1 /* $OpenBSD: kern_malloc.c,v 1.143 2020/12/31 11:04:35 claudio Exp $ */ 2 /* $NetBSD: kern_malloc.c,v 1.15.4.2 1996/06/13 17:10:56 cgd Exp $ */ 3 4 /* 5 * Copyright (c) 1987, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the University nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 * 32 * @(#)kern_malloc.c 8.3 (Berkeley) 1/4/94 33 */ 34 35 #include <sys/param.h> 36 #include <sys/kernel.h> 37 #include <sys/malloc.h> 38 #include <sys/proc.h> 39 #include <sys/stdint.h> 40 #include <sys/systm.h> 41 #include <sys/sysctl.h> 42 #include <sys/time.h> 43 #include <sys/mutex.h> 44 #include <sys/rwlock.h> 45 #include <sys/tracepoint.h> 46 47 #include <uvm/uvm_extern.h> 48 49 #if defined(DDB) 50 #include <machine/db_machdep.h> 51 #include <ddb/db_output.h> 52 #endif 53 54 static 55 #ifndef SMALL_KERNEL 56 __inline__ 57 #endif 58 long BUCKETINDX(size_t sz) 59 { 60 long b, d; 61 62 /* note that this relies upon MINALLOCSIZE being 1 << MINBUCKET */ 63 b = 7 + MINBUCKET; d = 4; 64 while (d != 0) { 65 if (sz <= (1 << b)) 66 b -= d; 67 else 68 b += d; 69 d >>= 1; 70 } 71 if (sz <= (1 << b)) 72 b += 0; 73 else 74 b += 1; 75 return b; 76 } 77 78 static struct vm_map kmem_map_store; 79 struct vm_map *kmem_map = NULL; 80 81 /* 82 * Default number of pages in kmem_map. We attempt to calculate this 83 * at run-time, but allow it to be either patched or set in the kernel 84 * config file. 85 */ 86 #ifndef NKMEMPAGES 87 #define NKMEMPAGES 0 88 #endif 89 u_int nkmempages = NKMEMPAGES; 90 91 /* 92 * Defaults for lower- and upper-bounds for the kmem_map page count. 93 * Can be overridden by kernel config options. 94 */ 95 #ifndef NKMEMPAGES_MIN 96 #define NKMEMPAGES_MIN 0 97 #endif 98 u_int nkmempages_min = 0; 99 100 #ifndef NKMEMPAGES_MAX 101 #define NKMEMPAGES_MAX NKMEMPAGES_MAX_DEFAULT 102 #endif 103 u_int nkmempages_max = 0; 104 105 struct mutex malloc_mtx = MUTEX_INITIALIZER(IPL_VM); 106 struct kmembuckets bucket[MINBUCKET + 16]; 107 #ifdef KMEMSTATS 108 struct kmemstats kmemstats[M_LAST]; 109 #endif 110 struct kmemusage *kmemusage; 111 char *kmembase, *kmemlimit; 112 char buckstring[16 * sizeof("123456,")]; 113 int buckstring_init = 0; 114 #if defined(KMEMSTATS) || defined(DIAGNOSTIC) 115 char *memname[] = INITKMEMNAMES; 116 char *memall = NULL; 117 struct rwlock sysctl_kmemlock = RWLOCK_INITIALIZER("sysctlklk"); 118 #endif 119 120 /* 121 * Normally the freelist structure is used only to hold the list pointer 122 * for free objects. However, when running with diagnostics, the first 123 * 8 bytes of the structure is unused except for diagnostic information, 124 * and the free list pointer is at offset 8 in the structure. Since the 125 * first 8 bytes is the portion of the structure most often modified, this 126 * helps to detect memory reuse problems and avoid free list corruption. 127 */ 128 struct kmem_freelist { 129 int32_t kf_spare0; 130 int16_t kf_type; 131 int16_t kf_spare1; 132 XSIMPLEQ_ENTRY(kmem_freelist) kf_flist; 133 }; 134 135 #ifdef DIAGNOSTIC 136 /* 137 * This structure provides a set of masks to catch unaligned frees. 138 */ 139 const long addrmask[] = { 0, 140 0x00000001, 0x00000003, 0x00000007, 0x0000000f, 141 0x0000001f, 0x0000003f, 0x0000007f, 0x000000ff, 142 0x000001ff, 0x000003ff, 0x000007ff, 0x00000fff, 143 0x00001fff, 0x00003fff, 0x00007fff, 0x0000ffff, 144 }; 145 146 #endif /* DIAGNOSTIC */ 147 148 #ifndef SMALL_KERNEL 149 struct timeval malloc_errintvl = { 5, 0 }; 150 struct timeval malloc_lasterr; 151 #endif 152 153 /* 154 * Allocate a block of memory 155 */ 156 void * 157 malloc(size_t size, int type, int flags) 158 { 159 struct kmembuckets *kbp; 160 struct kmemusage *kup; 161 struct kmem_freelist *freep; 162 long indx, npg, allocsize; 163 caddr_t va, cp; 164 int s; 165 #ifdef DIAGNOSTIC 166 int freshalloc; 167 char *savedtype; 168 #endif 169 #ifdef KMEMSTATS 170 struct kmemstats *ksp = &kmemstats[type]; 171 int wake; 172 173 if (((unsigned long)type) <= 1 || ((unsigned long)type) >= M_LAST) 174 panic("malloc: bogus type %d", type); 175 #endif 176 177 KASSERT(flags & (M_WAITOK | M_NOWAIT)); 178 179 #ifdef DIAGNOSTIC 180 if ((flags & M_NOWAIT) == 0) { 181 extern int pool_debug; 182 assertwaitok(); 183 if (pool_debug == 2) 184 yield(); 185 } 186 #endif 187 188 if (size > 65535 * PAGE_SIZE) { 189 if (flags & M_CANFAIL) { 190 #ifndef SMALL_KERNEL 191 /* XXX lock */ 192 if (ratecheck(&malloc_lasterr, &malloc_errintvl)) 193 printf("malloc(): allocation too large, " 194 "type = %d, size = %lu\n", type, size); 195 #endif 196 return (NULL); 197 } else 198 panic("malloc: allocation too large, " 199 "type = %d, size = %lu\n", type, size); 200 } 201 202 indx = BUCKETINDX(size); 203 if (size > MAXALLOCSAVE) 204 allocsize = round_page(size); 205 else 206 allocsize = 1 << indx; 207 kbp = &bucket[indx]; 208 mtx_enter(&malloc_mtx); 209 #ifdef KMEMSTATS 210 while (ksp->ks_memuse >= ksp->ks_limit) { 211 if (flags & M_NOWAIT) { 212 mtx_leave(&malloc_mtx); 213 return (NULL); 214 } 215 #ifdef DIAGNOSTIC 216 if (ISSET(flags, M_WAITOK) && curproc == &proc0) 217 panic("%s: cannot sleep for memory during boot", 218 __func__); 219 #endif 220 if (ksp->ks_limblocks < 65535) 221 ksp->ks_limblocks++; 222 msleep_nsec(ksp, &malloc_mtx, PSWP+2, memname[type], INFSLP); 223 } 224 ksp->ks_memuse += allocsize; /* account for this early */ 225 ksp->ks_size |= 1 << indx; 226 #endif 227 if (XSIMPLEQ_FIRST(&kbp->kb_freelist) == NULL) { 228 mtx_leave(&malloc_mtx); 229 npg = atop(round_page(allocsize)); 230 s = splvm(); 231 va = (caddr_t)uvm_km_kmemalloc_pla(kmem_map, NULL, 232 (vsize_t)ptoa(npg), 0, 233 ((flags & M_NOWAIT) ? UVM_KMF_NOWAIT : 0) | 234 ((flags & M_CANFAIL) ? UVM_KMF_CANFAIL : 0), 235 no_constraint.ucr_low, no_constraint.ucr_high, 236 0, 0, 0); 237 splx(s); 238 if (va == NULL) { 239 /* 240 * Kmem_malloc() can return NULL, even if it can 241 * wait, if there is no map space available, because 242 * it can't fix that problem. Neither can we, 243 * right now. (We should release pages which 244 * are completely free and which are in buckets 245 * with too many free elements.) 246 */ 247 if ((flags & (M_NOWAIT|M_CANFAIL)) == 0) 248 panic("malloc: out of space in kmem_map"); 249 250 #ifdef KMEMSTATS 251 mtx_enter(&malloc_mtx); 252 ksp->ks_memuse -= allocsize; 253 wake = ksp->ks_memuse + allocsize >= ksp->ks_limit && 254 ksp->ks_memuse < ksp->ks_limit; 255 mtx_leave(&malloc_mtx); 256 if (wake) 257 wakeup(ksp); 258 #endif 259 return (NULL); 260 } 261 mtx_enter(&malloc_mtx); 262 #ifdef KMEMSTATS 263 kbp->kb_total += kbp->kb_elmpercl; 264 #endif 265 kup = btokup(va); 266 kup->ku_indx = indx; 267 #ifdef DIAGNOSTIC 268 freshalloc = 1; 269 #endif 270 if (allocsize > MAXALLOCSAVE) { 271 kup->ku_pagecnt = npg; 272 goto out; 273 } 274 #ifdef KMEMSTATS 275 kup->ku_freecnt = kbp->kb_elmpercl; 276 kbp->kb_totalfree += kbp->kb_elmpercl; 277 #endif 278 cp = va + (npg * PAGE_SIZE) - allocsize; 279 for (;;) { 280 freep = (struct kmem_freelist *)cp; 281 #ifdef DIAGNOSTIC 282 /* 283 * Copy in known text to detect modification 284 * after freeing. 285 */ 286 poison_mem(cp, allocsize); 287 freep->kf_type = M_FREE; 288 #endif /* DIAGNOSTIC */ 289 XSIMPLEQ_INSERT_HEAD(&kbp->kb_freelist, freep, 290 kf_flist); 291 if (cp <= va) 292 break; 293 cp -= allocsize; 294 } 295 } else { 296 #ifdef DIAGNOSTIC 297 freshalloc = 0; 298 #endif 299 } 300 freep = XSIMPLEQ_FIRST(&kbp->kb_freelist); 301 XSIMPLEQ_REMOVE_HEAD(&kbp->kb_freelist, kf_flist); 302 va = (caddr_t)freep; 303 #ifdef DIAGNOSTIC 304 savedtype = (unsigned)freep->kf_type < M_LAST ? 305 memname[freep->kf_type] : "???"; 306 if (freshalloc == 0 && XSIMPLEQ_FIRST(&kbp->kb_freelist)) { 307 int rv; 308 vaddr_t addr = (vaddr_t)XSIMPLEQ_FIRST(&kbp->kb_freelist); 309 310 vm_map_lock(kmem_map); 311 rv = uvm_map_checkprot(kmem_map, addr, 312 addr + sizeof(struct kmem_freelist), PROT_WRITE); 313 vm_map_unlock(kmem_map); 314 315 if (!rv) { 316 printf("%s %zd of object %p size 0x%lx %s %s" 317 " (invalid addr %p)\n", 318 "Data modified on freelist: word", 319 (int32_t *)&addr - (int32_t *)kbp, va, size, 320 "previous type", savedtype, (void *)addr); 321 } 322 } 323 324 /* Fill the fields that we've used with poison */ 325 poison_mem(freep, sizeof(*freep)); 326 327 /* and check that the data hasn't been modified. */ 328 if (freshalloc == 0) { 329 size_t pidx; 330 uint32_t pval; 331 if (poison_check(va, allocsize, &pidx, &pval)) { 332 panic("%s %zd of object %p size 0x%lx %s %s" 333 " (0x%x != 0x%x)\n", 334 "Data modified on freelist: word", 335 pidx, va, size, "previous type", 336 savedtype, ((int32_t*)va)[pidx], pval); 337 } 338 } 339 340 freep->kf_spare0 = 0; 341 #endif /* DIAGNOSTIC */ 342 #ifdef KMEMSTATS 343 kup = btokup(va); 344 if (kup->ku_indx != indx) 345 panic("malloc: wrong bucket"); 346 if (kup->ku_freecnt == 0) 347 panic("malloc: lost data"); 348 kup->ku_freecnt--; 349 kbp->kb_totalfree--; 350 out: 351 kbp->kb_calls++; 352 ksp->ks_inuse++; 353 ksp->ks_calls++; 354 if (ksp->ks_memuse > ksp->ks_maxused) 355 ksp->ks_maxused = ksp->ks_memuse; 356 #else 357 out: 358 #endif 359 mtx_leave(&malloc_mtx); 360 361 if ((flags & M_ZERO) && va != NULL) 362 memset(va, 0, size); 363 364 TRACEPOINT(uvm, malloc, type, va, size, flags); 365 366 return (va); 367 } 368 369 /* 370 * Free a block of memory allocated by malloc. 371 */ 372 void 373 free(void *addr, int type, size_t freedsize) 374 { 375 struct kmembuckets *kbp; 376 struct kmemusage *kup; 377 struct kmem_freelist *freep; 378 long size; 379 int s; 380 #ifdef DIAGNOSTIC 381 long alloc; 382 #endif 383 #ifdef KMEMSTATS 384 struct kmemstats *ksp = &kmemstats[type]; 385 int wake; 386 #endif 387 388 if (addr == NULL) 389 return; 390 391 #ifdef DIAGNOSTIC 392 if (addr < (void *)kmembase || addr >= (void *)kmemlimit) 393 panic("free: non-malloced addr %p type %s", addr, 394 memname[type]); 395 #endif 396 397 TRACEPOINT(uvm, free, type, addr, freedsize); 398 399 mtx_enter(&malloc_mtx); 400 kup = btokup(addr); 401 size = 1 << kup->ku_indx; 402 kbp = &bucket[kup->ku_indx]; 403 if (size > MAXALLOCSAVE) 404 size = kup->ku_pagecnt << PAGE_SHIFT; 405 #ifdef DIAGNOSTIC 406 #if 0 407 if (freedsize == 0) { 408 static int zerowarnings; 409 if (zerowarnings < 5) { 410 zerowarnings++; 411 printf("free with zero size: (%d)\n", type); 412 #ifdef DDB 413 db_stack_dump(); 414 #endif 415 } 416 #endif 417 if (freedsize != 0 && freedsize > size) 418 panic("free: size too large %zu > %ld (%p) type %s", 419 freedsize, size, addr, memname[type]); 420 if (freedsize != 0 && size > MINALLOCSIZE && freedsize <= size / 2) 421 panic("free: size too small %zu <= %ld / 2 (%p) type %s", 422 freedsize, size, addr, memname[type]); 423 /* 424 * Check for returns of data that do not point to the 425 * beginning of the allocation. 426 */ 427 if (size > PAGE_SIZE) 428 alloc = addrmask[BUCKETINDX(PAGE_SIZE)]; 429 else 430 alloc = addrmask[kup->ku_indx]; 431 if (((u_long)addr & alloc) != 0) 432 panic("free: unaligned addr %p, size %ld, type %s, mask %ld", 433 addr, size, memname[type], alloc); 434 #endif /* DIAGNOSTIC */ 435 if (size > MAXALLOCSAVE) { 436 u_short pagecnt = kup->ku_pagecnt; 437 438 kup->ku_indx = 0; 439 kup->ku_pagecnt = 0; 440 mtx_leave(&malloc_mtx); 441 s = splvm(); 442 uvm_km_free(kmem_map, (vaddr_t)addr, ptoa(pagecnt)); 443 splx(s); 444 #ifdef KMEMSTATS 445 mtx_enter(&malloc_mtx); 446 ksp->ks_memuse -= size; 447 wake = ksp->ks_memuse + size >= ksp->ks_limit && 448 ksp->ks_memuse < ksp->ks_limit; 449 ksp->ks_inuse--; 450 kbp->kb_total -= 1; 451 mtx_leave(&malloc_mtx); 452 if (wake) 453 wakeup(ksp); 454 #endif 455 return; 456 } 457 freep = (struct kmem_freelist *)addr; 458 #ifdef DIAGNOSTIC 459 /* 460 * Check for multiple frees. Use a quick check to see if 461 * it looks free before laboriously searching the freelist. 462 */ 463 if (freep->kf_spare0 == poison_value(freep)) { 464 struct kmem_freelist *fp; 465 XSIMPLEQ_FOREACH(fp, &kbp->kb_freelist, kf_flist) { 466 if (addr != fp) 467 continue; 468 printf("multiply freed item %p\n", addr); 469 panic("free: duplicated free"); 470 } 471 } 472 /* 473 * Copy in known text to detect modification after freeing 474 * and to make it look free. Also, save the type being freed 475 * so we can list likely culprit if modification is detected 476 * when the object is reallocated. 477 */ 478 poison_mem(addr, size); 479 freep->kf_spare0 = poison_value(freep); 480 481 freep->kf_type = type; 482 #endif /* DIAGNOSTIC */ 483 #ifdef KMEMSTATS 484 kup->ku_freecnt++; 485 if (kup->ku_freecnt >= kbp->kb_elmpercl) { 486 if (kup->ku_freecnt > kbp->kb_elmpercl) 487 panic("free: multiple frees"); 488 else if (kbp->kb_totalfree > kbp->kb_highwat) 489 kbp->kb_couldfree++; 490 } 491 kbp->kb_totalfree++; 492 ksp->ks_memuse -= size; 493 wake = ksp->ks_memuse + size >= ksp->ks_limit && 494 ksp->ks_memuse < ksp->ks_limit; 495 ksp->ks_inuse--; 496 #endif 497 XSIMPLEQ_INSERT_TAIL(&kbp->kb_freelist, freep, kf_flist); 498 mtx_leave(&malloc_mtx); 499 #ifdef KMEMSTATS 500 if (wake) 501 wakeup(ksp); 502 #endif 503 } 504 505 /* 506 * Compute the number of pages that kmem_map will map, that is, 507 * the size of the kernel malloc arena. 508 */ 509 void 510 kmeminit_nkmempages(void) 511 { 512 u_int npages; 513 514 if (nkmempages != 0) { 515 /* 516 * It's already been set (by us being here before, or 517 * by patching or kernel config options), bail out now. 518 */ 519 return; 520 } 521 522 /* 523 * We can't initialize these variables at compilation time, since 524 * the page size may not be known (on sparc GENERIC kernels, for 525 * example). But we still want the MD code to be able to provide 526 * better values. 527 */ 528 if (nkmempages_min == 0) 529 nkmempages_min = NKMEMPAGES_MIN; 530 if (nkmempages_max == 0) 531 nkmempages_max = NKMEMPAGES_MAX; 532 533 /* 534 * We use the following (simple) formula: 535 * 536 * - Starting point is physical memory / 4. 537 * 538 * - Clamp it down to nkmempages_max. 539 * 540 * - Round it up to nkmempages_min. 541 */ 542 npages = physmem / 4; 543 544 if (npages > nkmempages_max) 545 npages = nkmempages_max; 546 547 if (npages < nkmempages_min) 548 npages = nkmempages_min; 549 550 nkmempages = npages; 551 } 552 553 /* 554 * Initialize the kernel memory allocator 555 */ 556 void 557 kmeminit(void) 558 { 559 vaddr_t base, limit; 560 long indx; 561 562 #ifdef DIAGNOSTIC 563 if (sizeof(struct kmem_freelist) > (1 << MINBUCKET)) 564 panic("kmeminit: minbucket too small/struct freelist too big"); 565 #endif 566 567 /* 568 * Compute the number of kmem_map pages, if we have not 569 * done so already. 570 */ 571 kmeminit_nkmempages(); 572 base = vm_map_min(kernel_map); 573 kmem_map = uvm_km_suballoc(kernel_map, &base, &limit, 574 (vsize_t)nkmempages << PAGE_SHIFT, 575 #ifdef KVA_GUARDPAGES 576 VM_MAP_INTRSAFE | VM_MAP_GUARDPAGES, 577 #else 578 VM_MAP_INTRSAFE, 579 #endif 580 FALSE, &kmem_map_store); 581 kmembase = (char *)base; 582 kmemlimit = (char *)limit; 583 kmemusage = (struct kmemusage *) uvm_km_zalloc(kernel_map, 584 (vsize_t)(nkmempages * sizeof(struct kmemusage))); 585 for (indx = 0; indx < MINBUCKET + 16; indx++) { 586 XSIMPLEQ_INIT(&bucket[indx].kb_freelist); 587 } 588 #ifdef KMEMSTATS 589 for (indx = 0; indx < MINBUCKET + 16; indx++) { 590 if (1 << indx >= PAGE_SIZE) 591 bucket[indx].kb_elmpercl = 1; 592 else 593 bucket[indx].kb_elmpercl = PAGE_SIZE / (1 << indx); 594 bucket[indx].kb_highwat = 5 * bucket[indx].kb_elmpercl; 595 } 596 for (indx = 0; indx < M_LAST; indx++) 597 kmemstats[indx].ks_limit = nkmempages * PAGE_SIZE * 6 / 10; 598 #endif 599 } 600 601 /* 602 * Return kernel malloc statistics information. 603 */ 604 int 605 sysctl_malloc(int *name, u_int namelen, void *oldp, size_t *oldlenp, void *newp, 606 size_t newlen, struct proc *p) 607 { 608 struct kmembuckets kb; 609 #ifdef KMEMSTATS 610 struct kmemstats km; 611 #endif 612 #if defined(KMEMSTATS) || defined(DIAGNOSTIC) 613 int error; 614 #endif 615 int i, siz; 616 617 if (namelen != 2 && name[0] != KERN_MALLOC_BUCKETS && 618 name[0] != KERN_MALLOC_KMEMNAMES) 619 return (ENOTDIR); /* overloaded */ 620 621 switch (name[0]) { 622 case KERN_MALLOC_BUCKETS: 623 /* Initialize the first time */ 624 if (buckstring_init == 0) { 625 buckstring_init = 1; 626 memset(buckstring, 0, sizeof(buckstring)); 627 for (siz = 0, i = MINBUCKET; i < MINBUCKET + 16; i++) { 628 snprintf(buckstring + siz, 629 sizeof buckstring - siz, 630 "%d,", (u_int)(1<<i)); 631 siz += strlen(buckstring + siz); 632 } 633 /* Remove trailing comma */ 634 if (siz) 635 buckstring[siz - 1] = '\0'; 636 } 637 return (sysctl_rdstring(oldp, oldlenp, newp, buckstring)); 638 639 case KERN_MALLOC_BUCKET: 640 mtx_enter(&malloc_mtx); 641 memcpy(&kb, &bucket[BUCKETINDX(name[1])], sizeof(kb)); 642 mtx_leave(&malloc_mtx); 643 memset(&kb.kb_freelist, 0, sizeof(kb.kb_freelist)); 644 return (sysctl_rdstruct(oldp, oldlenp, newp, &kb, sizeof(kb))); 645 case KERN_MALLOC_KMEMSTATS: 646 #ifdef KMEMSTATS 647 if ((name[1] < 0) || (name[1] >= M_LAST)) 648 return (EINVAL); 649 mtx_enter(&malloc_mtx); 650 memcpy(&km, &kmemstats[name[1]], sizeof(km)); 651 mtx_leave(&malloc_mtx); 652 return (sysctl_rdstruct(oldp, oldlenp, newp, &km, sizeof(km))); 653 #else 654 return (EOPNOTSUPP); 655 #endif 656 case KERN_MALLOC_KMEMNAMES: 657 #if defined(KMEMSTATS) || defined(DIAGNOSTIC) 658 error = rw_enter(&sysctl_kmemlock, RW_WRITE|RW_INTR); 659 if (error) 660 return (error); 661 if (memall == NULL) { 662 int totlen; 663 664 /* Figure out how large a buffer we need */ 665 for (totlen = 0, i = 0; i < M_LAST; i++) { 666 if (memname[i]) 667 totlen += strlen(memname[i]); 668 totlen++; 669 } 670 memall = malloc(totlen + M_LAST, M_SYSCTL, 671 M_WAITOK|M_ZERO); 672 for (siz = 0, i = 0; i < M_LAST; i++) { 673 snprintf(memall + siz, 674 totlen + M_LAST - siz, 675 "%s,", memname[i] ? memname[i] : ""); 676 siz += strlen(memall + siz); 677 } 678 /* Remove trailing comma */ 679 if (siz) 680 memall[siz - 1] = '\0'; 681 682 /* Now, convert all spaces to underscores */ 683 for (i = 0; i < totlen; i++) 684 if (memall[i] == ' ') 685 memall[i] = '_'; 686 } 687 rw_exit_write(&sysctl_kmemlock); 688 return (sysctl_rdstring(oldp, oldlenp, newp, memall)); 689 #else 690 return (EOPNOTSUPP); 691 #endif 692 default: 693 return (EOPNOTSUPP); 694 } 695 /* NOTREACHED */ 696 } 697 698 /* 699 * Round up a size to how much malloc would actually allocate. 700 */ 701 size_t 702 malloc_roundup(size_t sz) 703 { 704 if (sz > MAXALLOCSAVE) 705 return round_page(sz); 706 707 return (1 << BUCKETINDX(sz)); 708 } 709 710 #if defined(DDB) 711 712 void 713 malloc_printit( 714 int (*pr)(const char *, ...) __attribute__((__format__(__kprintf__,1,2)))) 715 { 716 #ifdef KMEMSTATS 717 struct kmemstats *km; 718 int i; 719 720 (*pr)("%15s %5s %6s %7s %6s %9s %8s\n", 721 "Type", "InUse", "MemUse", "HighUse", "Limit", "Requests", 722 "Type Lim"); 723 for (i = 0, km = kmemstats; i < M_LAST; i++, km++) { 724 if (!km->ks_calls || !memname[i]) 725 continue; 726 727 (*pr)("%15s %5ld %6ldK %7ldK %6ldK %9ld %8d\n", 728 memname[i], km->ks_inuse, km->ks_memuse / 1024, 729 km->ks_maxused / 1024, km->ks_limit / 1024, 730 km->ks_calls, km->ks_limblocks); 731 } 732 #else 733 (*pr)("No KMEMSTATS compiled in\n"); 734 #endif 735 } 736 #endif /* DDB */ 737 738 /* 739 * Copyright (c) 2008 Otto Moerbeek <otto@drijf.net> 740 * 741 * Permission to use, copy, modify, and distribute this software for any 742 * purpose with or without fee is hereby granted, provided that the above 743 * copyright notice and this permission notice appear in all copies. 744 * 745 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 746 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 747 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 748 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 749 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 750 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 751 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 752 */ 753 754 /* 755 * This is sqrt(SIZE_MAX+1), as s1*s2 <= SIZE_MAX 756 * if both s1 < MUL_NO_OVERFLOW and s2 < MUL_NO_OVERFLOW 757 */ 758 #define MUL_NO_OVERFLOW (1UL << (sizeof(size_t) * 4)) 759 760 void * 761 mallocarray(size_t nmemb, size_t size, int type, int flags) 762 { 763 if ((nmemb >= MUL_NO_OVERFLOW || size >= MUL_NO_OVERFLOW) && 764 nmemb > 0 && SIZE_MAX / nmemb < size) { 765 if (flags & M_CANFAIL) 766 return (NULL); 767 panic("mallocarray: overflow %zu * %zu", nmemb, size); 768 } 769 return (malloc(size * nmemb, type, flags)); 770 } 771