xref: /openbsd-src/sys/kern/kern_fork.c (revision f75b2ed9477738f86094e848e910734b4a913d14)
1 /*	$OpenBSD: kern_fork.c,v 1.229 2020/12/04 15:16:45 mpi Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/exec.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/vnode.h>
51 #include <sys/vmmeter.h>
52 #include <sys/acct.h>
53 #include <sys/ktrace.h>
54 #include <sys/sched.h>
55 #include <sys/sysctl.h>
56 #include <sys/pool.h>
57 #include <sys/mman.h>
58 #include <sys/ptrace.h>
59 #include <sys/atomic.h>
60 #include <sys/pledge.h>
61 #include <sys/unistd.h>
62 
63 #include <sys/syscallargs.h>
64 
65 #include <uvm/uvm.h>
66 #include <machine/tcb.h>
67 
68 int	nprocesses = 1;		/* process 0 */
69 int	nthreads = 1;		/* proc 0 */
70 int	randompid;		/* when set to 1, pid's go random */
71 struct	forkstat forkstat;
72 
73 void fork_return(void *);
74 pid_t alloctid(void);
75 pid_t allocpid(void);
76 int ispidtaken(pid_t);
77 
78 void unveil_copy(struct process *parent, struct process *child);
79 
80 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr);
81 struct process *process_new(struct proc *, struct process *, int);
82 int fork_check_maxthread(uid_t _uid);
83 
84 void
85 fork_return(void *arg)
86 {
87 	struct proc *p = (struct proc *)arg;
88 
89 	if (p->p_p->ps_flags & PS_TRACED)
90 		psignal(p, SIGTRAP);
91 
92 	child_return(p);
93 }
94 
95 int
96 sys_fork(struct proc *p, void *v, register_t *retval)
97 {
98 	int flags;
99 
100 	flags = FORK_FORK;
101 	if (p->p_p->ps_ptmask & PTRACE_FORK)
102 		flags |= FORK_PTRACE;
103 	return fork1(p, flags, fork_return, NULL, retval, NULL);
104 }
105 
106 int
107 sys_vfork(struct proc *p, void *v, register_t *retval)
108 {
109 	return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL,
110 	    retval, NULL);
111 }
112 
113 int
114 sys___tfork(struct proc *p, void *v, register_t *retval)
115 {
116 	struct sys___tfork_args /* {
117 		syscallarg(const struct __tfork) *param;
118 		syscallarg(size_t) psize;
119 	} */ *uap = v;
120 	size_t psize = SCARG(uap, psize);
121 	struct __tfork param = { 0 };
122 	int error;
123 
124 	if (psize == 0 || psize > sizeof(param))
125 		return EINVAL;
126 	if ((error = copyin(SCARG(uap, param), &param, psize)))
127 		return error;
128 #ifdef KTRACE
129 	if (KTRPOINT(p, KTR_STRUCT))
130 		ktrstruct(p, "tfork", &param, sizeof(param));
131 #endif
132 #ifdef TCB_INVALID
133 	if (TCB_INVALID(param.tf_tcb))
134 		return EINVAL;
135 #endif /* TCB_INVALID */
136 
137 	return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid,
138 	    retval);
139 }
140 
141 /*
142  * Allocate and initialize a thread (proc) structure, given the parent thread.
143  */
144 struct proc *
145 thread_new(struct proc *parent, vaddr_t uaddr)
146 {
147 	struct proc *p;
148 
149 	p = pool_get(&proc_pool, PR_WAITOK);
150 	p->p_stat = SIDL;			/* protect against others */
151 	p->p_runpri = 0;
152 	p->p_flag = 0;
153 
154 	/*
155 	 * Make a proc table entry for the new process.
156 	 * Start by zeroing the section of proc that is zero-initialized,
157 	 * then copy the section that is copied directly from the parent.
158 	 */
159 	memset(&p->p_startzero, 0,
160 	    (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero);
161 	memcpy(&p->p_startcopy, &parent->p_startcopy,
162 	    (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy);
163 	crhold(p->p_ucred);
164 	p->p_addr = (struct user *)uaddr;
165 
166 	/*
167 	 * Initialize the timeouts.
168 	 */
169 	timeout_set(&p->p_sleep_to, endtsleep, p);
170 
171 	return p;
172 }
173 
174 /*
175  * Initialize common bits of a process structure, given the initial thread.
176  */
177 void
178 process_initialize(struct process *pr, struct proc *p)
179 {
180 	/* initialize the thread links */
181 	pr->ps_mainproc = p;
182 	TAILQ_INIT(&pr->ps_threads);
183 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
184 	pr->ps_refcnt = 1;
185 	p->p_p = pr;
186 
187 	/* give the process the same creds as the initial thread */
188 	pr->ps_ucred = p->p_ucred;
189 	crhold(pr->ps_ucred);
190 	KASSERT(p->p_ucred->cr_ref >= 2);	/* new thread and new process */
191 
192 	LIST_INIT(&pr->ps_children);
193 	LIST_INIT(&pr->ps_orphans);
194 	LIST_INIT(&pr->ps_ftlist);
195 	LIST_INIT(&pr->ps_sigiolst);
196 	TAILQ_INIT(&pr->ps_tslpqueue);
197 
198 	rw_init(&pr->ps_lock, "pslock");
199 	mtx_init(&pr->ps_mtx, IPL_MPFLOOR);
200 
201 	timeout_set_kclock(&pr->ps_realit_to, realitexpire, pr, 0,
202 	    KCLOCK_UPTIME);
203 	timeout_set(&pr->ps_rucheck_to, rucheck, pr);
204 }
205 
206 
207 /*
208  * Allocate and initialize a new process.
209  */
210 struct process *
211 process_new(struct proc *p, struct process *parent, int flags)
212 {
213 	struct process *pr;
214 
215 	pr = pool_get(&process_pool, PR_WAITOK);
216 
217 	/*
218 	 * Make a process structure for the new process.
219 	 * Start by zeroing the section of proc that is zero-initialized,
220 	 * then copy the section that is copied directly from the parent.
221 	 */
222 	memset(&pr->ps_startzero, 0,
223 	    (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero);
224 	memcpy(&pr->ps_startcopy, &parent->ps_startcopy,
225 	    (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy);
226 
227 	process_initialize(pr, p);
228 	pr->ps_pid = allocpid();
229 	lim_fork(parent, pr);
230 
231 	/* post-copy fixups */
232 	pr->ps_pptr = parent;
233 
234 	/* bump references to the text vnode (for sysctl) */
235 	pr->ps_textvp = parent->ps_textvp;
236 	if (pr->ps_textvp)
237 		vref(pr->ps_textvp);
238 
239 	/* copy unveil if unveil is active */
240 	unveil_copy(parent, pr);
241 
242 	pr->ps_flags = parent->ps_flags &
243 	    (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE | PS_WXNEEDED);
244 	if (parent->ps_session->s_ttyvp != NULL)
245 		pr->ps_flags |= parent->ps_flags & PS_CONTROLT;
246 
247 	/*
248 	 * Duplicate sub-structures as needed.
249 	 * Increase reference counts on shared objects.
250 	 */
251 	if (flags & FORK_SHAREFILES)
252 		pr->ps_fd = fdshare(parent);
253 	else
254 		pr->ps_fd = fdcopy(parent);
255 	pr->ps_sigacts = sigactsinit(parent);
256 	if (flags & FORK_SHAREVM)
257 		pr->ps_vmspace = uvmspace_share(parent);
258 	else
259 		pr->ps_vmspace = uvmspace_fork(parent);
260 
261 	if (parent->ps_flags & PS_PROFIL)
262 		startprofclock(pr);
263 	if (flags & FORK_PTRACE)
264 		pr->ps_flags |= parent->ps_flags & PS_TRACED;
265 	if (flags & FORK_NOZOMBIE)
266 		pr->ps_flags |= PS_NOZOMBIE;
267 	if (flags & FORK_SYSTEM)
268 		pr->ps_flags |= PS_SYSTEM;
269 
270 	/* mark as embryo to protect against others */
271 	pr->ps_flags |= PS_EMBRYO;
272 
273 	/* Force visibility of all of the above changes */
274 	membar_producer();
275 
276 	/* it's sufficiently inited to be globally visible */
277 	LIST_INSERT_HEAD(&allprocess, pr, ps_list);
278 
279 	return pr;
280 }
281 
282 /* print the 'table full' message once per 10 seconds */
283 struct timeval fork_tfmrate = { 10, 0 };
284 
285 int
286 fork_check_maxthread(uid_t uid)
287 {
288 	/*
289 	 * Although process entries are dynamically created, we still keep
290 	 * a global limit on the maximum number we will create. We reserve
291 	 * the last 5 processes to root. The variable nprocesses is the
292 	 * current number of processes, maxprocess is the limit.  Similar
293 	 * rules for threads (struct proc): we reserve the last 5 to root;
294 	 * the variable nthreads is the current number of procs, maxthread is
295 	 * the limit.
296 	 */
297 	if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) {
298 		static struct timeval lasttfm;
299 
300 		if (ratecheck(&lasttfm, &fork_tfmrate))
301 			tablefull("proc");
302 		return EAGAIN;
303 	}
304 	nthreads++;
305 
306 	return 0;
307 }
308 
309 static inline void
310 fork_thread_start(struct proc *p, struct proc *parent, int flags)
311 {
312 	struct cpu_info *ci;
313 	int s;
314 
315 	SCHED_LOCK(s);
316 	ci = sched_choosecpu_fork(parent, flags);
317 	setrunqueue(ci, p, p->p_usrpri);
318 	SCHED_UNLOCK(s);
319 }
320 
321 int
322 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg,
323     register_t *retval, struct proc **rnewprocp)
324 {
325 	struct process *curpr = curp->p_p;
326 	struct process *pr;
327 	struct proc *p;
328 	uid_t uid = curp->p_ucred->cr_ruid;
329 	struct vmspace *vm;
330 	int count;
331 	vaddr_t uaddr;
332 	int error;
333 	struct  ptrace_state *newptstat = NULL;
334 
335 	KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE
336 	    | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE
337 	    | FORK_SYSTEM)) == 0);
338 	KASSERT(func != NULL);
339 
340 	if ((error = fork_check_maxthread(uid)))
341 		return error;
342 
343 	if ((nprocesses >= maxprocess - 5 && uid != 0) ||
344 	    nprocesses >= maxprocess) {
345 		static struct timeval lasttfm;
346 
347 		if (ratecheck(&lasttfm, &fork_tfmrate))
348 			tablefull("process");
349 		nthreads--;
350 		return EAGAIN;
351 	}
352 	nprocesses++;
353 
354 	/*
355 	 * Increment the count of processes running with this uid.
356 	 * Don't allow a nonprivileged user to exceed their current limit.
357 	 */
358 	count = chgproccnt(uid, 1);
359 	if (uid != 0 && count > lim_cur(RLIMIT_NPROC)) {
360 		(void)chgproccnt(uid, -1);
361 		nprocesses--;
362 		nthreads--;
363 		return EAGAIN;
364 	}
365 
366 	uaddr = uvm_uarea_alloc();
367 	if (uaddr == 0) {
368 		(void)chgproccnt(uid, -1);
369 		nprocesses--;
370 		nthreads--;
371 		return (ENOMEM);
372 	}
373 
374 	/*
375 	 * From now on, we're committed to the fork and cannot fail.
376 	 */
377 	p = thread_new(curp, uaddr);
378 	pr = process_new(p, curpr, flags);
379 
380 	p->p_fd		= pr->ps_fd;
381 	p->p_vmspace	= pr->ps_vmspace;
382 	if (pr->ps_flags & PS_SYSTEM)
383 		atomic_setbits_int(&p->p_flag, P_SYSTEM);
384 
385 	if (flags & FORK_PPWAIT) {
386 		atomic_setbits_int(&pr->ps_flags, PS_PPWAIT);
387 		atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT);
388 	}
389 
390 #ifdef KTRACE
391 	/*
392 	 * Copy traceflag and tracefile if enabled.
393 	 * If not inherited, these were zeroed above.
394 	 */
395 	if (curpr->ps_traceflag & KTRFAC_INHERIT)
396 		ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp,
397 		    curpr->ps_tracecred);
398 #endif
399 
400 	/*
401 	 * Finish creating the child thread.  cpu_fork() will copy
402 	 * and update the pcb and make the child ready to run.  If
403 	 * this is a normal user fork, the child will exit directly
404 	 * to user mode via child_return() on its first time slice
405 	 * and will not return here.  If this is a kernel thread,
406 	 * the specified entry point will be executed.
407 	 */
408 	cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p);
409 
410 	vm = pr->ps_vmspace;
411 
412 	if (flags & FORK_FORK) {
413 		forkstat.cntfork++;
414 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
415 	} else if (flags & FORK_VFORK) {
416 		forkstat.cntvfork++;
417 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
418 	} else {
419 		forkstat.cntkthread++;
420 	}
421 
422 	if (pr->ps_flags & PS_TRACED && flags & FORK_FORK)
423 		newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK);
424 
425 	p->p_tid = alloctid();
426 
427 	LIST_INSERT_HEAD(&allproc, p, p_list);
428 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
429 	LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash);
430 	LIST_INSERT_AFTER(curpr, pr, ps_pglist);
431 	LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling);
432 
433 	if (pr->ps_flags & PS_TRACED) {
434 		pr->ps_oppid = curpr->ps_pid;
435 		process_reparent(pr, curpr->ps_pptr);
436 
437 		/*
438 		 * Set ptrace status.
439 		 */
440 		if (newptstat != NULL) {
441 			pr->ps_ptstat = newptstat;
442 			newptstat = NULL;
443 			curpr->ps_ptstat->pe_report_event = PTRACE_FORK;
444 			pr->ps_ptstat->pe_report_event = PTRACE_FORK;
445 			curpr->ps_ptstat->pe_other_pid = pr->ps_pid;
446 			pr->ps_ptstat->pe_other_pid = curpr->ps_pid;
447 		}
448 	}
449 
450 	/*
451 	 * For new processes, set accounting bits and mark as complete.
452 	 */
453 	nanouptime(&pr->ps_start);
454 	pr->ps_acflag = AFORK;
455 	atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO);
456 
457 	if ((flags & FORK_IDLE) == 0)
458 		fork_thread_start(p, curp, flags);
459 	else
460 		p->p_cpu = arg;
461 
462 	free(newptstat, M_SUBPROC, sizeof(*newptstat));
463 
464 	/*
465 	 * Notify any interested parties about the new process.
466 	 */
467 	KNOTE(&curpr->ps_klist, NOTE_FORK | pr->ps_pid);
468 
469 	/*
470 	 * Update stats now that we know the fork was successful.
471 	 */
472 	uvmexp.forks++;
473 	if (flags & FORK_PPWAIT)
474 		uvmexp.forks_ppwait++;
475 	if (flags & FORK_SHAREVM)
476 		uvmexp.forks_sharevm++;
477 
478 	/*
479 	 * Pass a pointer to the new process to the caller.
480 	 */
481 	if (rnewprocp != NULL)
482 		*rnewprocp = p;
483 
484 	/*
485 	 * Preserve synchronization semantics of vfork.  If waiting for
486 	 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT
487 	 * on ourselves, and sleep on our process for the latter flag
488 	 * to go away.
489 	 * XXX Need to stop other rthreads in the parent
490 	 */
491 	if (flags & FORK_PPWAIT)
492 		while (curpr->ps_flags & PS_ISPWAIT)
493 			tsleep_nsec(curpr, PWAIT, "ppwait", INFSLP);
494 
495 	/*
496 	 * If we're tracing the child, alert the parent too.
497 	 */
498 	if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED))
499 		psignal(curp, SIGTRAP);
500 
501 	/*
502 	 * Return child pid to parent process
503 	 */
504 	if (retval != NULL) {
505 		retval[0] = pr->ps_pid;
506 		retval[1] = 0;
507 	}
508 	return (0);
509 }
510 
511 int
512 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr,
513     register_t *retval)
514 {
515 	struct process *pr = curp->p_p;
516 	struct proc *p;
517 	pid_t tid;
518 	vaddr_t uaddr;
519 	int s, error;
520 
521 	if (stack == NULL)
522 		return EINVAL;
523 
524 	if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid)))
525 		return error;
526 
527 	uaddr = uvm_uarea_alloc();
528 	if (uaddr == 0) {
529 		nthreads--;
530 		return ENOMEM;
531 	}
532 
533 	/*
534 	 * From now on, we're committed to the fork and cannot fail.
535 	 */
536 	p = thread_new(curp, uaddr);
537 	atomic_setbits_int(&p->p_flag, P_THREAD);
538 	sigstkinit(&p->p_sigstk);
539 
540 	/* other links */
541 	p->p_p = pr;
542 	pr->ps_refcnt++;
543 
544 	/* local copies */
545 	p->p_fd		= pr->ps_fd;
546 	p->p_vmspace	= pr->ps_vmspace;
547 
548 	/*
549 	 * Finish creating the child thread.  cpu_fork() will copy
550 	 * and update the pcb and make the child ready to run.  The
551 	 * child will exit directly to user mode via child_return()
552 	 * on its first time slice and will not return here.
553 	 */
554 	cpu_fork(curp, p, stack, tcb, child_return, p);
555 
556 	p->p_tid = alloctid();
557 
558 	LIST_INSERT_HEAD(&allproc, p, p_list);
559 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
560 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
561 
562 	/*
563 	 * if somebody else wants to take us to single threaded mode,
564 	 * count ourselves in.
565 	 */
566 	SCHED_LOCK(s);
567 	if (pr->ps_single) {
568 		atomic_inc_int(&pr->ps_singlecount);
569 		atomic_setbits_int(&p->p_flag, P_SUSPSINGLE);
570 	}
571 	SCHED_UNLOCK(s);
572 
573 	/*
574 	 * Return tid to parent thread and copy it out to userspace
575 	 */
576 	retval[0] = tid = p->p_tid + THREAD_PID_OFFSET;
577 	retval[1] = 0;
578 	if (tidptr != NULL) {
579 		if (copyout(&tid, tidptr, sizeof(tid)))
580 			psignal(curp, SIGSEGV);
581 	}
582 
583 	fork_thread_start(p, curp, 0);
584 
585 	/*
586 	 * Update stats now that we know the fork was successful.
587 	 */
588 	forkstat.cnttfork++;
589 	uvmexp.forks++;
590 	uvmexp.forks_sharevm++;
591 
592 	return 0;
593 }
594 
595 
596 /* Find an unused tid */
597 pid_t
598 alloctid(void)
599 {
600 	pid_t tid;
601 
602 	do {
603 		/* (0 .. TID_MASK+1] */
604 		tid = 1 + (arc4random() & TID_MASK);
605 	} while (tfind(tid) != NULL);
606 
607 	return (tid);
608 }
609 
610 /*
611  * Checks for current use of a pid, either as a pid or pgid.
612  */
613 pid_t oldpids[128];
614 int
615 ispidtaken(pid_t pid)
616 {
617 	uint32_t i;
618 
619 	for (i = 0; i < nitems(oldpids); i++)
620 		if (pid == oldpids[i])
621 			return (1);
622 
623 	if (prfind(pid) != NULL)
624 		return (1);
625 	if (pgfind(pid) != NULL)
626 		return (1);
627 	if (zombiefind(pid) != NULL)
628 		return (1);
629 	return (0);
630 }
631 
632 /* Find an unused pid */
633 pid_t
634 allocpid(void)
635 {
636 	static pid_t lastpid;
637 	pid_t pid;
638 
639 	if (!randompid) {
640 		/* only used early on for system processes */
641 		pid = ++lastpid;
642 	} else {
643 		/* Find an unused pid satisfying lastpid < pid <= PID_MAX */
644 		do {
645 			pid = arc4random_uniform(PID_MAX - lastpid) + 1 +
646 			    lastpid;
647 		} while (ispidtaken(pid));
648 	}
649 
650 	return pid;
651 }
652 
653 void
654 freepid(pid_t pid)
655 {
656 	static uint32_t idx;
657 
658 	oldpids[idx++ % nitems(oldpids)] = pid;
659 }
660 
661 #if defined(MULTIPROCESSOR)
662 /*
663  * XXX This is a slight hack to get newly-formed processes to
664  * XXX acquire the kernel lock as soon as they run.
665  */
666 void
667 proc_trampoline_mp(void)
668 {
669 	SCHED_ASSERT_LOCKED();
670 	__mp_unlock(&sched_lock);
671 	spl0();
672 	SCHED_ASSERT_UNLOCKED();
673 	KERNEL_ASSERT_UNLOCKED();
674 
675 	KERNEL_LOCK();
676 }
677 #endif
678