xref: /openbsd-src/sys/kern/kern_fork.c (revision f46da43846131904774496c2a5c8beb4c337124b)
1 /*	$OpenBSD: kern_fork.c,v 1.198 2017/08/29 02:51:27 deraadt Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/exec.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/vnode.h>
51 #include <sys/vmmeter.h>
52 #include <sys/file.h>
53 #include <sys/acct.h>
54 #include <sys/ktrace.h>
55 #include <sys/sched.h>
56 #include <sys/sysctl.h>
57 #include <sys/pool.h>
58 #include <sys/mman.h>
59 #include <sys/ptrace.h>
60 #include <sys/atomic.h>
61 #include <sys/pledge.h>
62 #include <sys/unistd.h>
63 
64 #include <sys/syscallargs.h>
65 
66 #include <uvm/uvm.h>
67 #include <machine/tcb.h>
68 
69 int	nprocesses = 1;		/* process 0 */
70 int	nthreads = 1;		/* proc 0 */
71 int	randompid;		/* when set to 1, pid's go random */
72 struct	forkstat forkstat;
73 
74 void fork_return(void *);
75 pid_t alloctid(void);
76 pid_t allocpid(void);
77 int ispidtaken(pid_t);
78 
79 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr);
80 struct process *process_new(struct proc *, struct process *, int);
81 int fork_check_maxthread(uid_t _uid);
82 
83 void
84 fork_return(void *arg)
85 {
86 	struct proc *p = (struct proc *)arg;
87 
88 	if (p->p_p->ps_flags & PS_TRACED)
89 		psignal(p, SIGTRAP);
90 
91 	child_return(p);
92 }
93 
94 int
95 sys_fork(struct proc *p, void *v, register_t *retval)
96 {
97 	int flags;
98 
99 	flags = FORK_FORK;
100 	if (p->p_p->ps_ptmask & PTRACE_FORK)
101 		flags |= FORK_PTRACE;
102 	return fork1(p, flags, fork_return, NULL, retval, NULL);
103 }
104 
105 int
106 sys_vfork(struct proc *p, void *v, register_t *retval)
107 {
108 	return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL,
109 	    retval, NULL);
110 }
111 
112 int
113 sys___tfork(struct proc *p, void *v, register_t *retval)
114 {
115 	struct sys___tfork_args /* {
116 		syscallarg(const struct __tfork) *param;
117 		syscallarg(size_t) psize;
118 	} */ *uap = v;
119 	size_t psize = SCARG(uap, psize);
120 	struct __tfork param = { 0 };
121 	int error;
122 
123 	if (psize == 0 || psize > sizeof(param))
124 		return EINVAL;
125 	if ((error = copyin(SCARG(uap, param), &param, psize)))
126 		return error;
127 #ifdef KTRACE
128 	if (KTRPOINT(p, KTR_STRUCT))
129 		ktrstruct(p, "tfork", &param, sizeof(param));
130 #endif
131 
132 	return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid,
133 	    retval);
134 }
135 
136 /*
137  * Allocate and initialize a thread (proc) structure, given the parent thread.
138  */
139 struct proc *
140 thread_new(struct proc *parent, vaddr_t uaddr)
141 {
142 	struct proc *p;
143 
144 	p = pool_get(&proc_pool, PR_WAITOK);
145 	p->p_stat = SIDL;			/* protect against others */
146 	p->p_flag = 0;
147 
148 	/*
149 	 * Make a proc table entry for the new process.
150 	 * Start by zeroing the section of proc that is zero-initialized,
151 	 * then copy the section that is copied directly from the parent.
152 	 */
153 	memset(&p->p_startzero, 0,
154 	    (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero);
155 	memcpy(&p->p_startcopy, &parent->p_startcopy,
156 	    (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy);
157 	crhold(p->p_ucred);
158 	p->p_addr = (struct user *)uaddr;
159 
160 	/*
161 	 * Initialize the timeouts.
162 	 */
163 	timeout_set(&p->p_sleep_to, endtsleep, p);
164 
165 	/*
166 	 * set priority of child to be that of parent
167 	 * XXX should move p_estcpu into the region of struct proc which gets
168 	 * copied.
169 	 */
170 	scheduler_fork_hook(parent, p);
171 
172 #ifdef WITNESS
173 	p->p_sleeplocks = NULL;
174 #endif
175 
176 	return p;
177 }
178 
179 /*
180  * Initialize common bits of a process structure, given the initial thread.
181  */
182 void
183 process_initialize(struct process *pr, struct proc *p)
184 {
185 	/* initialize the thread links */
186 	pr->ps_mainproc = p;
187 	TAILQ_INIT(&pr->ps_threads);
188 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
189 	pr->ps_refcnt = 1;
190 	p->p_p = pr;
191 
192 	/* give the process the same creds as the initial thread */
193 	pr->ps_ucred = p->p_ucred;
194 	crhold(pr->ps_ucred);
195 	KASSERT(p->p_ucred->cr_ref >= 2);	/* new thread and new process */
196 
197 	LIST_INIT(&pr->ps_children);
198 
199 	timeout_set(&pr->ps_realit_to, realitexpire, pr);
200 }
201 
202 
203 /*
204  * Allocate and initialize a new process.
205  */
206 struct process *
207 process_new(struct proc *p, struct process *parent, int flags)
208 {
209 	struct process *pr;
210 
211 	pr = pool_get(&process_pool, PR_WAITOK);
212 
213 	/*
214 	 * Make a process structure for the new process.
215 	 * Start by zeroing the section of proc that is zero-initialized,
216 	 * then copy the section that is copied directly from the parent.
217 	 */
218 	memset(&pr->ps_startzero, 0,
219 	    (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero);
220 	memcpy(&pr->ps_startcopy, &parent->ps_startcopy,
221 	    (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy);
222 
223 	process_initialize(pr, p);
224 	pr->ps_pid = allocpid();
225 
226 	/* post-copy fixups */
227 	pr->ps_pptr = parent;
228 	pr->ps_limit->p_refcnt++;
229 
230 	/* bump references to the text vnode (for sysctl) */
231 	pr->ps_textvp = parent->ps_textvp;
232 	if (pr->ps_textvp)
233 		vref(pr->ps_textvp);
234 
235 	pr->ps_flags = parent->ps_flags &
236 	    (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_WXNEEDED);
237 	if (parent->ps_session->s_ttyvp != NULL)
238 		pr->ps_flags |= parent->ps_flags & PS_CONTROLT;
239 
240 	/*
241 	 * Duplicate sub-structures as needed.
242 	 * Increase reference counts on shared objects.
243 	 */
244 	if (flags & FORK_SHAREFILES)
245 		pr->ps_fd = fdshare(parent);
246 	else
247 		pr->ps_fd = fdcopy(parent);
248 	if (flags & FORK_SIGHAND)
249 		pr->ps_sigacts = sigactsshare(parent);
250 	else
251 		pr->ps_sigacts = sigactsinit(parent);
252 	if (flags & FORK_SHAREVM)
253 		pr->ps_vmspace = uvmspace_share(parent);
254 	else
255 		pr->ps_vmspace = uvmspace_fork(parent);
256 
257 	if (parent->ps_flags & PS_PROFIL)
258 		startprofclock(pr);
259 	if (flags & FORK_PTRACE)
260 		pr->ps_flags |= parent->ps_flags & PS_TRACED;
261 	if (flags & FORK_NOZOMBIE)
262 		pr->ps_flags |= PS_NOZOMBIE;
263 	if (flags & FORK_SYSTEM)
264 		pr->ps_flags |= PS_SYSTEM;
265 
266 	/* mark as embryo to protect against others */
267 	pr->ps_flags |= PS_EMBRYO;
268 
269 	/* Force visibility of all of the above changes */
270 	membar_producer();
271 
272 	/* it's sufficiently inited to be globally visible */
273 	LIST_INSERT_HEAD(&allprocess, pr, ps_list);
274 
275 	return pr;
276 }
277 
278 /* print the 'table full' message once per 10 seconds */
279 struct timeval fork_tfmrate = { 10, 0 };
280 
281 int
282 fork_check_maxthread(uid_t uid)
283 {
284 	/*
285 	 * Although process entries are dynamically created, we still keep
286 	 * a global limit on the maximum number we will create. We reserve
287 	 * the last 5 processes to root. The variable nprocesses is the
288 	 * current number of processes, maxprocess is the limit.  Similar
289 	 * rules for threads (struct proc): we reserve the last 5 to root;
290 	 * the variable nthreads is the current number of procs, maxthread is
291 	 * the limit.
292 	 */
293 	if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) {
294 		static struct timeval lasttfm;
295 
296 		if (ratecheck(&lasttfm, &fork_tfmrate))
297 			tablefull("proc");
298 		return EAGAIN;
299 	}
300 	nthreads++;
301 
302 	return 0;
303 }
304 
305 static inline void
306 fork_thread_start(struct proc *p, struct proc *parent, int flags)
307 {
308 	int s;
309 
310 	SCHED_LOCK(s);
311 	p->p_stat = SRUN;
312 	p->p_cpu = sched_choosecpu_fork(parent, flags);
313 	setrunqueue(p);
314 	SCHED_UNLOCK(s);
315 }
316 
317 int
318 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg,
319     register_t *retval, struct proc **rnewprocp)
320 {
321 	struct process *curpr = curp->p_p;
322 	struct process *pr;
323 	struct proc *p;
324 	uid_t uid = curp->p_ucred->cr_ruid;
325 	struct vmspace *vm;
326 	int count;
327 	vaddr_t uaddr;
328 	int error;
329 	struct  ptrace_state *newptstat = NULL;
330 
331 	KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE
332 	    | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE
333 	    | FORK_SYSTEM | FORK_SIGHAND)) == 0);
334 	KASSERT((flags & FORK_SIGHAND) == 0 || (flags & FORK_SHAREVM));
335 	KASSERT(func != NULL);
336 
337 	if ((error = fork_check_maxthread(uid)))
338 		return error;
339 
340 	if ((nprocesses >= maxprocess - 5 && uid != 0) ||
341 	    nprocesses >= maxprocess) {
342 		static struct timeval lasttfm;
343 
344 		if (ratecheck(&lasttfm, &fork_tfmrate))
345 			tablefull("process");
346 		nthreads--;
347 		return EAGAIN;
348 	}
349 	nprocesses++;
350 
351 	/*
352 	 * Increment the count of processes running with this uid.
353 	 * Don't allow a nonprivileged user to exceed their current limit.
354 	 */
355 	count = chgproccnt(uid, 1);
356 	if (uid != 0 && count > curp->p_rlimit[RLIMIT_NPROC].rlim_cur) {
357 		(void)chgproccnt(uid, -1);
358 		nprocesses--;
359 		nthreads--;
360 		return EAGAIN;
361 	}
362 
363 	uaddr = uvm_uarea_alloc();
364 	if (uaddr == 0) {
365 		(void)chgproccnt(uid, -1);
366 		nprocesses--;
367 		nthreads--;
368 		return (ENOMEM);
369 	}
370 
371 	/*
372 	 * From now on, we're committed to the fork and cannot fail.
373 	 */
374 	p = thread_new(curp, uaddr);
375 	pr = process_new(p, curpr, flags);
376 
377 	p->p_fd		= pr->ps_fd;
378 	p->p_vmspace	= pr->ps_vmspace;
379 	if (pr->ps_flags & PS_SYSTEM)
380 		atomic_setbits_int(&p->p_flag, P_SYSTEM);
381 
382 	if (flags & FORK_PPWAIT) {
383 		atomic_setbits_int(&pr->ps_flags, PS_PPWAIT);
384 		atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT);
385 	}
386 
387 #ifdef KTRACE
388 	/*
389 	 * Copy traceflag and tracefile if enabled.
390 	 * If not inherited, these were zeroed above.
391 	 */
392 	if (curpr->ps_traceflag & KTRFAC_INHERIT)
393 		ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp,
394 		    curpr->ps_tracecred);
395 #endif
396 
397 	/*
398 	 * Finish creating the child thread.  cpu_fork() will copy
399 	 * and update the pcb and make the child ready to run.  If
400 	 * this is a normal user fork, the child will exit directly
401 	 * to user mode via child_return() on its first time slice
402 	 * and will not return here.  If this is a kernel thread,
403 	 * the specified entry point will be executed.
404 	 */
405 	cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p);
406 
407 	vm = pr->ps_vmspace;
408 
409 	if (flags & FORK_FORK) {
410 		forkstat.cntfork++;
411 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
412 	} else if (flags & FORK_VFORK) {
413 		forkstat.cntvfork++;
414 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
415 	} else {
416 		forkstat.cntkthread++;
417 	}
418 
419 	if (pr->ps_flags & PS_TRACED && flags & FORK_FORK)
420 		newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK);
421 
422 	p->p_tid = alloctid();
423 
424 	LIST_INSERT_HEAD(&allproc, p, p_list);
425 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
426 	LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash);
427 	LIST_INSERT_AFTER(curpr, pr, ps_pglist);
428 	LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling);
429 
430 	if (pr->ps_flags & PS_TRACED) {
431 		pr->ps_oppid = curpr->ps_pid;
432 		if (pr->ps_pptr != curpr->ps_pptr)
433 			proc_reparent(pr, curpr->ps_pptr);
434 
435 		/*
436 		 * Set ptrace status.
437 		 */
438 		if (newptstat != NULL) {
439 			pr->ps_ptstat = newptstat;
440 			newptstat = NULL;
441 			curpr->ps_ptstat->pe_report_event = PTRACE_FORK;
442 			pr->ps_ptstat->pe_report_event = PTRACE_FORK;
443 			curpr->ps_ptstat->pe_other_pid = pr->ps_pid;
444 			pr->ps_ptstat->pe_other_pid = curpr->ps_pid;
445 		}
446 	}
447 
448 	/*
449 	 * For new processes, set accounting bits and mark as complete.
450 	 */
451 	getnanotime(&pr->ps_start);
452 	pr->ps_acflag = AFORK;
453 	atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO);
454 
455 	if ((flags & FORK_IDLE) == 0)
456 		fork_thread_start(p, curp, flags);
457 	else
458 		p->p_cpu = arg;
459 
460 	free(newptstat, M_SUBPROC, sizeof(*newptstat));
461 
462 	/*
463 	 * Notify any interested parties about the new process.
464 	 */
465 	KNOTE(&curpr->ps_klist, NOTE_FORK | pr->ps_pid);
466 
467 	/*
468 	 * Update stats now that we know the fork was successful.
469 	 */
470 	uvmexp.forks++;
471 	if (flags & FORK_PPWAIT)
472 		uvmexp.forks_ppwait++;
473 	if (flags & FORK_SHAREVM)
474 		uvmexp.forks_sharevm++;
475 
476 	/*
477 	 * Pass a pointer to the new process to the caller.
478 	 */
479 	if (rnewprocp != NULL)
480 		*rnewprocp = p;
481 
482 	/*
483 	 * Preserve synchronization semantics of vfork.  If waiting for
484 	 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT
485 	 * on ourselves, and sleep on our process for the latter flag
486 	 * to go away.
487 	 * XXX Need to stop other rthreads in the parent
488 	 */
489 	if (flags & FORK_PPWAIT)
490 		while (curpr->ps_flags & PS_ISPWAIT)
491 			tsleep(curpr, PWAIT, "ppwait", 0);
492 
493 	/*
494 	 * If we're tracing the child, alert the parent too.
495 	 */
496 	if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED))
497 		psignal(curp, SIGTRAP);
498 
499 	/*
500 	 * Return child pid to parent process
501 	 */
502 	if (retval != NULL) {
503 		retval[0] = pr->ps_pid;
504 		retval[1] = 0;
505 	}
506 	return (0);
507 }
508 
509 int
510 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr,
511     register_t *retval)
512 {
513 	struct process *pr = curp->p_p;
514 	struct proc *p;
515 	pid_t tid;
516 	vaddr_t uaddr;
517 	int error;
518 
519 	if (stack == NULL)
520 		return EINVAL;
521 
522 	if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid)))
523 		return error;
524 
525 	uaddr = uvm_uarea_alloc();
526 	if (uaddr == 0) {
527 		nthreads--;
528 		return ENOMEM;
529 	}
530 
531 	/*
532 	 * From now on, we're committed to the fork and cannot fail.
533 	 */
534 	p = thread_new(curp, uaddr);
535 	atomic_setbits_int(&p->p_flag, P_THREAD);
536 	sigstkinit(&p->p_sigstk);
537 
538 	/* other links */
539 	p->p_p = pr;
540 	pr->ps_refcnt++;
541 
542 	/* local copies */
543 	p->p_fd		= pr->ps_fd;
544 	p->p_vmspace	= pr->ps_vmspace;
545 
546 	/*
547 	 * Finish creating the child thread.  cpu_fork() will copy
548 	 * and update the pcb and make the child ready to run.  The
549 	 * child will exit directly to user mode via child_return()
550 	 * on its first time slice and will not return here.
551 	 */
552 	cpu_fork(curp, p, stack, tcb, child_return, p);
553 
554 	p->p_tid = alloctid();
555 
556 	LIST_INSERT_HEAD(&allproc, p, p_list);
557 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
558 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
559 
560 	/*
561 	 * if somebody else wants to take us to single threaded mode,
562 	 * count ourselves in.
563 	 */
564 	if (pr->ps_single) {
565 		pr->ps_singlecount++;
566 		atomic_setbits_int(&p->p_flag, P_SUSPSINGLE);
567 	}
568 
569 	/*
570 	 * Return tid to parent thread and copy it out to userspace
571 	 */
572 	retval[0] = tid = p->p_tid + THREAD_PID_OFFSET;
573 	retval[1] = 0;
574 	if (tidptr != NULL) {
575 		if (copyout(&tid, tidptr, sizeof(tid)))
576 			psignal(curp, SIGSEGV);
577 	}
578 
579 	fork_thread_start(p, curp, 0);
580 
581 	/*
582 	 * Update stats now that we know the fork was successful.
583 	 */
584 	forkstat.cnttfork++;
585 	uvmexp.forks++;
586 	uvmexp.forks_sharevm++;
587 
588 	return 0;
589 }
590 
591 
592 /* Find an unused tid */
593 pid_t
594 alloctid(void)
595 {
596 	pid_t tid;
597 
598 	do {
599 		/* (0 .. TID_MASK+1] */
600 		tid = 1 + (arc4random() & TID_MASK);
601 	} while (tfind(tid) != NULL);
602 
603 	return (tid);
604 }
605 
606 /*
607  * Checks for current use of a pid, either as a pid or pgid.
608  */
609 pid_t oldpids[128];
610 int
611 ispidtaken(pid_t pid)
612 {
613 	uint32_t i;
614 
615 	for (i = 0; i < nitems(oldpids); i++)
616 		if (pid == oldpids[i])
617 			return (1);
618 
619 	if (prfind(pid) != NULL)
620 		return (1);
621 	if (pgfind(pid) != NULL)
622 		return (1);
623 	if (zombiefind(pid) != NULL)
624 		return (1);
625 	return (0);
626 }
627 
628 /* Find an unused pid */
629 pid_t
630 allocpid(void)
631 {
632 	static pid_t lastpid;
633 	pid_t pid;
634 
635 	if (!randompid) {
636 		/* only used early on for system processes */
637 		pid = ++lastpid;
638 	} else {
639 		/* Find an unused pid satisfying lastpid < pid <= PID_MAX */
640 		do {
641 			pid = arc4random_uniform(PID_MAX - lastpid) + 1 +
642 			    lastpid;
643 		} while (ispidtaken(pid));
644 	}
645 
646 	return pid;
647 }
648 
649 void
650 freepid(pid_t pid)
651 {
652 	static uint32_t idx;
653 
654 	oldpids[idx++ % nitems(oldpids)] = pid;
655 }
656 
657 #if defined(MULTIPROCESSOR)
658 /*
659  * XXX This is a slight hack to get newly-formed processes to
660  * XXX acquire the kernel lock as soon as they run.
661  */
662 void
663 proc_trampoline_mp(void)
664 {
665 	SCHED_ASSERT_LOCKED();
666 	__mp_unlock(&sched_lock);
667 	spl0();
668 	SCHED_ASSERT_UNLOCKED();
669 	KERNEL_ASSERT_UNLOCKED();
670 
671 	KERNEL_LOCK();
672 }
673 #endif
674