xref: /openbsd-src/sys/kern/kern_fork.c (revision f90ef06a3045119dcc88b72d8b98ca60e3c00d5a)
1 /*	$OpenBSD: kern_fork.c,v 1.249 2023/08/14 08:33:24 mpi Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/malloc.h>
44 #include <sys/mount.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/vmmeter.h>
50 #include <sys/acct.h>
51 #include <sys/ktrace.h>
52 #include <sys/sched.h>
53 #include <sys/sysctl.h>
54 #include <sys/pool.h>
55 #include <sys/mman.h>
56 #include <sys/ptrace.h>
57 #include <sys/atomic.h>
58 #include <sys/unistd.h>
59 #include <sys/tracepoint.h>
60 
61 #include <sys/syscallargs.h>
62 
63 #include <uvm/uvm.h>
64 #include <machine/tcb.h>
65 
66 int	nprocesses = 1;		/* process 0 */
67 int	nthreads = 1;		/* proc 0 */
68 struct	forkstat forkstat;
69 
70 void fork_return(void *);
71 pid_t alloctid(void);
72 pid_t allocpid(void);
73 int ispidtaken(pid_t);
74 
75 void unveil_copy(struct process *parent, struct process *child);
76 
77 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr);
78 struct process *process_new(struct proc *, struct process *, int);
79 int fork_check_maxthread(uid_t _uid);
80 
81 void
82 fork_return(void *arg)
83 {
84 	struct proc *p = (struct proc *)arg;
85 
86 	if (p->p_p->ps_flags & PS_TRACED)
87 		psignal(p, SIGTRAP);
88 
89 	child_return(p);
90 }
91 
92 int
93 sys_fork(struct proc *p, void *v, register_t *retval)
94 {
95 	void (*func)(void *) = child_return;
96 	int flags;
97 
98 	flags = FORK_FORK;
99 	if (p->p_p->ps_ptmask & PTRACE_FORK) {
100 		flags |= FORK_PTRACE;
101 		func = fork_return;
102 	}
103 	return fork1(p, flags, func, NULL, retval, NULL);
104 }
105 
106 int
107 sys_vfork(struct proc *p, void *v, register_t *retval)
108 {
109 	return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL,
110 	    retval, NULL);
111 }
112 
113 int
114 sys___tfork(struct proc *p, void *v, register_t *retval)
115 {
116 	struct sys___tfork_args /* {
117 		syscallarg(const struct __tfork) *param;
118 		syscallarg(size_t) psize;
119 	} */ *uap = v;
120 	size_t psize = SCARG(uap, psize);
121 	struct __tfork param = { 0 };
122 	int error;
123 
124 	if (psize == 0 || psize > sizeof(param))
125 		return EINVAL;
126 	if ((error = copyin(SCARG(uap, param), &param, psize)))
127 		return error;
128 #ifdef KTRACE
129 	if (KTRPOINT(p, KTR_STRUCT))
130 		ktrstruct(p, "tfork", &param, sizeof(param));
131 #endif
132 #ifdef TCB_INVALID
133 	if (TCB_INVALID(param.tf_tcb))
134 		return EINVAL;
135 #endif /* TCB_INVALID */
136 
137 	return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid,
138 	    retval);
139 }
140 
141 /*
142  * Allocate and initialize a thread (proc) structure, given the parent thread.
143  */
144 struct proc *
145 thread_new(struct proc *parent, vaddr_t uaddr)
146 {
147 	struct proc *p;
148 
149 	p = pool_get(&proc_pool, PR_WAITOK);
150 	p->p_stat = SIDL;			/* protect against others */
151 	p->p_runpri = 0;
152 	p->p_flag = 0;
153 
154 	/*
155 	 * Make a proc table entry for the new process.
156 	 * Start by zeroing the section of proc that is zero-initialized,
157 	 * then copy the section that is copied directly from the parent.
158 	 */
159 	memset(&p->p_startzero, 0,
160 	    (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero);
161 	memcpy(&p->p_startcopy, &parent->p_startcopy,
162 	    (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy);
163 	crhold(p->p_ucred);
164 	p->p_addr = (struct user *)uaddr;
165 
166 	/*
167 	 * Initialize the timeouts.
168 	 */
169 	timeout_set(&p->p_sleep_to, endtsleep, p);
170 
171 	return p;
172 }
173 
174 /*
175  * Initialize common bits of a process structure, given the initial thread.
176  */
177 void
178 process_initialize(struct process *pr, struct proc *p)
179 {
180 	/* initialize the thread links */
181 	pr->ps_mainproc = p;
182 	TAILQ_INIT(&pr->ps_threads);
183 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
184 	pr->ps_threadcnt = 1;
185 	p->p_p = pr;
186 
187 	/* give the process the same creds as the initial thread */
188 	pr->ps_ucred = p->p_ucred;
189 	crhold(pr->ps_ucred);
190 	/* new thread and new process */
191 	KASSERT(p->p_ucred->cr_refcnt.r_refs >= 2);
192 
193 	LIST_INIT(&pr->ps_children);
194 	LIST_INIT(&pr->ps_orphans);
195 	LIST_INIT(&pr->ps_ftlist);
196 	LIST_INIT(&pr->ps_sigiolst);
197 	TAILQ_INIT(&pr->ps_tslpqueue);
198 
199 	rw_init(&pr->ps_lock, "pslock");
200 	mtx_init(&pr->ps_mtx, IPL_HIGH);
201 
202 	timeout_set_flags(&pr->ps_realit_to, realitexpire, pr,
203 	    KCLOCK_UPTIME, 0);
204 	timeout_set(&pr->ps_rucheck_to, rucheck, pr);
205 }
206 
207 
208 /*
209  * Allocate and initialize a new process.
210  */
211 struct process *
212 process_new(struct proc *p, struct process *parent, int flags)
213 {
214 	struct process *pr;
215 
216 	pr = pool_get(&process_pool, PR_WAITOK);
217 
218 	/*
219 	 * Make a process structure for the new process.
220 	 * Start by zeroing the section of proc that is zero-initialized,
221 	 * then copy the section that is copied directly from the parent.
222 	 */
223 	memset(&pr->ps_startzero, 0,
224 	    (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero);
225 	memcpy(&pr->ps_startcopy, &parent->ps_startcopy,
226 	    (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy);
227 
228 	process_initialize(pr, p);
229 	pr->ps_pid = allocpid();
230 	lim_fork(parent, pr);
231 
232 	/* post-copy fixups */
233 	pr->ps_pptr = parent;
234 	pr->ps_ppid = parent->ps_pid;
235 
236 	/* bump references to the text vnode (for sysctl) */
237 	pr->ps_textvp = parent->ps_textvp;
238 	if (pr->ps_textvp)
239 		vref(pr->ps_textvp);
240 
241 	/* copy unveil if unveil is active */
242 	unveil_copy(parent, pr);
243 
244 	pr->ps_flags = parent->ps_flags &
245 	    (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE |
246 	    PS_WXNEEDED | PS_CHROOT);
247 	if (parent->ps_session->s_ttyvp != NULL)
248 		pr->ps_flags |= parent->ps_flags & PS_CONTROLT;
249 
250 	/*
251 	 * Duplicate sub-structures as needed.
252 	 * Increase reference counts on shared objects.
253 	 */
254 	if (flags & FORK_SHAREFILES)
255 		pr->ps_fd = fdshare(parent);
256 	else
257 		pr->ps_fd = fdcopy(parent);
258 	pr->ps_sigacts = sigactsinit(parent);
259 	if (flags & FORK_SHAREVM)
260 		pr->ps_vmspace = uvmspace_share(parent);
261 	else
262 		pr->ps_vmspace = uvmspace_fork(parent);
263 
264 	if (parent->ps_flags & PS_PROFIL)
265 		startprofclock(pr);
266 	if (flags & FORK_PTRACE)
267 		pr->ps_flags |= parent->ps_flags & PS_TRACED;
268 	if (flags & FORK_NOZOMBIE)
269 		pr->ps_flags |= PS_NOZOMBIE;
270 	if (flags & FORK_SYSTEM)
271 		pr->ps_flags |= PS_SYSTEM;
272 
273 	/* mark as embryo to protect against others */
274 	pr->ps_flags |= PS_EMBRYO;
275 
276 	/* Force visibility of all of the above changes */
277 	membar_producer();
278 
279 	/* it's sufficiently inited to be globally visible */
280 	LIST_INSERT_HEAD(&allprocess, pr, ps_list);
281 
282 	return pr;
283 }
284 
285 /* print the 'table full' message once per 10 seconds */
286 struct timeval fork_tfmrate = { 10, 0 };
287 
288 int
289 fork_check_maxthread(uid_t uid)
290 {
291 	/*
292 	 * Although process entries are dynamically created, we still keep
293 	 * a global limit on the maximum number we will create. We reserve
294 	 * the last 5 processes to root. The variable nprocesses is the
295 	 * current number of processes, maxprocess is the limit.  Similar
296 	 * rules for threads (struct proc): we reserve the last 5 to root;
297 	 * the variable nthreads is the current number of procs, maxthread is
298 	 * the limit.
299 	 */
300 	if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) {
301 		static struct timeval lasttfm;
302 
303 		if (ratecheck(&lasttfm, &fork_tfmrate))
304 			tablefull("thread");
305 		return EAGAIN;
306 	}
307 	nthreads++;
308 
309 	return 0;
310 }
311 
312 static inline void
313 fork_thread_start(struct proc *p, struct proc *parent, int flags)
314 {
315 	struct cpu_info *ci;
316 	int s;
317 
318 	SCHED_LOCK(s);
319 	ci = sched_choosecpu_fork(parent, flags);
320 	TRACEPOINT(sched, fork, p->p_tid + THREAD_PID_OFFSET,
321 	    p->p_p->ps_pid, CPU_INFO_UNIT(ci));
322 	setrunqueue(ci, p, p->p_usrpri);
323 	SCHED_UNLOCK(s);
324 }
325 
326 int
327 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg,
328     register_t *retval, struct proc **rnewprocp)
329 {
330 	struct process *curpr = curp->p_p;
331 	struct process *pr;
332 	struct proc *p;
333 	uid_t uid = curp->p_ucred->cr_ruid;
334 	struct vmspace *vm;
335 	int count;
336 	vaddr_t uaddr;
337 	int error;
338 	struct  ptrace_state *newptstat = NULL;
339 
340 	KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE
341 	    | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE
342 	    | FORK_SYSTEM)) == 0);
343 	KASSERT(func != NULL);
344 
345 	if ((error = fork_check_maxthread(uid)))
346 		return error;
347 
348 	if ((nprocesses >= maxprocess - 5 && uid != 0) ||
349 	    nprocesses >= maxprocess) {
350 		static struct timeval lasttfm;
351 
352 		if (ratecheck(&lasttfm, &fork_tfmrate))
353 			tablefull("process");
354 		nthreads--;
355 		return EAGAIN;
356 	}
357 	nprocesses++;
358 
359 	/*
360 	 * Increment the count of processes running with this uid.
361 	 * Don't allow a nonprivileged user to exceed their current limit.
362 	 */
363 	count = chgproccnt(uid, 1);
364 	if (uid != 0 && count > lim_cur(RLIMIT_NPROC)) {
365 		(void)chgproccnt(uid, -1);
366 		nprocesses--;
367 		nthreads--;
368 		return EAGAIN;
369 	}
370 
371 	uaddr = uvm_uarea_alloc();
372 	if (uaddr == 0) {
373 		(void)chgproccnt(uid, -1);
374 		nprocesses--;
375 		nthreads--;
376 		return (ENOMEM);
377 	}
378 
379 	/*
380 	 * From now on, we're committed to the fork and cannot fail.
381 	 */
382 	p = thread_new(curp, uaddr);
383 	pr = process_new(p, curpr, flags);
384 
385 	p->p_fd		= pr->ps_fd;
386 	p->p_vmspace	= pr->ps_vmspace;
387 	if (pr->ps_flags & PS_SYSTEM)
388 		atomic_setbits_int(&p->p_flag, P_SYSTEM);
389 
390 	if (flags & FORK_PPWAIT) {
391 		atomic_setbits_int(&pr->ps_flags, PS_PPWAIT);
392 		atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT);
393 	}
394 
395 #ifdef KTRACE
396 	/*
397 	 * Copy traceflag and tracefile if enabled.
398 	 * If not inherited, these were zeroed above.
399 	 */
400 	if (curpr->ps_traceflag & KTRFAC_INHERIT)
401 		ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp,
402 		    curpr->ps_tracecred);
403 #endif
404 
405 	/*
406 	 * Finish creating the child thread.  cpu_fork() will copy
407 	 * and update the pcb and make the child ready to run.  If
408 	 * this is a normal user fork, the child will exit directly
409 	 * to user mode via child_return() on its first time slice
410 	 * and will not return here.  If this is a kernel thread,
411 	 * the specified entry point will be executed.
412 	 */
413 	cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p);
414 
415 	vm = pr->ps_vmspace;
416 
417 	if (flags & FORK_FORK) {
418 		forkstat.cntfork++;
419 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
420 	} else if (flags & FORK_VFORK) {
421 		forkstat.cntvfork++;
422 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
423 	} else {
424 		forkstat.cntkthread++;
425 	}
426 
427 	if (pr->ps_flags & PS_TRACED && flags & FORK_FORK)
428 		newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK);
429 
430 	p->p_tid = alloctid();
431 
432 	LIST_INSERT_HEAD(&allproc, p, p_list);
433 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
434 	LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash);
435 	LIST_INSERT_AFTER(curpr, pr, ps_pglist);
436 	LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling);
437 
438 	if (pr->ps_flags & PS_TRACED) {
439 		pr->ps_oppid = curpr->ps_pid;
440 		process_reparent(pr, curpr->ps_pptr);
441 
442 		/*
443 		 * Set ptrace status.
444 		 */
445 		if (newptstat != NULL) {
446 			pr->ps_ptstat = newptstat;
447 			newptstat = NULL;
448 			curpr->ps_ptstat->pe_report_event = PTRACE_FORK;
449 			pr->ps_ptstat->pe_report_event = PTRACE_FORK;
450 			curpr->ps_ptstat->pe_other_pid = pr->ps_pid;
451 			pr->ps_ptstat->pe_other_pid = curpr->ps_pid;
452 		}
453 	}
454 
455 	/*
456 	 * For new processes, set accounting bits and mark as complete.
457 	 */
458 	nanouptime(&pr->ps_start);
459 	pr->ps_acflag = AFORK;
460 	atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO);
461 
462 	if ((flags & FORK_IDLE) == 0)
463 		fork_thread_start(p, curp, flags);
464 	else
465 		p->p_cpu = arg;
466 
467 	free(newptstat, M_SUBPROC, sizeof(*newptstat));
468 
469 	/*
470 	 * Notify any interested parties about the new process.
471 	 */
472 	knote_locked(&curpr->ps_klist, NOTE_FORK | pr->ps_pid);
473 
474 	/*
475 	 * Update stats now that we know the fork was successful.
476 	 */
477 	uvmexp.forks++;
478 	if (flags & FORK_PPWAIT)
479 		uvmexp.forks_ppwait++;
480 	if (flags & FORK_SHAREVM)
481 		uvmexp.forks_sharevm++;
482 
483 	/*
484 	 * Pass a pointer to the new process to the caller.
485 	 */
486 	if (rnewprocp != NULL)
487 		*rnewprocp = p;
488 
489 	/*
490 	 * Preserve synchronization semantics of vfork.  If waiting for
491 	 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT
492 	 * on ourselves, and sleep on our process for the latter flag
493 	 * to go away.
494 	 * XXX Need to stop other rthreads in the parent
495 	 */
496 	if (flags & FORK_PPWAIT)
497 		while (curpr->ps_flags & PS_ISPWAIT)
498 			tsleep_nsec(curpr, PWAIT, "ppwait", INFSLP);
499 
500 	/*
501 	 * If we're tracing the child, alert the parent too.
502 	 */
503 	if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED))
504 		psignal(curp, SIGTRAP);
505 
506 	/*
507 	 * Return child pid to parent process
508 	 */
509 	if (retval != NULL)
510 		*retval = pr->ps_pid;
511 	return (0);
512 }
513 
514 int
515 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr,
516     register_t *retval)
517 {
518 	struct process *pr = curp->p_p;
519 	struct proc *p;
520 	pid_t tid;
521 	vaddr_t uaddr;
522 	int s, error;
523 
524 	if (stack == NULL)
525 		return EINVAL;
526 
527 	if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid)))
528 		return error;
529 
530 	uaddr = uvm_uarea_alloc();
531 	if (uaddr == 0) {
532 		nthreads--;
533 		return ENOMEM;
534 	}
535 
536 	/*
537 	 * From now on, we're committed to the fork and cannot fail.
538 	 */
539 	p = thread_new(curp, uaddr);
540 	atomic_setbits_int(&p->p_flag, P_THREAD);
541 	sigstkinit(&p->p_sigstk);
542 	memset(p->p_name, 0, sizeof p->p_name);
543 
544 	/* other links */
545 	p->p_p = pr;
546 	pr->ps_threadcnt++;
547 
548 	/* local copies */
549 	p->p_fd		= pr->ps_fd;
550 	p->p_vmspace	= pr->ps_vmspace;
551 
552 	/*
553 	 * Finish creating the child thread.  cpu_fork() will copy
554 	 * and update the pcb and make the child ready to run.  The
555 	 * child will exit directly to user mode via child_return()
556 	 * on its first time slice and will not return here.
557 	 */
558 	cpu_fork(curp, p, stack, tcb, child_return, p);
559 
560 	p->p_tid = alloctid();
561 
562 	LIST_INSERT_HEAD(&allproc, p, p_list);
563 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
564 
565 	SCHED_LOCK(s);
566 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
567 
568 	/*
569 	 * if somebody else wants to take us to single threaded mode,
570 	 * count ourselves in.
571 	 */
572 	if (pr->ps_single) {
573 		atomic_inc_int(&pr->ps_singlecount);
574 		atomic_setbits_int(&p->p_flag, P_SUSPSINGLE);
575 	}
576 	SCHED_UNLOCK(s);
577 
578 	/*
579 	 * Return tid to parent thread and copy it out to userspace
580 	 */
581 	*retval = tid = p->p_tid + THREAD_PID_OFFSET;
582 	if (tidptr != NULL) {
583 		if (copyout(&tid, tidptr, sizeof(tid)))
584 			psignal(curp, SIGSEGV);
585 	}
586 
587 	fork_thread_start(p, curp, 0);
588 
589 	/*
590 	 * Update stats now that we know the fork was successful.
591 	 */
592 	forkstat.cnttfork++;
593 	uvmexp.forks++;
594 	uvmexp.forks_sharevm++;
595 
596 	return 0;
597 }
598 
599 
600 /* Find an unused tid */
601 pid_t
602 alloctid(void)
603 {
604 	pid_t tid;
605 
606 	do {
607 		/* (0 .. TID_MASK+1] */
608 		tid = 1 + (arc4random() & TID_MASK);
609 	} while (tfind(tid) != NULL);
610 
611 	return (tid);
612 }
613 
614 /*
615  * Checks for current use of a pid, either as a pid or pgid.
616  */
617 pid_t oldpids[128];
618 int
619 ispidtaken(pid_t pid)
620 {
621 	uint32_t i;
622 
623 	for (i = 0; i < nitems(oldpids); i++)
624 		if (pid == oldpids[i])
625 			return (1);
626 
627 	if (prfind(pid) != NULL)
628 		return (1);
629 	if (pgfind(pid) != NULL)
630 		return (1);
631 	if (zombiefind(pid) != NULL)
632 		return (1);
633 	return (0);
634 }
635 
636 /* Find an unused pid */
637 pid_t
638 allocpid(void)
639 {
640 	static int first = 1;
641 	pid_t pid;
642 
643 	/* The first PID allocated is always 1. */
644 	if (first) {
645 		first = 0;
646 		return 1;
647 	}
648 
649 	/*
650 	 * All subsequent PIDs are chosen randomly.  We need to
651 	 * find an unused PID in the range [2, PID_MAX].
652 	 */
653 	do {
654 		pid = 2 + arc4random_uniform(PID_MAX - 1);
655 	} while (ispidtaken(pid));
656 	return pid;
657 }
658 
659 void
660 freepid(pid_t pid)
661 {
662 	static uint32_t idx;
663 
664 	oldpids[idx++ % nitems(oldpids)] = pid;
665 }
666 
667 #if defined(MULTIPROCESSOR)
668 /*
669  * XXX This is a slight hack to get newly-formed processes to
670  * XXX acquire the kernel lock as soon as they run.
671  */
672 void
673 proc_trampoline_mp(void)
674 {
675 	SCHED_ASSERT_LOCKED();
676 	__mp_unlock(&sched_lock);
677 	spl0();
678 	SCHED_ASSERT_UNLOCKED();
679 	KERNEL_ASSERT_UNLOCKED();
680 
681 	KERNEL_LOCK();
682 }
683 #endif
684