xref: /openbsd-src/sys/kern/kern_fork.c (revision a8d1d9bfba3216f52158b1dc82ad0c25f4ae0a2f)
1 /*	$OpenBSD: kern_fork.c,v 1.217 2019/11/29 20:12:19 guenther Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/exec.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/vnode.h>
51 #include <sys/vmmeter.h>
52 #include <sys/acct.h>
53 #include <sys/ktrace.h>
54 #include <sys/sched.h>
55 #include <sys/sysctl.h>
56 #include <sys/pool.h>
57 #include <sys/mman.h>
58 #include <sys/ptrace.h>
59 #include <sys/atomic.h>
60 #include <sys/pledge.h>
61 #include <sys/unistd.h>
62 
63 #include <sys/syscallargs.h>
64 
65 #include <uvm/uvm.h>
66 #include <machine/tcb.h>
67 
68 int	nprocesses = 1;		/* process 0 */
69 int	nthreads = 1;		/* proc 0 */
70 int	randompid;		/* when set to 1, pid's go random */
71 struct	forkstat forkstat;
72 
73 void fork_return(void *);
74 pid_t alloctid(void);
75 pid_t allocpid(void);
76 int ispidtaken(pid_t);
77 
78 void unveil_copy(struct process *parent, struct process *child);
79 
80 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr);
81 struct process *process_new(struct proc *, struct process *, int);
82 int fork_check_maxthread(uid_t _uid);
83 
84 void
85 fork_return(void *arg)
86 {
87 	struct proc *p = (struct proc *)arg;
88 
89 	if (p->p_p->ps_flags & PS_TRACED)
90 		psignal(p, SIGTRAP);
91 
92 	child_return(p);
93 }
94 
95 int
96 sys_fork(struct proc *p, void *v, register_t *retval)
97 {
98 	int flags;
99 
100 	flags = FORK_FORK;
101 	if (p->p_p->ps_ptmask & PTRACE_FORK)
102 		flags |= FORK_PTRACE;
103 	return fork1(p, flags, fork_return, NULL, retval, NULL);
104 }
105 
106 int
107 sys_vfork(struct proc *p, void *v, register_t *retval)
108 {
109 	return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL,
110 	    retval, NULL);
111 }
112 
113 int
114 sys___tfork(struct proc *p, void *v, register_t *retval)
115 {
116 	struct sys___tfork_args /* {
117 		syscallarg(const struct __tfork) *param;
118 		syscallarg(size_t) psize;
119 	} */ *uap = v;
120 	size_t psize = SCARG(uap, psize);
121 	struct __tfork param = { 0 };
122 	int error;
123 
124 	if (psize == 0 || psize > sizeof(param))
125 		return EINVAL;
126 	if ((error = copyin(SCARG(uap, param), &param, psize)))
127 		return error;
128 #ifdef KTRACE
129 	if (KTRPOINT(p, KTR_STRUCT))
130 		ktrstruct(p, "tfork", &param, sizeof(param));
131 #endif
132 #ifdef TCB_INVALID
133 	if (TCB_INVALID(param.tf_tcb))
134 		return EINVAL;
135 #endif /* TCB_INVALID */
136 
137 	return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid,
138 	    retval);
139 }
140 
141 /*
142  * Allocate and initialize a thread (proc) structure, given the parent thread.
143  */
144 struct proc *
145 thread_new(struct proc *parent, vaddr_t uaddr)
146 {
147 	struct proc *p;
148 
149 	p = pool_get(&proc_pool, PR_WAITOK);
150 	p->p_stat = SIDL;			/* protect against others */
151 	p->p_flag = 0;
152 	p->p_limit = NULL;
153 
154 	/*
155 	 * Make a proc table entry for the new process.
156 	 * Start by zeroing the section of proc that is zero-initialized,
157 	 * then copy the section that is copied directly from the parent.
158 	 */
159 	memset(&p->p_startzero, 0,
160 	    (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero);
161 	memcpy(&p->p_startcopy, &parent->p_startcopy,
162 	    (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy);
163 	crhold(p->p_ucred);
164 	p->p_addr = (struct user *)uaddr;
165 
166 	/*
167 	 * Initialize the timeouts.
168 	 */
169 	timeout_set(&p->p_sleep_to, endtsleep, p);
170 
171 #ifdef WITNESS
172 	p->p_sleeplocks = NULL;
173 #endif
174 
175 	return p;
176 }
177 
178 /*
179  * Initialize common bits of a process structure, given the initial thread.
180  */
181 void
182 process_initialize(struct process *pr, struct proc *p)
183 {
184 	/* initialize the thread links */
185 	pr->ps_mainproc = p;
186 	TAILQ_INIT(&pr->ps_threads);
187 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
188 	pr->ps_refcnt = 1;
189 	p->p_p = pr;
190 
191 	/* give the process the same creds as the initial thread */
192 	pr->ps_ucred = p->p_ucred;
193 	crhold(pr->ps_ucred);
194 	KASSERT(p->p_ucred->cr_ref >= 2);	/* new thread and new process */
195 
196 	LIST_INIT(&pr->ps_children);
197 	LIST_INIT(&pr->ps_ftlist);
198 	LIST_INIT(&pr->ps_kqlist);
199 	LIST_INIT(&pr->ps_sigiolst);
200 
201 	mtx_init(&pr->ps_mtx, IPL_MPFLOOR);
202 
203 	timeout_set(&pr->ps_realit_to, realitexpire, pr);
204 	timeout_set(&pr->ps_rucheck_to, rucheck, pr);
205 }
206 
207 
208 /*
209  * Allocate and initialize a new process.
210  */
211 struct process *
212 process_new(struct proc *p, struct process *parent, int flags)
213 {
214 	struct process *pr;
215 
216 	pr = pool_get(&process_pool, PR_WAITOK);
217 
218 	/*
219 	 * Make a process structure for the new process.
220 	 * Start by zeroing the section of proc that is zero-initialized,
221 	 * then copy the section that is copied directly from the parent.
222 	 */
223 	memset(&pr->ps_startzero, 0,
224 	    (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero);
225 	memcpy(&pr->ps_startcopy, &parent->ps_startcopy,
226 	    (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy);
227 
228 	process_initialize(pr, p);
229 	pr->ps_pid = allocpid();
230 	lim_fork(parent, pr);
231 
232 	/* post-copy fixups */
233 	pr->ps_pptr = parent;
234 
235 	/* bump references to the text vnode (for sysctl) */
236 	pr->ps_textvp = parent->ps_textvp;
237 	if (pr->ps_textvp)
238 		vref(pr->ps_textvp);
239 
240 	/* copy unveil if unveil is active */
241 	unveil_copy(parent, pr);
242 
243 	pr->ps_flags = parent->ps_flags &
244 	    (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE | PS_WXNEEDED);
245 	if (parent->ps_session->s_ttyvp != NULL)
246 		pr->ps_flags |= parent->ps_flags & PS_CONTROLT;
247 
248 	/*
249 	 * Duplicate sub-structures as needed.
250 	 * Increase reference counts on shared objects.
251 	 */
252 	if (flags & FORK_SHAREFILES)
253 		pr->ps_fd = fdshare(parent);
254 	else
255 		pr->ps_fd = fdcopy(parent);
256 	if (flags & FORK_SIGHAND)
257 		pr->ps_sigacts = sigactsshare(parent);
258 	else
259 		pr->ps_sigacts = sigactsinit(parent);
260 	if (flags & FORK_SHAREVM)
261 		pr->ps_vmspace = uvmspace_share(parent);
262 	else
263 		pr->ps_vmspace = uvmspace_fork(parent);
264 
265 	if (parent->ps_flags & PS_PROFIL)
266 		startprofclock(pr);
267 	if (flags & FORK_PTRACE)
268 		pr->ps_flags |= parent->ps_flags & PS_TRACED;
269 	if (flags & FORK_NOZOMBIE)
270 		pr->ps_flags |= PS_NOZOMBIE;
271 	if (flags & FORK_SYSTEM)
272 		pr->ps_flags |= PS_SYSTEM;
273 
274 	/* mark as embryo to protect against others */
275 	pr->ps_flags |= PS_EMBRYO;
276 
277 	/* Force visibility of all of the above changes */
278 	membar_producer();
279 
280 	/* it's sufficiently inited to be globally visible */
281 	LIST_INSERT_HEAD(&allprocess, pr, ps_list);
282 
283 	return pr;
284 }
285 
286 /* print the 'table full' message once per 10 seconds */
287 struct timeval fork_tfmrate = { 10, 0 };
288 
289 int
290 fork_check_maxthread(uid_t uid)
291 {
292 	/*
293 	 * Although process entries are dynamically created, we still keep
294 	 * a global limit on the maximum number we will create. We reserve
295 	 * the last 5 processes to root. The variable nprocesses is the
296 	 * current number of processes, maxprocess is the limit.  Similar
297 	 * rules for threads (struct proc): we reserve the last 5 to root;
298 	 * the variable nthreads is the current number of procs, maxthread is
299 	 * the limit.
300 	 */
301 	if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) {
302 		static struct timeval lasttfm;
303 
304 		if (ratecheck(&lasttfm, &fork_tfmrate))
305 			tablefull("proc");
306 		return EAGAIN;
307 	}
308 	nthreads++;
309 
310 	return 0;
311 }
312 
313 static inline void
314 fork_thread_start(struct proc *p, struct proc *parent, int flags)
315 {
316 	struct cpu_info *ci;
317 	int s;
318 
319 	SCHED_LOCK(s);
320 	ci = sched_choosecpu_fork(parent, flags);
321 	setrunqueue(ci, p, p->p_priority);
322 	SCHED_UNLOCK(s);
323 }
324 
325 int
326 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg,
327     register_t *retval, struct proc **rnewprocp)
328 {
329 	struct process *curpr = curp->p_p;
330 	struct process *pr;
331 	struct proc *p;
332 	uid_t uid = curp->p_ucred->cr_ruid;
333 	struct vmspace *vm;
334 	int count;
335 	vaddr_t uaddr;
336 	int error;
337 	struct  ptrace_state *newptstat = NULL;
338 
339 	KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE
340 	    | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE
341 	    | FORK_SYSTEM | FORK_SIGHAND)) == 0);
342 	KASSERT((flags & FORK_SIGHAND) == 0 || (flags & FORK_SHAREVM));
343 	KASSERT(func != NULL);
344 
345 	if ((error = fork_check_maxthread(uid)))
346 		return error;
347 
348 	if ((nprocesses >= maxprocess - 5 && uid != 0) ||
349 	    nprocesses >= maxprocess) {
350 		static struct timeval lasttfm;
351 
352 		if (ratecheck(&lasttfm, &fork_tfmrate))
353 			tablefull("process");
354 		nthreads--;
355 		return EAGAIN;
356 	}
357 	nprocesses++;
358 
359 	/*
360 	 * Increment the count of processes running with this uid.
361 	 * Don't allow a nonprivileged user to exceed their current limit.
362 	 */
363 	count = chgproccnt(uid, 1);
364 	if (uid != 0 && count > lim_cur(RLIMIT_NPROC)) {
365 		(void)chgproccnt(uid, -1);
366 		nprocesses--;
367 		nthreads--;
368 		return EAGAIN;
369 	}
370 
371 	uaddr = uvm_uarea_alloc();
372 	if (uaddr == 0) {
373 		(void)chgproccnt(uid, -1);
374 		nprocesses--;
375 		nthreads--;
376 		return (ENOMEM);
377 	}
378 
379 	/*
380 	 * From now on, we're committed to the fork and cannot fail.
381 	 */
382 	p = thread_new(curp, uaddr);
383 	pr = process_new(p, curpr, flags);
384 
385 	p->p_fd		= pr->ps_fd;
386 	p->p_vmspace	= pr->ps_vmspace;
387 	if (pr->ps_flags & PS_SYSTEM)
388 		atomic_setbits_int(&p->p_flag, P_SYSTEM);
389 
390 	if (flags & FORK_PPWAIT) {
391 		atomic_setbits_int(&pr->ps_flags, PS_PPWAIT);
392 		atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT);
393 	}
394 
395 #ifdef KTRACE
396 	/*
397 	 * Copy traceflag and tracefile if enabled.
398 	 * If not inherited, these were zeroed above.
399 	 */
400 	if (curpr->ps_traceflag & KTRFAC_INHERIT)
401 		ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp,
402 		    curpr->ps_tracecred);
403 #endif
404 
405 	/*
406 	 * Finish creating the child thread.  cpu_fork() will copy
407 	 * and update the pcb and make the child ready to run.  If
408 	 * this is a normal user fork, the child will exit directly
409 	 * to user mode via child_return() on its first time slice
410 	 * and will not return here.  If this is a kernel thread,
411 	 * the specified entry point will be executed.
412 	 */
413 	cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p);
414 
415 	vm = pr->ps_vmspace;
416 
417 	if (flags & FORK_FORK) {
418 		forkstat.cntfork++;
419 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
420 	} else if (flags & FORK_VFORK) {
421 		forkstat.cntvfork++;
422 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
423 	} else {
424 		forkstat.cntkthread++;
425 	}
426 
427 	if (pr->ps_flags & PS_TRACED && flags & FORK_FORK)
428 		newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK);
429 
430 	p->p_tid = alloctid();
431 
432 	LIST_INSERT_HEAD(&allproc, p, p_list);
433 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
434 	LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash);
435 	LIST_INSERT_AFTER(curpr, pr, ps_pglist);
436 	LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling);
437 
438 	if (pr->ps_flags & PS_TRACED) {
439 		pr->ps_oppid = curpr->ps_pid;
440 		if (pr->ps_pptr != curpr->ps_pptr)
441 			proc_reparent(pr, curpr->ps_pptr);
442 
443 		/*
444 		 * Set ptrace status.
445 		 */
446 		if (newptstat != NULL) {
447 			pr->ps_ptstat = newptstat;
448 			newptstat = NULL;
449 			curpr->ps_ptstat->pe_report_event = PTRACE_FORK;
450 			pr->ps_ptstat->pe_report_event = PTRACE_FORK;
451 			curpr->ps_ptstat->pe_other_pid = pr->ps_pid;
452 			pr->ps_ptstat->pe_other_pid = curpr->ps_pid;
453 		}
454 	}
455 
456 	/*
457 	 * For new processes, set accounting bits and mark as complete.
458 	 */
459 	nanouptime(&pr->ps_start);
460 	pr->ps_acflag = AFORK;
461 	atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO);
462 
463 	if ((flags & FORK_IDLE) == 0)
464 		fork_thread_start(p, curp, flags);
465 	else
466 		p->p_cpu = arg;
467 
468 	free(newptstat, M_SUBPROC, sizeof(*newptstat));
469 
470 	/*
471 	 * Notify any interested parties about the new process.
472 	 */
473 	KNOTE(&curpr->ps_klist, NOTE_FORK | pr->ps_pid);
474 
475 	/*
476 	 * Update stats now that we know the fork was successful.
477 	 */
478 	uvmexp.forks++;
479 	if (flags & FORK_PPWAIT)
480 		uvmexp.forks_ppwait++;
481 	if (flags & FORK_SHAREVM)
482 		uvmexp.forks_sharevm++;
483 
484 	/*
485 	 * Pass a pointer to the new process to the caller.
486 	 */
487 	if (rnewprocp != NULL)
488 		*rnewprocp = p;
489 
490 	/*
491 	 * Preserve synchronization semantics of vfork.  If waiting for
492 	 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT
493 	 * on ourselves, and sleep on our process for the latter flag
494 	 * to go away.
495 	 * XXX Need to stop other rthreads in the parent
496 	 */
497 	if (flags & FORK_PPWAIT)
498 		while (curpr->ps_flags & PS_ISPWAIT)
499 			tsleep(curpr, PWAIT, "ppwait", 0);
500 
501 	/*
502 	 * If we're tracing the child, alert the parent too.
503 	 */
504 	if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED))
505 		psignal(curp, SIGTRAP);
506 
507 	/*
508 	 * Return child pid to parent process
509 	 */
510 	if (retval != NULL) {
511 		retval[0] = pr->ps_pid;
512 		retval[1] = 0;
513 	}
514 	return (0);
515 }
516 
517 int
518 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr,
519     register_t *retval)
520 {
521 	struct process *pr = curp->p_p;
522 	struct proc *p;
523 	pid_t tid;
524 	vaddr_t uaddr;
525 	int error;
526 
527 	if (stack == NULL)
528 		return EINVAL;
529 
530 	if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid)))
531 		return error;
532 
533 	uaddr = uvm_uarea_alloc();
534 	if (uaddr == 0) {
535 		nthreads--;
536 		return ENOMEM;
537 	}
538 
539 	/*
540 	 * From now on, we're committed to the fork and cannot fail.
541 	 */
542 	p = thread_new(curp, uaddr);
543 	atomic_setbits_int(&p->p_flag, P_THREAD);
544 	sigstkinit(&p->p_sigstk);
545 
546 	/* other links */
547 	p->p_p = pr;
548 	pr->ps_refcnt++;
549 
550 	/* local copies */
551 	p->p_fd		= pr->ps_fd;
552 	p->p_vmspace	= pr->ps_vmspace;
553 
554 	/*
555 	 * Finish creating the child thread.  cpu_fork() will copy
556 	 * and update the pcb and make the child ready to run.  The
557 	 * child will exit directly to user mode via child_return()
558 	 * on its first time slice and will not return here.
559 	 */
560 	cpu_fork(curp, p, stack, tcb, child_return, p);
561 
562 	p->p_tid = alloctid();
563 
564 	LIST_INSERT_HEAD(&allproc, p, p_list);
565 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
566 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
567 
568 	/*
569 	 * if somebody else wants to take us to single threaded mode,
570 	 * count ourselves in.
571 	 */
572 	if (pr->ps_single) {
573 		pr->ps_singlecount++;
574 		atomic_setbits_int(&p->p_flag, P_SUSPSINGLE);
575 	}
576 
577 	/*
578 	 * Return tid to parent thread and copy it out to userspace
579 	 */
580 	retval[0] = tid = p->p_tid + THREAD_PID_OFFSET;
581 	retval[1] = 0;
582 	if (tidptr != NULL) {
583 		if (copyout(&tid, tidptr, sizeof(tid)))
584 			psignal(curp, SIGSEGV);
585 	}
586 
587 	fork_thread_start(p, curp, 0);
588 
589 	/*
590 	 * Update stats now that we know the fork was successful.
591 	 */
592 	forkstat.cnttfork++;
593 	uvmexp.forks++;
594 	uvmexp.forks_sharevm++;
595 
596 	return 0;
597 }
598 
599 
600 /* Find an unused tid */
601 pid_t
602 alloctid(void)
603 {
604 	pid_t tid;
605 
606 	do {
607 		/* (0 .. TID_MASK+1] */
608 		tid = 1 + (arc4random() & TID_MASK);
609 	} while (tfind(tid) != NULL);
610 
611 	return (tid);
612 }
613 
614 /*
615  * Checks for current use of a pid, either as a pid or pgid.
616  */
617 pid_t oldpids[128];
618 int
619 ispidtaken(pid_t pid)
620 {
621 	uint32_t i;
622 
623 	for (i = 0; i < nitems(oldpids); i++)
624 		if (pid == oldpids[i])
625 			return (1);
626 
627 	if (prfind(pid) != NULL)
628 		return (1);
629 	if (pgfind(pid) != NULL)
630 		return (1);
631 	if (zombiefind(pid) != NULL)
632 		return (1);
633 	return (0);
634 }
635 
636 /* Find an unused pid */
637 pid_t
638 allocpid(void)
639 {
640 	static pid_t lastpid;
641 	pid_t pid;
642 
643 	if (!randompid) {
644 		/* only used early on for system processes */
645 		pid = ++lastpid;
646 	} else {
647 		/* Find an unused pid satisfying lastpid < pid <= PID_MAX */
648 		do {
649 			pid = arc4random_uniform(PID_MAX - lastpid) + 1 +
650 			    lastpid;
651 		} while (ispidtaken(pid));
652 	}
653 
654 	return pid;
655 }
656 
657 void
658 freepid(pid_t pid)
659 {
660 	static uint32_t idx;
661 
662 	oldpids[idx++ % nitems(oldpids)] = pid;
663 }
664 
665 #if defined(MULTIPROCESSOR)
666 /*
667  * XXX This is a slight hack to get newly-formed processes to
668  * XXX acquire the kernel lock as soon as they run.
669  */
670 void
671 proc_trampoline_mp(void)
672 {
673 	SCHED_ASSERT_LOCKED();
674 	__mp_unlock(&sched_lock);
675 	spl0();
676 	SCHED_ASSERT_UNLOCKED();
677 	KERNEL_ASSERT_UNLOCKED();
678 
679 	KERNEL_LOCK();
680 }
681 #endif
682