1 /* $OpenBSD: kern_fork.c,v 1.243 2022/11/02 07:20:07 guenther Exp $ */ 2 /* $NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1989, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 38 */ 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/filedesc.h> 43 #include <sys/malloc.h> 44 #include <sys/mount.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/vnode.h> 49 #include <sys/vmmeter.h> 50 #include <sys/acct.h> 51 #include <sys/ktrace.h> 52 #include <sys/sched.h> 53 #include <sys/sysctl.h> 54 #include <sys/pool.h> 55 #include <sys/mman.h> 56 #include <sys/ptrace.h> 57 #include <sys/atomic.h> 58 #include <sys/unistd.h> 59 60 #include <sys/syscallargs.h> 61 62 #include <uvm/uvm.h> 63 #include <machine/tcb.h> 64 65 int nprocesses = 1; /* process 0 */ 66 int nthreads = 1; /* proc 0 */ 67 struct forkstat forkstat; 68 69 void fork_return(void *); 70 pid_t alloctid(void); 71 pid_t allocpid(void); 72 int ispidtaken(pid_t); 73 74 void unveil_copy(struct process *parent, struct process *child); 75 76 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr); 77 struct process *process_new(struct proc *, struct process *, int); 78 int fork_check_maxthread(uid_t _uid); 79 80 void 81 fork_return(void *arg) 82 { 83 struct proc *p = (struct proc *)arg; 84 85 if (p->p_p->ps_flags & PS_TRACED) 86 psignal(p, SIGTRAP); 87 88 child_return(p); 89 } 90 91 int 92 sys_fork(struct proc *p, void *v, register_t *retval) 93 { 94 void (*func)(void *) = child_return; 95 int flags; 96 97 flags = FORK_FORK; 98 if (p->p_p->ps_ptmask & PTRACE_FORK) { 99 flags |= FORK_PTRACE; 100 func = fork_return; 101 } 102 return fork1(p, flags, func, NULL, retval, NULL); 103 } 104 105 int 106 sys_vfork(struct proc *p, void *v, register_t *retval) 107 { 108 return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL, 109 retval, NULL); 110 } 111 112 int 113 sys___tfork(struct proc *p, void *v, register_t *retval) 114 { 115 struct sys___tfork_args /* { 116 syscallarg(const struct __tfork) *param; 117 syscallarg(size_t) psize; 118 } */ *uap = v; 119 size_t psize = SCARG(uap, psize); 120 struct __tfork param = { 0 }; 121 int error; 122 123 if (psize == 0 || psize > sizeof(param)) 124 return EINVAL; 125 if ((error = copyin(SCARG(uap, param), ¶m, psize))) 126 return error; 127 #ifdef KTRACE 128 if (KTRPOINT(p, KTR_STRUCT)) 129 ktrstruct(p, "tfork", ¶m, sizeof(param)); 130 #endif 131 #ifdef TCB_INVALID 132 if (TCB_INVALID(param.tf_tcb)) 133 return EINVAL; 134 #endif /* TCB_INVALID */ 135 136 return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid, 137 retval); 138 } 139 140 /* 141 * Allocate and initialize a thread (proc) structure, given the parent thread. 142 */ 143 struct proc * 144 thread_new(struct proc *parent, vaddr_t uaddr) 145 { 146 struct proc *p; 147 148 p = pool_get(&proc_pool, PR_WAITOK); 149 p->p_stat = SIDL; /* protect against others */ 150 p->p_runpri = 0; 151 p->p_flag = 0; 152 153 /* 154 * Make a proc table entry for the new process. 155 * Start by zeroing the section of proc that is zero-initialized, 156 * then copy the section that is copied directly from the parent. 157 */ 158 memset(&p->p_startzero, 0, 159 (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero); 160 memcpy(&p->p_startcopy, &parent->p_startcopy, 161 (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy); 162 crhold(p->p_ucred); 163 p->p_addr = (struct user *)uaddr; 164 165 /* 166 * Initialize the timeouts. 167 */ 168 timeout_set(&p->p_sleep_to, endtsleep, p); 169 170 return p; 171 } 172 173 /* 174 * Initialize common bits of a process structure, given the initial thread. 175 */ 176 void 177 process_initialize(struct process *pr, struct proc *p) 178 { 179 /* initialize the thread links */ 180 pr->ps_mainproc = p; 181 TAILQ_INIT(&pr->ps_threads); 182 TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link); 183 pr->ps_refcnt = 1; 184 p->p_p = pr; 185 186 /* give the process the same creds as the initial thread */ 187 pr->ps_ucred = p->p_ucred; 188 crhold(pr->ps_ucred); 189 /* new thread and new process */ 190 KASSERT(p->p_ucred->cr_refcnt.r_refs >= 2); 191 192 LIST_INIT(&pr->ps_children); 193 LIST_INIT(&pr->ps_orphans); 194 LIST_INIT(&pr->ps_ftlist); 195 LIST_INIT(&pr->ps_sigiolst); 196 TAILQ_INIT(&pr->ps_tslpqueue); 197 198 rw_init(&pr->ps_lock, "pslock"); 199 mtx_init(&pr->ps_mtx, IPL_HIGH); 200 201 timeout_set_kclock(&pr->ps_realit_to, realitexpire, pr, 202 KCLOCK_UPTIME, 0); 203 timeout_set(&pr->ps_rucheck_to, rucheck, pr); 204 } 205 206 207 /* 208 * Allocate and initialize a new process. 209 */ 210 struct process * 211 process_new(struct proc *p, struct process *parent, int flags) 212 { 213 struct process *pr; 214 215 pr = pool_get(&process_pool, PR_WAITOK); 216 217 /* 218 * Make a process structure for the new process. 219 * Start by zeroing the section of proc that is zero-initialized, 220 * then copy the section that is copied directly from the parent. 221 */ 222 memset(&pr->ps_startzero, 0, 223 (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero); 224 memcpy(&pr->ps_startcopy, &parent->ps_startcopy, 225 (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy); 226 227 process_initialize(pr, p); 228 pr->ps_pid = allocpid(); 229 lim_fork(parent, pr); 230 231 /* post-copy fixups */ 232 pr->ps_pptr = parent; 233 pr->ps_ppid = parent->ps_pid; 234 235 /* bump references to the text vnode (for sysctl) */ 236 pr->ps_textvp = parent->ps_textvp; 237 if (pr->ps_textvp) 238 vref(pr->ps_textvp); 239 240 /* copy unveil if unveil is active */ 241 unveil_copy(parent, pr); 242 243 pr->ps_flags = parent->ps_flags & 244 (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE | PS_WXNEEDED); 245 if (parent->ps_session->s_ttyvp != NULL) 246 pr->ps_flags |= parent->ps_flags & PS_CONTROLT; 247 248 /* 249 * Duplicate sub-structures as needed. 250 * Increase reference counts on shared objects. 251 */ 252 if (flags & FORK_SHAREFILES) 253 pr->ps_fd = fdshare(parent); 254 else 255 pr->ps_fd = fdcopy(parent); 256 pr->ps_sigacts = sigactsinit(parent); 257 if (flags & FORK_SHAREVM) 258 pr->ps_vmspace = uvmspace_share(parent); 259 else 260 pr->ps_vmspace = uvmspace_fork(parent); 261 262 if (parent->ps_flags & PS_PROFIL) 263 startprofclock(pr); 264 if (flags & FORK_PTRACE) 265 pr->ps_flags |= parent->ps_flags & PS_TRACED; 266 if (flags & FORK_NOZOMBIE) 267 pr->ps_flags |= PS_NOZOMBIE; 268 if (flags & FORK_SYSTEM) 269 pr->ps_flags |= PS_SYSTEM; 270 271 /* mark as embryo to protect against others */ 272 pr->ps_flags |= PS_EMBRYO; 273 274 /* Force visibility of all of the above changes */ 275 membar_producer(); 276 277 /* it's sufficiently inited to be globally visible */ 278 LIST_INSERT_HEAD(&allprocess, pr, ps_list); 279 280 return pr; 281 } 282 283 /* print the 'table full' message once per 10 seconds */ 284 struct timeval fork_tfmrate = { 10, 0 }; 285 286 int 287 fork_check_maxthread(uid_t uid) 288 { 289 /* 290 * Although process entries are dynamically created, we still keep 291 * a global limit on the maximum number we will create. We reserve 292 * the last 5 processes to root. The variable nprocesses is the 293 * current number of processes, maxprocess is the limit. Similar 294 * rules for threads (struct proc): we reserve the last 5 to root; 295 * the variable nthreads is the current number of procs, maxthread is 296 * the limit. 297 */ 298 if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) { 299 static struct timeval lasttfm; 300 301 if (ratecheck(&lasttfm, &fork_tfmrate)) 302 tablefull("thread"); 303 return EAGAIN; 304 } 305 nthreads++; 306 307 return 0; 308 } 309 310 static inline void 311 fork_thread_start(struct proc *p, struct proc *parent, int flags) 312 { 313 struct cpu_info *ci; 314 int s; 315 316 SCHED_LOCK(s); 317 ci = sched_choosecpu_fork(parent, flags); 318 setrunqueue(ci, p, p->p_usrpri); 319 SCHED_UNLOCK(s); 320 } 321 322 int 323 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg, 324 register_t *retval, struct proc **rnewprocp) 325 { 326 struct process *curpr = curp->p_p; 327 struct process *pr; 328 struct proc *p; 329 uid_t uid = curp->p_ucred->cr_ruid; 330 struct vmspace *vm; 331 int count; 332 vaddr_t uaddr; 333 int error; 334 struct ptrace_state *newptstat = NULL; 335 336 KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE 337 | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE 338 | FORK_SYSTEM)) == 0); 339 KASSERT(func != NULL); 340 341 if ((error = fork_check_maxthread(uid))) 342 return error; 343 344 if ((nprocesses >= maxprocess - 5 && uid != 0) || 345 nprocesses >= maxprocess) { 346 static struct timeval lasttfm; 347 348 if (ratecheck(&lasttfm, &fork_tfmrate)) 349 tablefull("process"); 350 nthreads--; 351 return EAGAIN; 352 } 353 nprocesses++; 354 355 /* 356 * Increment the count of processes running with this uid. 357 * Don't allow a nonprivileged user to exceed their current limit. 358 */ 359 count = chgproccnt(uid, 1); 360 if (uid != 0 && count > lim_cur(RLIMIT_NPROC)) { 361 (void)chgproccnt(uid, -1); 362 nprocesses--; 363 nthreads--; 364 return EAGAIN; 365 } 366 367 uaddr = uvm_uarea_alloc(); 368 if (uaddr == 0) { 369 (void)chgproccnt(uid, -1); 370 nprocesses--; 371 nthreads--; 372 return (ENOMEM); 373 } 374 375 /* 376 * From now on, we're committed to the fork and cannot fail. 377 */ 378 p = thread_new(curp, uaddr); 379 pr = process_new(p, curpr, flags); 380 381 p->p_fd = pr->ps_fd; 382 p->p_vmspace = pr->ps_vmspace; 383 if (pr->ps_flags & PS_SYSTEM) 384 atomic_setbits_int(&p->p_flag, P_SYSTEM); 385 386 if (flags & FORK_PPWAIT) { 387 atomic_setbits_int(&pr->ps_flags, PS_PPWAIT); 388 atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT); 389 } 390 391 #ifdef KTRACE 392 /* 393 * Copy traceflag and tracefile if enabled. 394 * If not inherited, these were zeroed above. 395 */ 396 if (curpr->ps_traceflag & KTRFAC_INHERIT) 397 ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp, 398 curpr->ps_tracecred); 399 #endif 400 401 /* 402 * Finish creating the child thread. cpu_fork() will copy 403 * and update the pcb and make the child ready to run. If 404 * this is a normal user fork, the child will exit directly 405 * to user mode via child_return() on its first time slice 406 * and will not return here. If this is a kernel thread, 407 * the specified entry point will be executed. 408 */ 409 cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p); 410 411 vm = pr->ps_vmspace; 412 413 if (flags & FORK_FORK) { 414 forkstat.cntfork++; 415 forkstat.sizfork += vm->vm_dsize + vm->vm_ssize; 416 } else if (flags & FORK_VFORK) { 417 forkstat.cntvfork++; 418 forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize; 419 } else { 420 forkstat.cntkthread++; 421 } 422 423 if (pr->ps_flags & PS_TRACED && flags & FORK_FORK) 424 newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK); 425 426 p->p_tid = alloctid(); 427 428 LIST_INSERT_HEAD(&allproc, p, p_list); 429 LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash); 430 LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash); 431 LIST_INSERT_AFTER(curpr, pr, ps_pglist); 432 LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling); 433 434 if (pr->ps_flags & PS_TRACED) { 435 pr->ps_oppid = curpr->ps_pid; 436 process_reparent(pr, curpr->ps_pptr); 437 438 /* 439 * Set ptrace status. 440 */ 441 if (newptstat != NULL) { 442 pr->ps_ptstat = newptstat; 443 newptstat = NULL; 444 curpr->ps_ptstat->pe_report_event = PTRACE_FORK; 445 pr->ps_ptstat->pe_report_event = PTRACE_FORK; 446 curpr->ps_ptstat->pe_other_pid = pr->ps_pid; 447 pr->ps_ptstat->pe_other_pid = curpr->ps_pid; 448 } 449 } 450 451 /* 452 * For new processes, set accounting bits and mark as complete. 453 */ 454 nanouptime(&pr->ps_start); 455 pr->ps_acflag = AFORK; 456 atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO); 457 458 if ((flags & FORK_IDLE) == 0) 459 fork_thread_start(p, curp, flags); 460 else 461 p->p_cpu = arg; 462 463 free(newptstat, M_SUBPROC, sizeof(*newptstat)); 464 465 /* 466 * Notify any interested parties about the new process. 467 */ 468 KNOTE(&curpr->ps_klist, NOTE_FORK | pr->ps_pid); 469 470 /* 471 * Update stats now that we know the fork was successful. 472 */ 473 uvmexp.forks++; 474 if (flags & FORK_PPWAIT) 475 uvmexp.forks_ppwait++; 476 if (flags & FORK_SHAREVM) 477 uvmexp.forks_sharevm++; 478 479 /* 480 * Pass a pointer to the new process to the caller. 481 */ 482 if (rnewprocp != NULL) 483 *rnewprocp = p; 484 485 /* 486 * Preserve synchronization semantics of vfork. If waiting for 487 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT 488 * on ourselves, and sleep on our process for the latter flag 489 * to go away. 490 * XXX Need to stop other rthreads in the parent 491 */ 492 if (flags & FORK_PPWAIT) 493 while (curpr->ps_flags & PS_ISPWAIT) 494 tsleep_nsec(curpr, PWAIT, "ppwait", INFSLP); 495 496 /* 497 * If we're tracing the child, alert the parent too. 498 */ 499 if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED)) 500 psignal(curp, SIGTRAP); 501 502 /* 503 * Return child pid to parent process 504 */ 505 if (retval != NULL) 506 *retval = pr->ps_pid; 507 return (0); 508 } 509 510 int 511 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr, 512 register_t *retval) 513 { 514 struct process *pr = curp->p_p; 515 struct proc *p; 516 pid_t tid; 517 vaddr_t uaddr; 518 int s, error; 519 520 if (stack == NULL) 521 return EINVAL; 522 523 if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid))) 524 return error; 525 526 uaddr = uvm_uarea_alloc(); 527 if (uaddr == 0) { 528 nthreads--; 529 return ENOMEM; 530 } 531 532 /* 533 * From now on, we're committed to the fork and cannot fail. 534 */ 535 p = thread_new(curp, uaddr); 536 atomic_setbits_int(&p->p_flag, P_THREAD); 537 sigstkinit(&p->p_sigstk); 538 539 /* other links */ 540 p->p_p = pr; 541 pr->ps_refcnt++; 542 543 /* local copies */ 544 p->p_fd = pr->ps_fd; 545 p->p_vmspace = pr->ps_vmspace; 546 547 /* 548 * Finish creating the child thread. cpu_fork() will copy 549 * and update the pcb and make the child ready to run. The 550 * child will exit directly to user mode via child_return() 551 * on its first time slice and will not return here. 552 */ 553 cpu_fork(curp, p, stack, tcb, child_return, p); 554 555 p->p_tid = alloctid(); 556 557 LIST_INSERT_HEAD(&allproc, p, p_list); 558 LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash); 559 560 SCHED_LOCK(s); 561 TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link); 562 /* 563 * if somebody else wants to take us to single threaded mode, 564 * count ourselves in. 565 */ 566 if (pr->ps_single) { 567 atomic_inc_int(&pr->ps_singlecount); 568 atomic_setbits_int(&p->p_flag, P_SUSPSINGLE); 569 } 570 SCHED_UNLOCK(s); 571 572 /* 573 * Return tid to parent thread and copy it out to userspace 574 */ 575 *retval = tid = p->p_tid + THREAD_PID_OFFSET; 576 if (tidptr != NULL) { 577 if (copyout(&tid, tidptr, sizeof(tid))) 578 psignal(curp, SIGSEGV); 579 } 580 581 fork_thread_start(p, curp, 0); 582 583 /* 584 * Update stats now that we know the fork was successful. 585 */ 586 forkstat.cnttfork++; 587 uvmexp.forks++; 588 uvmexp.forks_sharevm++; 589 590 return 0; 591 } 592 593 594 /* Find an unused tid */ 595 pid_t 596 alloctid(void) 597 { 598 pid_t tid; 599 600 do { 601 /* (0 .. TID_MASK+1] */ 602 tid = 1 + (arc4random() & TID_MASK); 603 } while (tfind(tid) != NULL); 604 605 return (tid); 606 } 607 608 /* 609 * Checks for current use of a pid, either as a pid or pgid. 610 */ 611 pid_t oldpids[128]; 612 int 613 ispidtaken(pid_t pid) 614 { 615 uint32_t i; 616 617 for (i = 0; i < nitems(oldpids); i++) 618 if (pid == oldpids[i]) 619 return (1); 620 621 if (prfind(pid) != NULL) 622 return (1); 623 if (pgfind(pid) != NULL) 624 return (1); 625 if (zombiefind(pid) != NULL) 626 return (1); 627 return (0); 628 } 629 630 /* Find an unused pid */ 631 pid_t 632 allocpid(void) 633 { 634 static int first = 1; 635 pid_t pid; 636 637 /* The first PID allocated is always 1. */ 638 if (first) { 639 first = 0; 640 return 1; 641 } 642 643 /* 644 * All subsequent PIDs are chosen randomly. We need to 645 * find an unused PID in the range [2, PID_MAX]. 646 */ 647 do { 648 pid = 2 + arc4random_uniform(PID_MAX - 1); 649 } while (ispidtaken(pid)); 650 return pid; 651 } 652 653 void 654 freepid(pid_t pid) 655 { 656 static uint32_t idx; 657 658 oldpids[idx++ % nitems(oldpids)] = pid; 659 } 660 661 #if defined(MULTIPROCESSOR) 662 /* 663 * XXX This is a slight hack to get newly-formed processes to 664 * XXX acquire the kernel lock as soon as they run. 665 */ 666 void 667 proc_trampoline_mp(void) 668 { 669 SCHED_ASSERT_LOCKED(); 670 __mp_unlock(&sched_lock); 671 spl0(); 672 SCHED_ASSERT_UNLOCKED(); 673 KERNEL_ASSERT_UNLOCKED(); 674 675 KERNEL_LOCK(); 676 } 677 #endif 678