xref: /openbsd-src/sys/kern/kern_fork.c (revision f11c99e6d0b54f18ffdc3fbb4b56e58af88a433f)
1 /*	$OpenBSD: kern_fork.c,v 1.243 2022/11/02 07:20:07 guenther Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/malloc.h>
44 #include <sys/mount.h>
45 #include <sys/proc.h>
46 #include <sys/resourcevar.h>
47 #include <sys/signalvar.h>
48 #include <sys/vnode.h>
49 #include <sys/vmmeter.h>
50 #include <sys/acct.h>
51 #include <sys/ktrace.h>
52 #include <sys/sched.h>
53 #include <sys/sysctl.h>
54 #include <sys/pool.h>
55 #include <sys/mman.h>
56 #include <sys/ptrace.h>
57 #include <sys/atomic.h>
58 #include <sys/unistd.h>
59 
60 #include <sys/syscallargs.h>
61 
62 #include <uvm/uvm.h>
63 #include <machine/tcb.h>
64 
65 int	nprocesses = 1;		/* process 0 */
66 int	nthreads = 1;		/* proc 0 */
67 struct	forkstat forkstat;
68 
69 void fork_return(void *);
70 pid_t alloctid(void);
71 pid_t allocpid(void);
72 int ispidtaken(pid_t);
73 
74 void unveil_copy(struct process *parent, struct process *child);
75 
76 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr);
77 struct process *process_new(struct proc *, struct process *, int);
78 int fork_check_maxthread(uid_t _uid);
79 
80 void
81 fork_return(void *arg)
82 {
83 	struct proc *p = (struct proc *)arg;
84 
85 	if (p->p_p->ps_flags & PS_TRACED)
86 		psignal(p, SIGTRAP);
87 
88 	child_return(p);
89 }
90 
91 int
92 sys_fork(struct proc *p, void *v, register_t *retval)
93 {
94 	void (*func)(void *) = child_return;
95 	int flags;
96 
97 	flags = FORK_FORK;
98 	if (p->p_p->ps_ptmask & PTRACE_FORK) {
99 		flags |= FORK_PTRACE;
100 		func = fork_return;
101 	}
102 	return fork1(p, flags, func, NULL, retval, NULL);
103 }
104 
105 int
106 sys_vfork(struct proc *p, void *v, register_t *retval)
107 {
108 	return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL,
109 	    retval, NULL);
110 }
111 
112 int
113 sys___tfork(struct proc *p, void *v, register_t *retval)
114 {
115 	struct sys___tfork_args /* {
116 		syscallarg(const struct __tfork) *param;
117 		syscallarg(size_t) psize;
118 	} */ *uap = v;
119 	size_t psize = SCARG(uap, psize);
120 	struct __tfork param = { 0 };
121 	int error;
122 
123 	if (psize == 0 || psize > sizeof(param))
124 		return EINVAL;
125 	if ((error = copyin(SCARG(uap, param), &param, psize)))
126 		return error;
127 #ifdef KTRACE
128 	if (KTRPOINT(p, KTR_STRUCT))
129 		ktrstruct(p, "tfork", &param, sizeof(param));
130 #endif
131 #ifdef TCB_INVALID
132 	if (TCB_INVALID(param.tf_tcb))
133 		return EINVAL;
134 #endif /* TCB_INVALID */
135 
136 	return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid,
137 	    retval);
138 }
139 
140 /*
141  * Allocate and initialize a thread (proc) structure, given the parent thread.
142  */
143 struct proc *
144 thread_new(struct proc *parent, vaddr_t uaddr)
145 {
146 	struct proc *p;
147 
148 	p = pool_get(&proc_pool, PR_WAITOK);
149 	p->p_stat = SIDL;			/* protect against others */
150 	p->p_runpri = 0;
151 	p->p_flag = 0;
152 
153 	/*
154 	 * Make a proc table entry for the new process.
155 	 * Start by zeroing the section of proc that is zero-initialized,
156 	 * then copy the section that is copied directly from the parent.
157 	 */
158 	memset(&p->p_startzero, 0,
159 	    (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero);
160 	memcpy(&p->p_startcopy, &parent->p_startcopy,
161 	    (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy);
162 	crhold(p->p_ucred);
163 	p->p_addr = (struct user *)uaddr;
164 
165 	/*
166 	 * Initialize the timeouts.
167 	 */
168 	timeout_set(&p->p_sleep_to, endtsleep, p);
169 
170 	return p;
171 }
172 
173 /*
174  * Initialize common bits of a process structure, given the initial thread.
175  */
176 void
177 process_initialize(struct process *pr, struct proc *p)
178 {
179 	/* initialize the thread links */
180 	pr->ps_mainproc = p;
181 	TAILQ_INIT(&pr->ps_threads);
182 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
183 	pr->ps_refcnt = 1;
184 	p->p_p = pr;
185 
186 	/* give the process the same creds as the initial thread */
187 	pr->ps_ucred = p->p_ucred;
188 	crhold(pr->ps_ucred);
189 	/* new thread and new process */
190 	KASSERT(p->p_ucred->cr_refcnt.r_refs >= 2);
191 
192 	LIST_INIT(&pr->ps_children);
193 	LIST_INIT(&pr->ps_orphans);
194 	LIST_INIT(&pr->ps_ftlist);
195 	LIST_INIT(&pr->ps_sigiolst);
196 	TAILQ_INIT(&pr->ps_tslpqueue);
197 
198 	rw_init(&pr->ps_lock, "pslock");
199 	mtx_init(&pr->ps_mtx, IPL_HIGH);
200 
201 	timeout_set_kclock(&pr->ps_realit_to, realitexpire, pr,
202 	    KCLOCK_UPTIME, 0);
203 	timeout_set(&pr->ps_rucheck_to, rucheck, pr);
204 }
205 
206 
207 /*
208  * Allocate and initialize a new process.
209  */
210 struct process *
211 process_new(struct proc *p, struct process *parent, int flags)
212 {
213 	struct process *pr;
214 
215 	pr = pool_get(&process_pool, PR_WAITOK);
216 
217 	/*
218 	 * Make a process structure for the new process.
219 	 * Start by zeroing the section of proc that is zero-initialized,
220 	 * then copy the section that is copied directly from the parent.
221 	 */
222 	memset(&pr->ps_startzero, 0,
223 	    (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero);
224 	memcpy(&pr->ps_startcopy, &parent->ps_startcopy,
225 	    (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy);
226 
227 	process_initialize(pr, p);
228 	pr->ps_pid = allocpid();
229 	lim_fork(parent, pr);
230 
231 	/* post-copy fixups */
232 	pr->ps_pptr = parent;
233 	pr->ps_ppid = parent->ps_pid;
234 
235 	/* bump references to the text vnode (for sysctl) */
236 	pr->ps_textvp = parent->ps_textvp;
237 	if (pr->ps_textvp)
238 		vref(pr->ps_textvp);
239 
240 	/* copy unveil if unveil is active */
241 	unveil_copy(parent, pr);
242 
243 	pr->ps_flags = parent->ps_flags &
244 	    (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE | PS_WXNEEDED);
245 	if (parent->ps_session->s_ttyvp != NULL)
246 		pr->ps_flags |= parent->ps_flags & PS_CONTROLT;
247 
248 	/*
249 	 * Duplicate sub-structures as needed.
250 	 * Increase reference counts on shared objects.
251 	 */
252 	if (flags & FORK_SHAREFILES)
253 		pr->ps_fd = fdshare(parent);
254 	else
255 		pr->ps_fd = fdcopy(parent);
256 	pr->ps_sigacts = sigactsinit(parent);
257 	if (flags & FORK_SHAREVM)
258 		pr->ps_vmspace = uvmspace_share(parent);
259 	else
260 		pr->ps_vmspace = uvmspace_fork(parent);
261 
262 	if (parent->ps_flags & PS_PROFIL)
263 		startprofclock(pr);
264 	if (flags & FORK_PTRACE)
265 		pr->ps_flags |= parent->ps_flags & PS_TRACED;
266 	if (flags & FORK_NOZOMBIE)
267 		pr->ps_flags |= PS_NOZOMBIE;
268 	if (flags & FORK_SYSTEM)
269 		pr->ps_flags |= PS_SYSTEM;
270 
271 	/* mark as embryo to protect against others */
272 	pr->ps_flags |= PS_EMBRYO;
273 
274 	/* Force visibility of all of the above changes */
275 	membar_producer();
276 
277 	/* it's sufficiently inited to be globally visible */
278 	LIST_INSERT_HEAD(&allprocess, pr, ps_list);
279 
280 	return pr;
281 }
282 
283 /* print the 'table full' message once per 10 seconds */
284 struct timeval fork_tfmrate = { 10, 0 };
285 
286 int
287 fork_check_maxthread(uid_t uid)
288 {
289 	/*
290 	 * Although process entries are dynamically created, we still keep
291 	 * a global limit on the maximum number we will create. We reserve
292 	 * the last 5 processes to root. The variable nprocesses is the
293 	 * current number of processes, maxprocess is the limit.  Similar
294 	 * rules for threads (struct proc): we reserve the last 5 to root;
295 	 * the variable nthreads is the current number of procs, maxthread is
296 	 * the limit.
297 	 */
298 	if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) {
299 		static struct timeval lasttfm;
300 
301 		if (ratecheck(&lasttfm, &fork_tfmrate))
302 			tablefull("thread");
303 		return EAGAIN;
304 	}
305 	nthreads++;
306 
307 	return 0;
308 }
309 
310 static inline void
311 fork_thread_start(struct proc *p, struct proc *parent, int flags)
312 {
313 	struct cpu_info *ci;
314 	int s;
315 
316 	SCHED_LOCK(s);
317 	ci = sched_choosecpu_fork(parent, flags);
318 	setrunqueue(ci, p, p->p_usrpri);
319 	SCHED_UNLOCK(s);
320 }
321 
322 int
323 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg,
324     register_t *retval, struct proc **rnewprocp)
325 {
326 	struct process *curpr = curp->p_p;
327 	struct process *pr;
328 	struct proc *p;
329 	uid_t uid = curp->p_ucred->cr_ruid;
330 	struct vmspace *vm;
331 	int count;
332 	vaddr_t uaddr;
333 	int error;
334 	struct  ptrace_state *newptstat = NULL;
335 
336 	KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE
337 	    | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE
338 	    | FORK_SYSTEM)) == 0);
339 	KASSERT(func != NULL);
340 
341 	if ((error = fork_check_maxthread(uid)))
342 		return error;
343 
344 	if ((nprocesses >= maxprocess - 5 && uid != 0) ||
345 	    nprocesses >= maxprocess) {
346 		static struct timeval lasttfm;
347 
348 		if (ratecheck(&lasttfm, &fork_tfmrate))
349 			tablefull("process");
350 		nthreads--;
351 		return EAGAIN;
352 	}
353 	nprocesses++;
354 
355 	/*
356 	 * Increment the count of processes running with this uid.
357 	 * Don't allow a nonprivileged user to exceed their current limit.
358 	 */
359 	count = chgproccnt(uid, 1);
360 	if (uid != 0 && count > lim_cur(RLIMIT_NPROC)) {
361 		(void)chgproccnt(uid, -1);
362 		nprocesses--;
363 		nthreads--;
364 		return EAGAIN;
365 	}
366 
367 	uaddr = uvm_uarea_alloc();
368 	if (uaddr == 0) {
369 		(void)chgproccnt(uid, -1);
370 		nprocesses--;
371 		nthreads--;
372 		return (ENOMEM);
373 	}
374 
375 	/*
376 	 * From now on, we're committed to the fork and cannot fail.
377 	 */
378 	p = thread_new(curp, uaddr);
379 	pr = process_new(p, curpr, flags);
380 
381 	p->p_fd		= pr->ps_fd;
382 	p->p_vmspace	= pr->ps_vmspace;
383 	if (pr->ps_flags & PS_SYSTEM)
384 		atomic_setbits_int(&p->p_flag, P_SYSTEM);
385 
386 	if (flags & FORK_PPWAIT) {
387 		atomic_setbits_int(&pr->ps_flags, PS_PPWAIT);
388 		atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT);
389 	}
390 
391 #ifdef KTRACE
392 	/*
393 	 * Copy traceflag and tracefile if enabled.
394 	 * If not inherited, these were zeroed above.
395 	 */
396 	if (curpr->ps_traceflag & KTRFAC_INHERIT)
397 		ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp,
398 		    curpr->ps_tracecred);
399 #endif
400 
401 	/*
402 	 * Finish creating the child thread.  cpu_fork() will copy
403 	 * and update the pcb and make the child ready to run.  If
404 	 * this is a normal user fork, the child will exit directly
405 	 * to user mode via child_return() on its first time slice
406 	 * and will not return here.  If this is a kernel thread,
407 	 * the specified entry point will be executed.
408 	 */
409 	cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p);
410 
411 	vm = pr->ps_vmspace;
412 
413 	if (flags & FORK_FORK) {
414 		forkstat.cntfork++;
415 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
416 	} else if (flags & FORK_VFORK) {
417 		forkstat.cntvfork++;
418 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
419 	} else {
420 		forkstat.cntkthread++;
421 	}
422 
423 	if (pr->ps_flags & PS_TRACED && flags & FORK_FORK)
424 		newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK);
425 
426 	p->p_tid = alloctid();
427 
428 	LIST_INSERT_HEAD(&allproc, p, p_list);
429 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
430 	LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash);
431 	LIST_INSERT_AFTER(curpr, pr, ps_pglist);
432 	LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling);
433 
434 	if (pr->ps_flags & PS_TRACED) {
435 		pr->ps_oppid = curpr->ps_pid;
436 		process_reparent(pr, curpr->ps_pptr);
437 
438 		/*
439 		 * Set ptrace status.
440 		 */
441 		if (newptstat != NULL) {
442 			pr->ps_ptstat = newptstat;
443 			newptstat = NULL;
444 			curpr->ps_ptstat->pe_report_event = PTRACE_FORK;
445 			pr->ps_ptstat->pe_report_event = PTRACE_FORK;
446 			curpr->ps_ptstat->pe_other_pid = pr->ps_pid;
447 			pr->ps_ptstat->pe_other_pid = curpr->ps_pid;
448 		}
449 	}
450 
451 	/*
452 	 * For new processes, set accounting bits and mark as complete.
453 	 */
454 	nanouptime(&pr->ps_start);
455 	pr->ps_acflag = AFORK;
456 	atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO);
457 
458 	if ((flags & FORK_IDLE) == 0)
459 		fork_thread_start(p, curp, flags);
460 	else
461 		p->p_cpu = arg;
462 
463 	free(newptstat, M_SUBPROC, sizeof(*newptstat));
464 
465 	/*
466 	 * Notify any interested parties about the new process.
467 	 */
468 	KNOTE(&curpr->ps_klist, NOTE_FORK | pr->ps_pid);
469 
470 	/*
471 	 * Update stats now that we know the fork was successful.
472 	 */
473 	uvmexp.forks++;
474 	if (flags & FORK_PPWAIT)
475 		uvmexp.forks_ppwait++;
476 	if (flags & FORK_SHAREVM)
477 		uvmexp.forks_sharevm++;
478 
479 	/*
480 	 * Pass a pointer to the new process to the caller.
481 	 */
482 	if (rnewprocp != NULL)
483 		*rnewprocp = p;
484 
485 	/*
486 	 * Preserve synchronization semantics of vfork.  If waiting for
487 	 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT
488 	 * on ourselves, and sleep on our process for the latter flag
489 	 * to go away.
490 	 * XXX Need to stop other rthreads in the parent
491 	 */
492 	if (flags & FORK_PPWAIT)
493 		while (curpr->ps_flags & PS_ISPWAIT)
494 			tsleep_nsec(curpr, PWAIT, "ppwait", INFSLP);
495 
496 	/*
497 	 * If we're tracing the child, alert the parent too.
498 	 */
499 	if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED))
500 		psignal(curp, SIGTRAP);
501 
502 	/*
503 	 * Return child pid to parent process
504 	 */
505 	if (retval != NULL)
506 		*retval = pr->ps_pid;
507 	return (0);
508 }
509 
510 int
511 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr,
512     register_t *retval)
513 {
514 	struct process *pr = curp->p_p;
515 	struct proc *p;
516 	pid_t tid;
517 	vaddr_t uaddr;
518 	int s, error;
519 
520 	if (stack == NULL)
521 		return EINVAL;
522 
523 	if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid)))
524 		return error;
525 
526 	uaddr = uvm_uarea_alloc();
527 	if (uaddr == 0) {
528 		nthreads--;
529 		return ENOMEM;
530 	}
531 
532 	/*
533 	 * From now on, we're committed to the fork and cannot fail.
534 	 */
535 	p = thread_new(curp, uaddr);
536 	atomic_setbits_int(&p->p_flag, P_THREAD);
537 	sigstkinit(&p->p_sigstk);
538 
539 	/* other links */
540 	p->p_p = pr;
541 	pr->ps_refcnt++;
542 
543 	/* local copies */
544 	p->p_fd		= pr->ps_fd;
545 	p->p_vmspace	= pr->ps_vmspace;
546 
547 	/*
548 	 * Finish creating the child thread.  cpu_fork() will copy
549 	 * and update the pcb and make the child ready to run.  The
550 	 * child will exit directly to user mode via child_return()
551 	 * on its first time slice and will not return here.
552 	 */
553 	cpu_fork(curp, p, stack, tcb, child_return, p);
554 
555 	p->p_tid = alloctid();
556 
557 	LIST_INSERT_HEAD(&allproc, p, p_list);
558 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
559 
560 	SCHED_LOCK(s);
561 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
562 	/*
563 	 * if somebody else wants to take us to single threaded mode,
564 	 * count ourselves in.
565 	 */
566 	if (pr->ps_single) {
567 		atomic_inc_int(&pr->ps_singlecount);
568 		atomic_setbits_int(&p->p_flag, P_SUSPSINGLE);
569 	}
570 	SCHED_UNLOCK(s);
571 
572 	/*
573 	 * Return tid to parent thread and copy it out to userspace
574 	 */
575 	*retval = tid = p->p_tid + THREAD_PID_OFFSET;
576 	if (tidptr != NULL) {
577 		if (copyout(&tid, tidptr, sizeof(tid)))
578 			psignal(curp, SIGSEGV);
579 	}
580 
581 	fork_thread_start(p, curp, 0);
582 
583 	/*
584 	 * Update stats now that we know the fork was successful.
585 	 */
586 	forkstat.cnttfork++;
587 	uvmexp.forks++;
588 	uvmexp.forks_sharevm++;
589 
590 	return 0;
591 }
592 
593 
594 /* Find an unused tid */
595 pid_t
596 alloctid(void)
597 {
598 	pid_t tid;
599 
600 	do {
601 		/* (0 .. TID_MASK+1] */
602 		tid = 1 + (arc4random() & TID_MASK);
603 	} while (tfind(tid) != NULL);
604 
605 	return (tid);
606 }
607 
608 /*
609  * Checks for current use of a pid, either as a pid or pgid.
610  */
611 pid_t oldpids[128];
612 int
613 ispidtaken(pid_t pid)
614 {
615 	uint32_t i;
616 
617 	for (i = 0; i < nitems(oldpids); i++)
618 		if (pid == oldpids[i])
619 			return (1);
620 
621 	if (prfind(pid) != NULL)
622 		return (1);
623 	if (pgfind(pid) != NULL)
624 		return (1);
625 	if (zombiefind(pid) != NULL)
626 		return (1);
627 	return (0);
628 }
629 
630 /* Find an unused pid */
631 pid_t
632 allocpid(void)
633 {
634 	static int first = 1;
635 	pid_t pid;
636 
637 	/* The first PID allocated is always 1. */
638 	if (first) {
639 		first = 0;
640 		return 1;
641 	}
642 
643 	/*
644 	 * All subsequent PIDs are chosen randomly.  We need to
645 	 * find an unused PID in the range [2, PID_MAX].
646 	 */
647 	do {
648 		pid = 2 + arc4random_uniform(PID_MAX - 1);
649 	} while (ispidtaken(pid));
650 	return pid;
651 }
652 
653 void
654 freepid(pid_t pid)
655 {
656 	static uint32_t idx;
657 
658 	oldpids[idx++ % nitems(oldpids)] = pid;
659 }
660 
661 #if defined(MULTIPROCESSOR)
662 /*
663  * XXX This is a slight hack to get newly-formed processes to
664  * XXX acquire the kernel lock as soon as they run.
665  */
666 void
667 proc_trampoline_mp(void)
668 {
669 	SCHED_ASSERT_LOCKED();
670 	__mp_unlock(&sched_lock);
671 	spl0();
672 	SCHED_ASSERT_UNLOCKED();
673 	KERNEL_ASSERT_UNLOCKED();
674 
675 	KERNEL_LOCK();
676 }
677 #endif
678