xref: /openbsd-src/sys/kern/kern_fork.c (revision f745c206bcc02cfea056b2c3827a906a098ab257)
1 /*	$OpenBSD: kern_fork.c,v 1.237 2021/12/05 22:00:42 cheloha Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/exec.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/vnode.h>
51 #include <sys/vmmeter.h>
52 #include <sys/acct.h>
53 #include <sys/ktrace.h>
54 #include <sys/sched.h>
55 #include <sys/sysctl.h>
56 #include <sys/pool.h>
57 #include <sys/mman.h>
58 #include <sys/ptrace.h>
59 #include <sys/atomic.h>
60 #include <sys/pledge.h>
61 #include <sys/unistd.h>
62 
63 #include <sys/syscallargs.h>
64 
65 #include <uvm/uvm.h>
66 #include <machine/tcb.h>
67 
68 int	nprocesses = 1;		/* process 0 */
69 int	nthreads = 1;		/* proc 0 */
70 int	randompid;		/* when set to 1, pid's go random */
71 struct	forkstat forkstat;
72 
73 void fork_return(void *);
74 pid_t alloctid(void);
75 pid_t allocpid(void);
76 int ispidtaken(pid_t);
77 
78 void unveil_copy(struct process *parent, struct process *child);
79 
80 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr);
81 struct process *process_new(struct proc *, struct process *, int);
82 int fork_check_maxthread(uid_t _uid);
83 
84 void
85 fork_return(void *arg)
86 {
87 	struct proc *p = (struct proc *)arg;
88 
89 	if (p->p_p->ps_flags & PS_TRACED)
90 		psignal(p, SIGTRAP);
91 
92 	child_return(p);
93 }
94 
95 int
96 sys_fork(struct proc *p, void *v, register_t *retval)
97 {
98 	void (*func)(void *) = child_return;
99 	int flags;
100 
101 	flags = FORK_FORK;
102 	if (p->p_p->ps_ptmask & PTRACE_FORK) {
103 		flags |= FORK_PTRACE;
104 		func = fork_return;
105 	}
106 	return fork1(p, flags, func, NULL, retval, NULL);
107 }
108 
109 int
110 sys_vfork(struct proc *p, void *v, register_t *retval)
111 {
112 	return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL,
113 	    retval, NULL);
114 }
115 
116 int
117 sys___tfork(struct proc *p, void *v, register_t *retval)
118 {
119 	struct sys___tfork_args /* {
120 		syscallarg(const struct __tfork) *param;
121 		syscallarg(size_t) psize;
122 	} */ *uap = v;
123 	size_t psize = SCARG(uap, psize);
124 	struct __tfork param = { 0 };
125 	int error;
126 
127 	if (psize == 0 || psize > sizeof(param))
128 		return EINVAL;
129 	if ((error = copyin(SCARG(uap, param), &param, psize)))
130 		return error;
131 #ifdef KTRACE
132 	if (KTRPOINT(p, KTR_STRUCT))
133 		ktrstruct(p, "tfork", &param, sizeof(param));
134 #endif
135 #ifdef TCB_INVALID
136 	if (TCB_INVALID(param.tf_tcb))
137 		return EINVAL;
138 #endif /* TCB_INVALID */
139 
140 	/*
141 	 * kbind(2) can only be used if it is initialized before the
142 	 * process goes multithreaded.
143 	 */
144 	if (p->p_p->ps_kbind_addr == 0)
145 		p->p_p->ps_kbind_addr = BOGO_PC;
146 
147 	return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid,
148 	    retval);
149 }
150 
151 /*
152  * Allocate and initialize a thread (proc) structure, given the parent thread.
153  */
154 struct proc *
155 thread_new(struct proc *parent, vaddr_t uaddr)
156 {
157 	struct proc *p;
158 
159 	p = pool_get(&proc_pool, PR_WAITOK);
160 	p->p_stat = SIDL;			/* protect against others */
161 	p->p_runpri = 0;
162 	p->p_flag = 0;
163 
164 	/*
165 	 * Make a proc table entry for the new process.
166 	 * Start by zeroing the section of proc that is zero-initialized,
167 	 * then copy the section that is copied directly from the parent.
168 	 */
169 	memset(&p->p_startzero, 0,
170 	    (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero);
171 	memcpy(&p->p_startcopy, &parent->p_startcopy,
172 	    (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy);
173 	crhold(p->p_ucred);
174 	p->p_addr = (struct user *)uaddr;
175 
176 	/*
177 	 * Initialize the timeouts.
178 	 */
179 	timeout_set(&p->p_sleep_to, endtsleep, p);
180 
181 	return p;
182 }
183 
184 /*
185  * Initialize common bits of a process structure, given the initial thread.
186  */
187 void
188 process_initialize(struct process *pr, struct proc *p)
189 {
190 	/* initialize the thread links */
191 	pr->ps_mainproc = p;
192 	TAILQ_INIT(&pr->ps_threads);
193 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
194 	pr->ps_refcnt = 1;
195 	p->p_p = pr;
196 
197 	/* give the process the same creds as the initial thread */
198 	pr->ps_ucred = p->p_ucred;
199 	crhold(pr->ps_ucred);
200 	KASSERT(p->p_ucred->cr_ref >= 2);	/* new thread and new process */
201 
202 	LIST_INIT(&pr->ps_children);
203 	LIST_INIT(&pr->ps_orphans);
204 	LIST_INIT(&pr->ps_ftlist);
205 	LIST_INIT(&pr->ps_sigiolst);
206 	TAILQ_INIT(&pr->ps_tslpqueue);
207 
208 	rw_init(&pr->ps_lock, "pslock");
209 	mtx_init(&pr->ps_mtx, IPL_MPFLOOR);
210 
211 	timeout_set_kclock(&pr->ps_realit_to, realitexpire, pr,
212 	    KCLOCK_UPTIME, 0);
213 	timeout_set(&pr->ps_rucheck_to, rucheck, pr);
214 }
215 
216 
217 /*
218  * Allocate and initialize a new process.
219  */
220 struct process *
221 process_new(struct proc *p, struct process *parent, int flags)
222 {
223 	struct process *pr;
224 
225 	pr = pool_get(&process_pool, PR_WAITOK);
226 
227 	/*
228 	 * Make a process structure for the new process.
229 	 * Start by zeroing the section of proc that is zero-initialized,
230 	 * then copy the section that is copied directly from the parent.
231 	 */
232 	memset(&pr->ps_startzero, 0,
233 	    (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero);
234 	memcpy(&pr->ps_startcopy, &parent->ps_startcopy,
235 	    (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy);
236 
237 	process_initialize(pr, p);
238 	pr->ps_pid = allocpid();
239 	lim_fork(parent, pr);
240 
241 	/* post-copy fixups */
242 	pr->ps_pptr = parent;
243 	pr->ps_ppid = parent->ps_pid;
244 
245 	/* bump references to the text vnode (for sysctl) */
246 	pr->ps_textvp = parent->ps_textvp;
247 	if (pr->ps_textvp)
248 		vref(pr->ps_textvp);
249 
250 	/* copy unveil if unveil is active */
251 	unveil_copy(parent, pr);
252 
253 	pr->ps_flags = parent->ps_flags &
254 	    (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE | PS_WXNEEDED);
255 	if (parent->ps_session->s_ttyvp != NULL)
256 		pr->ps_flags |= parent->ps_flags & PS_CONTROLT;
257 
258 	/*
259 	 * Duplicate sub-structures as needed.
260 	 * Increase reference counts on shared objects.
261 	 */
262 	if (flags & FORK_SHAREFILES)
263 		pr->ps_fd = fdshare(parent);
264 	else
265 		pr->ps_fd = fdcopy(parent);
266 	pr->ps_sigacts = sigactsinit(parent);
267 	if (flags & FORK_SHAREVM)
268 		pr->ps_vmspace = uvmspace_share(parent);
269 	else
270 		pr->ps_vmspace = uvmspace_fork(parent);
271 
272 	if (parent->ps_flags & PS_PROFIL)
273 		startprofclock(pr);
274 	if (flags & FORK_PTRACE)
275 		pr->ps_flags |= parent->ps_flags & PS_TRACED;
276 	if (flags & FORK_NOZOMBIE)
277 		pr->ps_flags |= PS_NOZOMBIE;
278 	if (flags & FORK_SYSTEM)
279 		pr->ps_flags |= PS_SYSTEM;
280 
281 	/* mark as embryo to protect against others */
282 	pr->ps_flags |= PS_EMBRYO;
283 
284 	/* Force visibility of all of the above changes */
285 	membar_producer();
286 
287 	/* it's sufficiently inited to be globally visible */
288 	LIST_INSERT_HEAD(&allprocess, pr, ps_list);
289 
290 	return pr;
291 }
292 
293 /* print the 'table full' message once per 10 seconds */
294 struct timeval fork_tfmrate = { 10, 0 };
295 
296 int
297 fork_check_maxthread(uid_t uid)
298 {
299 	/*
300 	 * Although process entries are dynamically created, we still keep
301 	 * a global limit on the maximum number we will create. We reserve
302 	 * the last 5 processes to root. The variable nprocesses is the
303 	 * current number of processes, maxprocess is the limit.  Similar
304 	 * rules for threads (struct proc): we reserve the last 5 to root;
305 	 * the variable nthreads is the current number of procs, maxthread is
306 	 * the limit.
307 	 */
308 	if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) {
309 		static struct timeval lasttfm;
310 
311 		if (ratecheck(&lasttfm, &fork_tfmrate))
312 			tablefull("thread");
313 		return EAGAIN;
314 	}
315 	nthreads++;
316 
317 	return 0;
318 }
319 
320 static inline void
321 fork_thread_start(struct proc *p, struct proc *parent, int flags)
322 {
323 	struct cpu_info *ci;
324 	int s;
325 
326 	SCHED_LOCK(s);
327 	ci = sched_choosecpu_fork(parent, flags);
328 	setrunqueue(ci, p, p->p_usrpri);
329 	SCHED_UNLOCK(s);
330 }
331 
332 int
333 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg,
334     register_t *retval, struct proc **rnewprocp)
335 {
336 	struct process *curpr = curp->p_p;
337 	struct process *pr;
338 	struct proc *p;
339 	uid_t uid = curp->p_ucred->cr_ruid;
340 	struct vmspace *vm;
341 	int count;
342 	vaddr_t uaddr;
343 	int error;
344 	struct  ptrace_state *newptstat = NULL;
345 
346 	KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE
347 	    | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE
348 	    | FORK_SYSTEM)) == 0);
349 	KASSERT(func != NULL);
350 
351 	if ((error = fork_check_maxthread(uid)))
352 		return error;
353 
354 	if ((nprocesses >= maxprocess - 5 && uid != 0) ||
355 	    nprocesses >= maxprocess) {
356 		static struct timeval lasttfm;
357 
358 		if (ratecheck(&lasttfm, &fork_tfmrate))
359 			tablefull("process");
360 		nthreads--;
361 		return EAGAIN;
362 	}
363 	nprocesses++;
364 
365 	/*
366 	 * Increment the count of processes running with this uid.
367 	 * Don't allow a nonprivileged user to exceed their current limit.
368 	 */
369 	count = chgproccnt(uid, 1);
370 	if (uid != 0 && count > lim_cur(RLIMIT_NPROC)) {
371 		(void)chgproccnt(uid, -1);
372 		nprocesses--;
373 		nthreads--;
374 		return EAGAIN;
375 	}
376 
377 	uaddr = uvm_uarea_alloc();
378 	if (uaddr == 0) {
379 		(void)chgproccnt(uid, -1);
380 		nprocesses--;
381 		nthreads--;
382 		return (ENOMEM);
383 	}
384 
385 	/*
386 	 * From now on, we're committed to the fork and cannot fail.
387 	 */
388 	p = thread_new(curp, uaddr);
389 	pr = process_new(p, curpr, flags);
390 
391 	p->p_fd		= pr->ps_fd;
392 	p->p_vmspace	= pr->ps_vmspace;
393 	if (pr->ps_flags & PS_SYSTEM)
394 		atomic_setbits_int(&p->p_flag, P_SYSTEM);
395 
396 	if (flags & FORK_PPWAIT) {
397 		atomic_setbits_int(&pr->ps_flags, PS_PPWAIT);
398 		atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT);
399 	}
400 
401 #ifdef KTRACE
402 	/*
403 	 * Copy traceflag and tracefile if enabled.
404 	 * If not inherited, these were zeroed above.
405 	 */
406 	if (curpr->ps_traceflag & KTRFAC_INHERIT)
407 		ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp,
408 		    curpr->ps_tracecred);
409 #endif
410 
411 	/*
412 	 * Finish creating the child thread.  cpu_fork() will copy
413 	 * and update the pcb and make the child ready to run.  If
414 	 * this is a normal user fork, the child will exit directly
415 	 * to user mode via child_return() on its first time slice
416 	 * and will not return here.  If this is a kernel thread,
417 	 * the specified entry point will be executed.
418 	 */
419 	cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p);
420 
421 	vm = pr->ps_vmspace;
422 
423 	if (flags & FORK_FORK) {
424 		forkstat.cntfork++;
425 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
426 	} else if (flags & FORK_VFORK) {
427 		forkstat.cntvfork++;
428 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
429 	} else {
430 		forkstat.cntkthread++;
431 	}
432 
433 	if (pr->ps_flags & PS_TRACED && flags & FORK_FORK)
434 		newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK);
435 
436 	p->p_tid = alloctid();
437 
438 	LIST_INSERT_HEAD(&allproc, p, p_list);
439 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
440 	LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash);
441 	LIST_INSERT_AFTER(curpr, pr, ps_pglist);
442 	LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling);
443 
444 	if (pr->ps_flags & PS_TRACED) {
445 		pr->ps_oppid = curpr->ps_pid;
446 		process_reparent(pr, curpr->ps_pptr);
447 
448 		/*
449 		 * Set ptrace status.
450 		 */
451 		if (newptstat != NULL) {
452 			pr->ps_ptstat = newptstat;
453 			newptstat = NULL;
454 			curpr->ps_ptstat->pe_report_event = PTRACE_FORK;
455 			pr->ps_ptstat->pe_report_event = PTRACE_FORK;
456 			curpr->ps_ptstat->pe_other_pid = pr->ps_pid;
457 			pr->ps_ptstat->pe_other_pid = curpr->ps_pid;
458 		}
459 	}
460 
461 	/*
462 	 * For new processes, set accounting bits and mark as complete.
463 	 */
464 	nanouptime(&pr->ps_start);
465 	pr->ps_acflag = AFORK;
466 	atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO);
467 
468 	if ((flags & FORK_IDLE) == 0)
469 		fork_thread_start(p, curp, flags);
470 	else
471 		p->p_cpu = arg;
472 
473 	free(newptstat, M_SUBPROC, sizeof(*newptstat));
474 
475 	/*
476 	 * Notify any interested parties about the new process.
477 	 */
478 	KNOTE(&curpr->ps_klist, NOTE_FORK | pr->ps_pid);
479 
480 	/*
481 	 * Update stats now that we know the fork was successful.
482 	 */
483 	uvmexp.forks++;
484 	if (flags & FORK_PPWAIT)
485 		uvmexp.forks_ppwait++;
486 	if (flags & FORK_SHAREVM)
487 		uvmexp.forks_sharevm++;
488 
489 	/*
490 	 * Pass a pointer to the new process to the caller.
491 	 */
492 	if (rnewprocp != NULL)
493 		*rnewprocp = p;
494 
495 	/*
496 	 * Preserve synchronization semantics of vfork.  If waiting for
497 	 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT
498 	 * on ourselves, and sleep on our process for the latter flag
499 	 * to go away.
500 	 * XXX Need to stop other rthreads in the parent
501 	 */
502 	if (flags & FORK_PPWAIT)
503 		while (curpr->ps_flags & PS_ISPWAIT)
504 			tsleep_nsec(curpr, PWAIT, "ppwait", INFSLP);
505 
506 	/*
507 	 * If we're tracing the child, alert the parent too.
508 	 */
509 	if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED))
510 		psignal(curp, SIGTRAP);
511 
512 	/*
513 	 * Return child pid to parent process
514 	 */
515 	if (retval != NULL) {
516 		retval[0] = pr->ps_pid;
517 		retval[1] = 0;
518 	}
519 	return (0);
520 }
521 
522 int
523 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr,
524     register_t *retval)
525 {
526 	struct process *pr = curp->p_p;
527 	struct proc *p;
528 	pid_t tid;
529 	vaddr_t uaddr;
530 	int s, error;
531 
532 	if (stack == NULL)
533 		return EINVAL;
534 
535 	if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid)))
536 		return error;
537 
538 	uaddr = uvm_uarea_alloc();
539 	if (uaddr == 0) {
540 		nthreads--;
541 		return ENOMEM;
542 	}
543 
544 	/*
545 	 * From now on, we're committed to the fork and cannot fail.
546 	 */
547 	p = thread_new(curp, uaddr);
548 	atomic_setbits_int(&p->p_flag, P_THREAD);
549 	sigstkinit(&p->p_sigstk);
550 
551 	/* other links */
552 	p->p_p = pr;
553 	pr->ps_refcnt++;
554 
555 	/* local copies */
556 	p->p_fd		= pr->ps_fd;
557 	p->p_vmspace	= pr->ps_vmspace;
558 
559 	/*
560 	 * Finish creating the child thread.  cpu_fork() will copy
561 	 * and update the pcb and make the child ready to run.  The
562 	 * child will exit directly to user mode via child_return()
563 	 * on its first time slice and will not return here.
564 	 */
565 	cpu_fork(curp, p, stack, tcb, child_return, p);
566 
567 	p->p_tid = alloctid();
568 
569 	LIST_INSERT_HEAD(&allproc, p, p_list);
570 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
571 
572 	SCHED_LOCK(s);
573 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
574 	/*
575 	 * if somebody else wants to take us to single threaded mode,
576 	 * count ourselves in.
577 	 */
578 	if (pr->ps_single) {
579 		atomic_inc_int(&pr->ps_singlecount);
580 		atomic_setbits_int(&p->p_flag, P_SUSPSINGLE);
581 	}
582 	SCHED_UNLOCK(s);
583 
584 	/*
585 	 * Return tid to parent thread and copy it out to userspace
586 	 */
587 	retval[0] = tid = p->p_tid + THREAD_PID_OFFSET;
588 	retval[1] = 0;
589 	if (tidptr != NULL) {
590 		if (copyout(&tid, tidptr, sizeof(tid)))
591 			psignal(curp, SIGSEGV);
592 	}
593 
594 	fork_thread_start(p, curp, 0);
595 
596 	/*
597 	 * Update stats now that we know the fork was successful.
598 	 */
599 	forkstat.cnttfork++;
600 	uvmexp.forks++;
601 	uvmexp.forks_sharevm++;
602 
603 	return 0;
604 }
605 
606 
607 /* Find an unused tid */
608 pid_t
609 alloctid(void)
610 {
611 	pid_t tid;
612 
613 	do {
614 		/* (0 .. TID_MASK+1] */
615 		tid = 1 + (arc4random() & TID_MASK);
616 	} while (tfind(tid) != NULL);
617 
618 	return (tid);
619 }
620 
621 /*
622  * Checks for current use of a pid, either as a pid or pgid.
623  */
624 pid_t oldpids[128];
625 int
626 ispidtaken(pid_t pid)
627 {
628 	uint32_t i;
629 
630 	for (i = 0; i < nitems(oldpids); i++)
631 		if (pid == oldpids[i])
632 			return (1);
633 
634 	if (prfind(pid) != NULL)
635 		return (1);
636 	if (pgfind(pid) != NULL)
637 		return (1);
638 	if (zombiefind(pid) != NULL)
639 		return (1);
640 	return (0);
641 }
642 
643 /* Find an unused pid */
644 pid_t
645 allocpid(void)
646 {
647 	static pid_t lastpid;
648 	pid_t pid;
649 
650 	if (!randompid) {
651 		/* only used early on for system processes */
652 		pid = ++lastpid;
653 	} else {
654 		/* Find an unused pid satisfying lastpid < pid <= PID_MAX */
655 		do {
656 			pid = arc4random_uniform(PID_MAX - lastpid) + 1 +
657 			    lastpid;
658 		} while (ispidtaken(pid));
659 	}
660 
661 	return pid;
662 }
663 
664 void
665 freepid(pid_t pid)
666 {
667 	static uint32_t idx;
668 
669 	oldpids[idx++ % nitems(oldpids)] = pid;
670 }
671 
672 #if defined(MULTIPROCESSOR)
673 /*
674  * XXX This is a slight hack to get newly-formed processes to
675  * XXX acquire the kernel lock as soon as they run.
676  */
677 void
678 proc_trampoline_mp(void)
679 {
680 	SCHED_ASSERT_LOCKED();
681 	__mp_unlock(&sched_lock);
682 	spl0();
683 	SCHED_ASSERT_UNLOCKED();
684 	KERNEL_ASSERT_UNLOCKED();
685 
686 	KERNEL_LOCK();
687 }
688 #endif
689