't fix that problem. Neither can we, 231 * right now. (We should release pages which 232 * are completely free and which are in buckets 233 * with too many free elements.) 234 */ 235 if ((flags & (M_NOWAIT|M_CANFAIL)) == 0) 236 panic("malloc: out of space in kmem_map"); 237 238 #ifdef KMEMSTATS 239 mtx_enter(&malloc_mtx); 240 ksp->ks_memuse -= allocsize; 241 wake = ksp->ks_memuse + allocsize >= ksp->ks_limit && 242 ksp->ks_memuse < ksp->ks_limit; 243 mtx_leave(&malloc_mtx); 244 if (wake) 245 wakeup(ksp); 246 #endif 247 248 return (NULL); 249 } 250 mtx_enter(&malloc_mtx); 251 #ifdef KMEMSTATS 252 kbp->kb_total += kbp->kb_elmpercl; 253 #endif 254 kup = btokup(va); 255 kup->ku_indx = indx; 256 #ifdef DIAGNOSTIC 257 freshalloc = 1; 258 #endif 259 if (allocsize > MAXALLOCSAVE) { 260 kup->ku_pagecnt = npg; 261 goto out; 262 } 263 #ifdef KMEMSTATS 264 kup->ku_freecnt = kbp->kb_elmpercl; 265 kbp->kb_totalfree += kbp->kb_elmpercl; 266 #endif 267 cp = va + (npg * PAGE_SIZE) - allocsize; 268 for (;;) { 269 freep = (struct kmem_freelist *)cp; 270 #ifdef DIAGNOSTIC 271 /* 272 * Copy in known text to detect modification 273 * after freeing. 274 */ 275 poison_mem(cp, allocsize); 276 freep->kf_type = M_FREE; 277 #endif /* DIAGNOSTIC */ 278 XSIMPLEQ_INSERT_HEAD(&kbp->kb_freelist, freep, kf_flist); 279 if (cp <= va) 280 break; 281 cp -= allocsize; 282 } 283 } else { 284 #ifdef DIAGNOSTIC 285 freshalloc = 0; 286 #endif 287 } 288 freep = XSIMPLEQ_FIRST(&kbp->kb_freelist); 289 XSIMPLEQ_REMOVE_HEAD(&kbp->kb_freelist, kf_flist); 290 va = (caddr_t)freep; 291 #ifdef DIAGNOSTIC 292 savedtype = (unsigned)freep->kf_type < M_LAST ? 293 memname[freep->kf_type] : "???"; 294 if (freshalloc == 0 && XSIMPLEQ_FIRST(&kbp->kb_freelist)) { 295 int rv; 296 vaddr_t addr = (vaddr_t)XSIMPLEQ_FIRST(&kbp->kb_freelist); 297 298 vm_map_lock(kmem_map); 299 rv = uvm_map_checkprot(kmem_map, addr, 300 addr + sizeof(struct kmem_freelist), PROT_WRITE); 301 vm_map_unlock(kmem_map); 302 303 if (!rv) { 304 printf("%s %zd of object %p size 0x%lx %s %s" 305 " (invalid addr %p)\n", 306 "Data modified on freelist: word", 307 (int32_t *)&addr - (int32_t *)kbp, va, size, 308 "previous type", savedtype, (void *)addr); 309 } 310 } 311 312 /* Fill the fields that we've used with poison */ 313 poison_mem(freep, sizeof(*freep)); 314 315 /* and check that the data hasn't been modified. */ 316 if (freshalloc == 0) { 317 size_t pidx; 318 uint32_t pval; 319 if (poison_check(va, allocsize, &pidx, &pval)) { 320 panic("%s %zd of object %p size 0x%lx %s %s" 321 " (0x%x != 0x%x)\n", 322 "Data modified on freelist: word", 323 pidx, va, size, "previous type", 324 savedtype, ((int32_t*)va)[pidx], pval); 325 } 326 } 327 328 freep->kf_spare0 = 0; 329 #endif /* DIAGNOSTIC */ 330 #ifdef KMEMSTATS 331 kup = btokup(va); 332 if (kup->ku_indx != indx) 333 panic("malloc: wrong bucket"); 334 if (kup->ku_freecnt == 0) 335 panic("malloc: lost data"); 336 kup->ku_freecnt--; 337 kbp->kb_totalfree--; 338 out: 339 kbp->kb_calls++; 340 ksp->ks_inuse++; 341 ksp->ks_calls++; 342 if (ksp->ks_memuse > ksp->ks_maxused) 343 ksp->ks_maxused = ksp->ks_memuse; 344 #else 345 out: 346 #endif 347 mtx_leave(&malloc_mtx); 348 349 if ((flags & M_ZERO) && va != NULL) 350 memset(va, 0, size); 351 return (va); 352 } 353 354 /* 355 * Free a block of memory allocated by malloc. 356 */ 357 void 358 free(void *addr, int type, size_t freedsize) 359 { 360 struct kmembuckets *kbp; 361 struct kmemusage *kup; 362 struct kmem_freelist *freep; 363 long size; 364 int s; 365 #ifdef DIAGNOSTIC 366 long alloc; 367 #endif 368 #ifdef KMEMSTATS 369 struct kmemstats *ksp = &kmemstats[type]; 370 #endif 371 372 if (addr == NULL) 373 return; 374 375 #ifdef DIAGNOSTIC 376 if (addr < (void *)kmembase || addr >= (void *)kmemlimit) 377 panic("free: non-malloced addr %p type %s", addr, 378 memname[type]); 379 #endif 380 381 kup = btokup(addr); 382 size = 1 << kup->ku_indx; 383 kbp = &bucket[kup->ku_indx]; 384 if (size > MAXALLOCSAVE) 385 size = kup->ku_pagecnt << PAGE_SHIFT; 386 #ifdef DIAGNOSTIC 387 if (freedsize != 0 && freedsize > size) 388 panic("free: size too large %zu > %ld (%p) type %s", 389 freedsize, size, addr, memname[type]); 390 if (freedsize != 0 && size > MINALLOCSIZE && freedsize <= size / 2) 391 panic("free: size too small %zu <= %ld / 2 (%p) type %s", 392 freedsize, size, addr, memname[type]); 393 /* 394 * Check for returns of data that do not point to the 395 * beginning of the allocation. 396 */ 397 if (size > PAGE_SIZE) 398 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 399 else 400 alloc = addrmask[kup->ku_indx]; 401 if (((u_long)addr & alloc) != 0) 402 panic("free: unaligned addr %p, size %ld, type %s, mask %ld", 403 addr, size, memname[type], alloc); 404 #endif /* DIAGNOSTIC */ 405 if (size > MAXALLOCSAVE) { 406 s = splvm(); 407 uvm_km_free(kmem_map, (vaddr_t)addr, ptoa(kup->ku_pagecnt)); 408 splx(s); 409 #ifdef KMEMSTATS 410 mtx_enter(&malloc_mtx); 411 ksp->ks_memuse -= size; 412 kup->ku_indx = 0; 413 kup->ku_pagecnt = 0; 414 if (ksp->ks_memuse + size >= ksp->ks_limit && 415 ksp->ks_memuse < ksp->ks_limit) 416 wakeup(ksp); 417 ksp->ks_inuse--; 418 kbp->kb_total -= 1; 419 mtx_leave(&malloc_mtx); 420 #endif 421 return; 422 } 423 freep = (struct kmem_freelist *)addr; 424 mtx_enter(&malloc_mtx); 425 #ifdef DIAGNOSTIC 426 /* 427 * Check for multiple frees. Use a quick check to see if 428 * it looks free before laboriously searching the freelist. 429 */ 430 if (freep->kf_spare0 == poison_value(freep)) { 431 struct kmem_freelist *fp; 432 XSIMPLEQ_FOREACH(fp, &kbp->kb_freelist, kf_flist) { 433 if (addr != fp) 434 continue; 435 printf("multiply freed item %p\n", addr); 436 panic("free: duplicated free"); 437 } 438 } 439 /* 440 * Copy in known text to detect modification after freeing 441 * and to make it look free. Also, save the type being freed 442 * so we can list likely culprit if modification is detected 443 * when the object is reallocated. 444 */ 445 poison_mem(addr, size); 446 freep->kf_spare0 = poison_value(freep); 447 448 freep->kf_type = type; 449 #endif /* DIAGNOSTIC */ 450 #ifdef KMEMSTATS 451 kup->ku_freecnt++; 452 if (kup->ku_freecnt >= kbp->kb_elmpercl) { 453 if (kup->ku_freecnt > kbp->kb_elmpercl) 454 panic("free: multiple frees"); 455 else if (kbp->kb_totalfree > kbp->kb_highwat) 456 kbp->kb_couldfree++; 457 } 458 kbp->kb_totalfree++; 459 ksp->ks_memuse -= size; 460 if (ksp->ks_memuse + size >= ksp->ks_limit && 461 ksp->ks_memuse < ksp->ks_limit) 462 wakeup(ksp); 463 ksp->ks_inuse--; 464 #endif 465 XSIMPLEQ_INSERT_TAIL(&kbp->kb_freelist, freep, kf_flist); 466 mtx_leave(&malloc_mtx); 467 } 468 469 /* 470 * Compute the number of pages that kmem_map will map, that is, 471 * the size of the kernel malloc arena. 472 */ 473 void 474 kmeminit_nkmempages(void) 475 { 476 u_int npages; 477 478 if (nkmempages != 0) { 479 /* 480 * It's already been set (by us being here before, or 481 * by patching or kernel config options), bail out now. 482 */ 483 return; 484 } 485 486 /* 487 * We can't initialize these variables at compilation time, since 488 * the page size may not be known (on sparc GENERIC kernels, for 489 * example). But we still want the MD code to be able to provide 490 * better values. 491 */ 492 if (nkmempages_min == 0) 493 nkmempages_min = NKMEMPAGES_MIN; 494 if (nkmempages_max == 0) 495 nkmempages_max = NKMEMPAGES_MAX; 496 497 /* 498 * We use the following (simple) formula: 499 * 500 * - Starting point is physical memory / 4. 501 * 502 * - Clamp it down to nkmempages_max. 503 * 504 * - Round it up to nkmempages_min. 505 */ 506 npages = physmem / 4; 507 508 if (npages > nkmempages_max) 509 npages = nkmempages_max; 510 511 if (npages < nkmempages_min) 512 npages = nkmempages_min; 513 514 nkmempages = npages; 515 } 516 517 /* 518 * Initialize the kernel memory allocator 519 */ 520 void 521 kmeminit(void) 522 { 523 vaddr_t base, limit; 524 long indx; 525 526 #ifdef DIAGNOSTIC 527 if (sizeof(struct kmem_freelist) > (1 << MINBUCKET)) 528 panic("kmeminit: minbucket too small/struct freelist too big"); 529 #endif 530 531 /* 532 * Compute the number of kmem_map pages, if we have not 533 * done so already. 534 */ 535 kmeminit_nkmempages(); 536 base = vm_map_min(kernel_map); 537 kmem_map = uvm_km_suballoc(kernel_map, &base, &limit, 538 (vsize_t)nkmempages << PAGE_SHIFT, 539 #ifdef KVA_GUARDPAGES 540 VM_MAP_INTRSAFE | VM_MAP_GUARDPAGES, 541 #else 542 VM_MAP_INTRSAFE, 543 #endif 544 FALSE, &kmem_map_store); 545 kmembase = (char *)base; 546 kmemlimit = (char *)limit; 547 kmemusage = (struct kmemusage *) uvm_km_zalloc(kernel_map, 548 (vsize_t)(nkmempages * sizeof(struct kmemusage))); 549 for (indx = 0; indx < MINBUCKET + 16; indx++) { 550 XSIMPLEQ_INIT(&bucket[indx].kb_freelist); 551 } 552 #ifdef KMEMSTATS 553 for (indx = 0; indx < MINBUCKET + 16; indx++) { 554 if (1 << indx >= PAGE_SIZE) 555 bucket[indx].kb_elmpercl = 1; 556 else 557 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); 558 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; 559 } 560 for (indx = 0; indx < M_LAST; indx++) 561 kmemstats[indx].ks_limit = nkmempages * PAGE_SIZE * 6 / 10; 562 #endif 563 } 564 565 /* 566 * Return kernel malloc statistics information. 567 */ 568 int 569 sysctl_malloc(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, 570 size_t newlen, struct proc *p) 571 { 572 struct kmembuckets kb; 573 #ifdef KMEMSTATS 574 struct kmemstats km; 575 #endif 576 #if defined(KMEMSTATS) || defined(DIAGNOSTIC) || defined(FFS_SOFTUPDATES) 577 int error; 578 #endif 579 int i, siz; 580 581 if (namelen != 2 && name[0] != KERN_MALLOC_BUCKETS && 582 name[0] != KERN_MALLOC_KMEMNAMES) 583 return (ENOTDIR); /* overloaded */ 584 585 switch (name[0]) { 586 case KERN_MALLOC_BUCKETS: 587 /* Initialize the first time */ 588 if (buckstring_init == 0) { 589 buckstring_init = 1; 590 memset(buckstring, 0, sizeof(buckstring)); 591 for (siz = 0, i = MINBUCKET; i < MINBUCKET + 16; i++) { 592 snprintf(buckstring + siz, 593 sizeof buckstring - siz, 594 "%d,", (u_int)(1<<i)); 595 siz += strlen(buckstring + siz); 596 } 597 /* Remove trailing comma */ 598 if (siz) 599 buckstring[siz - 1] = '\0'; 600 } 601 return (sysctl_rdstring(oldp, oldlenp, newp, buckstring)); 602 603 case KERN_MALLOC_BUCKET: 604 mtx_enter(&malloc_mtx); 605 memcpy(&kb, &bucket[BUCKETINDX(name[1])], sizeof(kb)); 606 mtx_leave(&malloc_mtx); 607 memset(&kb.kb_freelist, 0, sizeof(kb.kb_freelist)); 608 return (sysctl_rdstruct(oldp, oldlenp, newp, &kb, sizeof(kb))); 609 case KERN_MALLOC_KMEMSTATS: 610 #ifdef KMEMSTATS 611 if ((name[1] < 0) || (name[1] >= M_LAST)) 612 return (EINVAL); 613 mtx_enter(&malloc_mtx); 614 memcpy(&km, &kmemstats[name[1]], sizeof(km)); 615 mtx_leave(&malloc_mtx); 616 return (sysctl_rdstruct(oldp, oldlenp, newp, &km, sizeof(km))); 617 #else 618 return (EOPNOTSUPP); 619 #endif 620 case KERN_MALLOC_KMEMNAMES: 621 #if defined(KMEMSTATS) || defined(DIAGNOSTIC) || defined(FFS_SOFTUPDATES) 622 error = rw_enter(&sysctl_kmemlock, RW_WRITE|RW_INTR); 623 if (error) 624 return (error); 625 if (memall == NULL) { 626 int totlen; 627 628 /* Figure out how large a buffer we need */ 629 for (totlen = 0, i = 0; i < M_LAST; i++) { 630 if (memname[i]) 631 totlen += strlen(memname[i]); 632 totlen++; 633 } 634 memall = malloc(totlen + M_LAST, M_SYSCTL, 635 M_WAITOK|M_ZERO); 636 for (siz = 0, i = 0; i < M_LAST; i++) { 637 snprintf(memall + siz, 638 totlen + M_LAST - siz, 639 "%s,", memname[i] ? memname[i] : ""); 640 siz += strlen(memall + siz); 641 } 642 /* Remove trailing comma */ 643 if (siz) 644 memall[siz - 1] = '\0'; 645 646 /* Now, convert all spaces to underscores */ 647 for (i = 0; i < totlen; i++) 648 if (memall[i] == ' ') 649 memall[i] = '_'; 650 } 651 rw_exit_write(&sysctl_kmemlock); 652 return (sysctl_rdstring(oldp, oldlenp, newp, memall)); 653 #else 654 return (EOPNOTSUPP); 655 #endif 656 default: 657 return (EOPNOTSUPP); 658 } 659 /* NOTREACHED */ 660 } 661 662 /* 663 * Round up a size to how much malloc would actually allocate. 664 */ 665 size_t 666 malloc_roundup(size_t sz) 667 { 668 if (sz > MAXALLOCSAVE) 669 return round_page(sz); 670 671 return (1 << BUCKETINDX(sz)); 672 } 673 674 #if defined(DDB) 675 #include <machine/db_machdep.h> 676 #include <ddb/db_output.h> 677 678 void 679 malloc_printit( 680 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 681 { 682 #ifdef KMEMSTATS 683 struct kmemstats *km; 684 int i; 685 686 (*pr)("%15s %5s %6s %7s %6s %9s %8s %8s\n", 687 "Type", "InUse", "MemUse", "HighUse", "Limit", "Requests", 688 "Type Lim", "Kern Lim"); 689 for (i = 0, km = kmemstats; i < M_LAST; i++, km++) { 690 if (!km->ks_calls || !memname[i]) 691 continue; 692 693 (*pr)("%15s %5ld %6ldK %7ldK %6ldK %9ld %8d %8d\n", 694 memname[i], km->ks_inuse, km->ks_memuse / 1024, 695 km->ks_maxused / 1024, km->ks_limit / 1024, 696 km->ks_calls, km->ks_limblocks, km->ks_mapblocks); 697 } 698 #else 699 (*pr)("No KMEMSTATS compiled in\n"); 700 #endif 701 } 702 #endif /* DDB */ 703 704 /* 705 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> 706 * 707 * Permission to use, copy, modify, and distribute this software for any 708 * purpose with or without fee is hereby granted, provided that the above 709 * copyright notice and this permission notice appear in all copies. 710 * 711 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 712 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 713 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 714 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 715 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 716 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 717 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 718 */ 719 720 /* 721 * This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX 722 * if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW 723 */ 724 #define MUL_NO_OVERFLOW (1UL << (sizeof(size_t) * 4)) 725 726 void * 727 mallocarray(size_t nmemb, size_t size, int type, int flags) 728 { 729 if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) && 730 nmemb > 0 && SIZE_MAX / nmemb < size) { 731 if (flags & M_CANFAIL) 732 return (NULL); 733 panic("mallocarray: overflow %zu * %zu", nmemb, size); 734 } 735 return (malloc(size * nmemb, type, flags)); 736 } 737