xref: /openbsd-src/sys/kern/kern_fork.c (revision 9f082b73e7d9d71ad21a4bc17cc2270416206fb4)
1 /*	$OpenBSD: kern_fork.c,v 1.206 2018/08/25 15:38:07 anton Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/exec.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/vnode.h>
51 #include <sys/vmmeter.h>
52 #include <sys/acct.h>
53 #include <sys/ktrace.h>
54 #include <sys/sched.h>
55 #include <sys/sysctl.h>
56 #include <sys/pool.h>
57 #include <sys/mman.h>
58 #include <sys/ptrace.h>
59 #include <sys/atomic.h>
60 #include <sys/pledge.h>
61 #include <sys/unistd.h>
62 
63 #include <sys/syscallargs.h>
64 
65 #include <uvm/uvm.h>
66 #include <machine/tcb.h>
67 
68 #include "kcov.h"
69 
70 int	nprocesses = 1;		/* process 0 */
71 int	nthreads = 1;		/* proc 0 */
72 int	randompid;		/* when set to 1, pid's go random */
73 struct	forkstat forkstat;
74 
75 void fork_return(void *);
76 pid_t alloctid(void);
77 pid_t allocpid(void);
78 int ispidtaken(pid_t);
79 
80 void unveil_copy(struct process *parent, struct process *child);
81 
82 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr);
83 struct process *process_new(struct proc *, struct process *, int);
84 int fork_check_maxthread(uid_t _uid);
85 
86 void
87 fork_return(void *arg)
88 {
89 	struct proc *p = (struct proc *)arg;
90 
91 	if (p->p_p->ps_flags & PS_TRACED)
92 		psignal(p, SIGTRAP);
93 
94 	child_return(p);
95 }
96 
97 int
98 sys_fork(struct proc *p, void *v, register_t *retval)
99 {
100 	int flags;
101 
102 	flags = FORK_FORK;
103 	if (p->p_p->ps_ptmask & PTRACE_FORK)
104 		flags |= FORK_PTRACE;
105 	return fork1(p, flags, fork_return, NULL, retval, NULL);
106 }
107 
108 int
109 sys_vfork(struct proc *p, void *v, register_t *retval)
110 {
111 	return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL,
112 	    retval, NULL);
113 }
114 
115 int
116 sys___tfork(struct proc *p, void *v, register_t *retval)
117 {
118 	struct sys___tfork_args /* {
119 		syscallarg(const struct __tfork) *param;
120 		syscallarg(size_t) psize;
121 	} */ *uap = v;
122 	size_t psize = SCARG(uap, psize);
123 	struct __tfork param = { 0 };
124 	int error;
125 
126 	if (psize == 0 || psize > sizeof(param))
127 		return EINVAL;
128 	if ((error = copyin(SCARG(uap, param), &param, psize)))
129 		return error;
130 #ifdef KTRACE
131 	if (KTRPOINT(p, KTR_STRUCT))
132 		ktrstruct(p, "tfork", &param, sizeof(param));
133 #endif
134 #ifdef TCB_INVALID
135 	if (TCB_INVALID(param.tf_tcb))
136 		return EINVAL;
137 #endif /* TCB_INVALID */
138 
139 	return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid,
140 	    retval);
141 }
142 
143 /*
144  * Allocate and initialize a thread (proc) structure, given the parent thread.
145  */
146 struct proc *
147 thread_new(struct proc *parent, vaddr_t uaddr)
148 {
149 	struct proc *p;
150 
151 	p = pool_get(&proc_pool, PR_WAITOK);
152 	p->p_stat = SIDL;			/* protect against others */
153 	p->p_flag = 0;
154 
155 	/*
156 	 * Make a proc table entry for the new process.
157 	 * Start by zeroing the section of proc that is zero-initialized,
158 	 * then copy the section that is copied directly from the parent.
159 	 */
160 	memset(&p->p_startzero, 0,
161 	    (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero);
162 	memcpy(&p->p_startcopy, &parent->p_startcopy,
163 	    (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy);
164 	crhold(p->p_ucred);
165 	p->p_addr = (struct user *)uaddr;
166 
167 	/*
168 	 * Initialize the timeouts.
169 	 */
170 	timeout_set(&p->p_sleep_to, endtsleep, p);
171 
172 	/*
173 	 * set priority of child to be that of parent
174 	 * XXX should move p_estcpu into the region of struct proc which gets
175 	 * copied.
176 	 */
177 	scheduler_fork_hook(parent, p);
178 
179 #ifdef WITNESS
180 	p->p_sleeplocks = NULL;
181 #endif
182 
183 #if NKCOV > 0
184 	p->p_kd = NULL;
185 #endif
186 
187 	return p;
188 }
189 
190 /*
191  * Initialize common bits of a process structure, given the initial thread.
192  */
193 void
194 process_initialize(struct process *pr, struct proc *p)
195 {
196 	/* initialize the thread links */
197 	pr->ps_mainproc = p;
198 	TAILQ_INIT(&pr->ps_threads);
199 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
200 	pr->ps_refcnt = 1;
201 	p->p_p = pr;
202 
203 	/* give the process the same creds as the initial thread */
204 	pr->ps_ucred = p->p_ucred;
205 	crhold(pr->ps_ucred);
206 	KASSERT(p->p_ucred->cr_ref >= 2);	/* new thread and new process */
207 
208 	LIST_INIT(&pr->ps_children);
209 	LIST_INIT(&pr->ps_kqlist);
210 
211 	timeout_set(&pr->ps_realit_to, realitexpire, pr);
212 }
213 
214 
215 /*
216  * Allocate and initialize a new process.
217  */
218 struct process *
219 process_new(struct proc *p, struct process *parent, int flags)
220 {
221 	struct process *pr;
222 
223 	pr = pool_get(&process_pool, PR_WAITOK);
224 
225 	/*
226 	 * Make a process structure for the new process.
227 	 * Start by zeroing the section of proc that is zero-initialized,
228 	 * then copy the section that is copied directly from the parent.
229 	 */
230 	memset(&pr->ps_startzero, 0,
231 	    (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero);
232 	memcpy(&pr->ps_startcopy, &parent->ps_startcopy,
233 	    (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy);
234 
235 	process_initialize(pr, p);
236 	pr->ps_pid = allocpid();
237 
238 	/* post-copy fixups */
239 	pr->ps_pptr = parent;
240 	pr->ps_limit->p_refcnt++;
241 
242 	/* bump references to the text vnode (for sysctl) */
243 	pr->ps_textvp = parent->ps_textvp;
244 	if (pr->ps_textvp)
245 		vref(pr->ps_textvp);
246 
247 	/* copy unveil if unveil is active */
248 	unveil_copy(parent, pr);
249 
250 	pr->ps_flags = parent->ps_flags &
251 	    (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE | PS_WXNEEDED);
252 	if (parent->ps_session->s_ttyvp != NULL)
253 		pr->ps_flags |= parent->ps_flags & PS_CONTROLT;
254 
255 	/*
256 	 * Duplicate sub-structures as needed.
257 	 * Increase reference counts on shared objects.
258 	 */
259 	if (flags & FORK_SHAREFILES)
260 		pr->ps_fd = fdshare(parent);
261 	else
262 		pr->ps_fd = fdcopy(parent);
263 	if (flags & FORK_SIGHAND)
264 		pr->ps_sigacts = sigactsshare(parent);
265 	else
266 		pr->ps_sigacts = sigactsinit(parent);
267 	if (flags & FORK_SHAREVM)
268 		pr->ps_vmspace = uvmspace_share(parent);
269 	else
270 		pr->ps_vmspace = uvmspace_fork(parent);
271 
272 	if (parent->ps_flags & PS_PROFIL)
273 		startprofclock(pr);
274 	if (flags & FORK_PTRACE)
275 		pr->ps_flags |= parent->ps_flags & PS_TRACED;
276 	if (flags & FORK_NOZOMBIE)
277 		pr->ps_flags |= PS_NOZOMBIE;
278 	if (flags & FORK_SYSTEM)
279 		pr->ps_flags |= PS_SYSTEM;
280 
281 	/* mark as embryo to protect against others */
282 	pr->ps_flags |= PS_EMBRYO;
283 
284 	/* Force visibility of all of the above changes */
285 	membar_producer();
286 
287 	/* it's sufficiently inited to be globally visible */
288 	LIST_INSERT_HEAD(&allprocess, pr, ps_list);
289 
290 	return pr;
291 }
292 
293 /* print the 'table full' message once per 10 seconds */
294 struct timeval fork_tfmrate = { 10, 0 };
295 
296 int
297 fork_check_maxthread(uid_t uid)
298 {
299 	/*
300 	 * Although process entries are dynamically created, we still keep
301 	 * a global limit on the maximum number we will create. We reserve
302 	 * the last 5 processes to root. The variable nprocesses is the
303 	 * current number of processes, maxprocess is the limit.  Similar
304 	 * rules for threads (struct proc): we reserve the last 5 to root;
305 	 * the variable nthreads is the current number of procs, maxthread is
306 	 * the limit.
307 	 */
308 	if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) {
309 		static struct timeval lasttfm;
310 
311 		if (ratecheck(&lasttfm, &fork_tfmrate))
312 			tablefull("proc");
313 		return EAGAIN;
314 	}
315 	nthreads++;
316 
317 	return 0;
318 }
319 
320 static inline void
321 fork_thread_start(struct proc *p, struct proc *parent, int flags)
322 {
323 	int s;
324 
325 	SCHED_LOCK(s);
326 	p->p_stat = SRUN;
327 	p->p_cpu = sched_choosecpu_fork(parent, flags);
328 	setrunqueue(p);
329 	SCHED_UNLOCK(s);
330 }
331 
332 int
333 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg,
334     register_t *retval, struct proc **rnewprocp)
335 {
336 	struct process *curpr = curp->p_p;
337 	struct process *pr;
338 	struct proc *p;
339 	uid_t uid = curp->p_ucred->cr_ruid;
340 	struct vmspace *vm;
341 	int count;
342 	vaddr_t uaddr;
343 	int error;
344 	struct  ptrace_state *newptstat = NULL;
345 
346 	KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE
347 	    | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE
348 	    | FORK_SYSTEM | FORK_SIGHAND)) == 0);
349 	KASSERT((flags & FORK_SIGHAND) == 0 || (flags & FORK_SHAREVM));
350 	KASSERT(func != NULL);
351 
352 	if ((error = fork_check_maxthread(uid)))
353 		return error;
354 
355 	if ((nprocesses >= maxprocess - 5 && uid != 0) ||
356 	    nprocesses >= maxprocess) {
357 		static struct timeval lasttfm;
358 
359 		if (ratecheck(&lasttfm, &fork_tfmrate))
360 			tablefull("process");
361 		nthreads--;
362 		return EAGAIN;
363 	}
364 	nprocesses++;
365 
366 	/*
367 	 * Increment the count of processes running with this uid.
368 	 * Don't allow a nonprivileged user to exceed their current limit.
369 	 */
370 	count = chgproccnt(uid, 1);
371 	if (uid != 0 && count > curp->p_rlimit[RLIMIT_NPROC].rlim_cur) {
372 		(void)chgproccnt(uid, -1);
373 		nprocesses--;
374 		nthreads--;
375 		return EAGAIN;
376 	}
377 
378 	uaddr = uvm_uarea_alloc();
379 	if (uaddr == 0) {
380 		(void)chgproccnt(uid, -1);
381 		nprocesses--;
382 		nthreads--;
383 		return (ENOMEM);
384 	}
385 
386 	/*
387 	 * From now on, we're committed to the fork and cannot fail.
388 	 */
389 	p = thread_new(curp, uaddr);
390 	pr = process_new(p, curpr, flags);
391 
392 	p->p_fd		= pr->ps_fd;
393 	p->p_vmspace	= pr->ps_vmspace;
394 	if (pr->ps_flags & PS_SYSTEM)
395 		atomic_setbits_int(&p->p_flag, P_SYSTEM);
396 
397 	if (flags & FORK_PPWAIT) {
398 		atomic_setbits_int(&pr->ps_flags, PS_PPWAIT);
399 		atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT);
400 	}
401 
402 #ifdef KTRACE
403 	/*
404 	 * Copy traceflag and tracefile if enabled.
405 	 * If not inherited, these were zeroed above.
406 	 */
407 	if (curpr->ps_traceflag & KTRFAC_INHERIT)
408 		ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp,
409 		    curpr->ps_tracecred);
410 #endif
411 
412 	/*
413 	 * Finish creating the child thread.  cpu_fork() will copy
414 	 * and update the pcb and make the child ready to run.  If
415 	 * this is a normal user fork, the child will exit directly
416 	 * to user mode via child_return() on its first time slice
417 	 * and will not return here.  If this is a kernel thread,
418 	 * the specified entry point will be executed.
419 	 */
420 	cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p);
421 
422 	vm = pr->ps_vmspace;
423 
424 	if (flags & FORK_FORK) {
425 		forkstat.cntfork++;
426 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
427 	} else if (flags & FORK_VFORK) {
428 		forkstat.cntvfork++;
429 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
430 	} else {
431 		forkstat.cntkthread++;
432 	}
433 
434 	if (pr->ps_flags & PS_TRACED && flags & FORK_FORK)
435 		newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK);
436 
437 	p->p_tid = alloctid();
438 
439 	LIST_INSERT_HEAD(&allproc, p, p_list);
440 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
441 	LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash);
442 	LIST_INSERT_AFTER(curpr, pr, ps_pglist);
443 	LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling);
444 
445 	if (pr->ps_flags & PS_TRACED) {
446 		pr->ps_oppid = curpr->ps_pid;
447 		if (pr->ps_pptr != curpr->ps_pptr)
448 			proc_reparent(pr, curpr->ps_pptr);
449 
450 		/*
451 		 * Set ptrace status.
452 		 */
453 		if (newptstat != NULL) {
454 			pr->ps_ptstat = newptstat;
455 			newptstat = NULL;
456 			curpr->ps_ptstat->pe_report_event = PTRACE_FORK;
457 			pr->ps_ptstat->pe_report_event = PTRACE_FORK;
458 			curpr->ps_ptstat->pe_other_pid = pr->ps_pid;
459 			pr->ps_ptstat->pe_other_pid = curpr->ps_pid;
460 		}
461 	}
462 
463 	/*
464 	 * For new processes, set accounting bits and mark as complete.
465 	 */
466 	getnanotime(&pr->ps_start);
467 	pr->ps_acflag = AFORK;
468 	atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO);
469 
470 	if ((flags & FORK_IDLE) == 0)
471 		fork_thread_start(p, curp, flags);
472 	else
473 		p->p_cpu = arg;
474 
475 	free(newptstat, M_SUBPROC, sizeof(*newptstat));
476 
477 	/*
478 	 * Notify any interested parties about the new process.
479 	 */
480 	KNOTE(&curpr->ps_klist, NOTE_FORK | pr->ps_pid);
481 
482 	/*
483 	 * Update stats now that we know the fork was successful.
484 	 */
485 	uvmexp.forks++;
486 	if (flags & FORK_PPWAIT)
487 		uvmexp.forks_ppwait++;
488 	if (flags & FORK_SHAREVM)
489 		uvmexp.forks_sharevm++;
490 
491 	/*
492 	 * Pass a pointer to the new process to the caller.
493 	 */
494 	if (rnewprocp != NULL)
495 		*rnewprocp = p;
496 
497 	/*
498 	 * Preserve synchronization semantics of vfork.  If waiting for
499 	 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT
500 	 * on ourselves, and sleep on our process for the latter flag
501 	 * to go away.
502 	 * XXX Need to stop other rthreads in the parent
503 	 */
504 	if (flags & FORK_PPWAIT)
505 		while (curpr->ps_flags & PS_ISPWAIT)
506 			tsleep(curpr, PWAIT, "ppwait", 0);
507 
508 	/*
509 	 * If we're tracing the child, alert the parent too.
510 	 */
511 	if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED))
512 		psignal(curp, SIGTRAP);
513 
514 	/*
515 	 * Return child pid to parent process
516 	 */
517 	if (retval != NULL) {
518 		retval[0] = pr->ps_pid;
519 		retval[1] = 0;
520 	}
521 	return (0);
522 }
523 
524 int
525 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr,
526     register_t *retval)
527 {
528 	struct process *pr = curp->p_p;
529 	struct proc *p;
530 	pid_t tid;
531 	vaddr_t uaddr;
532 	int error;
533 
534 	if (stack == NULL)
535 		return EINVAL;
536 
537 	if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid)))
538 		return error;
539 
540 	uaddr = uvm_uarea_alloc();
541 	if (uaddr == 0) {
542 		nthreads--;
543 		return ENOMEM;
544 	}
545 
546 	/*
547 	 * From now on, we're committed to the fork and cannot fail.
548 	 */
549 	p = thread_new(curp, uaddr);
550 	atomic_setbits_int(&p->p_flag, P_THREAD);
551 	sigstkinit(&p->p_sigstk);
552 
553 	/* other links */
554 	p->p_p = pr;
555 	pr->ps_refcnt++;
556 
557 	/* local copies */
558 	p->p_fd		= pr->ps_fd;
559 	p->p_vmspace	= pr->ps_vmspace;
560 
561 	/*
562 	 * Finish creating the child thread.  cpu_fork() will copy
563 	 * and update the pcb and make the child ready to run.  The
564 	 * child will exit directly to user mode via child_return()
565 	 * on its first time slice and will not return here.
566 	 */
567 	cpu_fork(curp, p, stack, tcb, child_return, p);
568 
569 	p->p_tid = alloctid();
570 
571 	LIST_INSERT_HEAD(&allproc, p, p_list);
572 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
573 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
574 
575 	/*
576 	 * if somebody else wants to take us to single threaded mode,
577 	 * count ourselves in.
578 	 */
579 	if (pr->ps_single) {
580 		pr->ps_singlecount++;
581 		atomic_setbits_int(&p->p_flag, P_SUSPSINGLE);
582 	}
583 
584 	/*
585 	 * Return tid to parent thread and copy it out to userspace
586 	 */
587 	retval[0] = tid = p->p_tid + THREAD_PID_OFFSET;
588 	retval[1] = 0;
589 	if (tidptr != NULL) {
590 		if (copyout(&tid, tidptr, sizeof(tid)))
591 			psignal(curp, SIGSEGV);
592 	}
593 
594 	fork_thread_start(p, curp, 0);
595 
596 	/*
597 	 * Update stats now that we know the fork was successful.
598 	 */
599 	forkstat.cnttfork++;
600 	uvmexp.forks++;
601 	uvmexp.forks_sharevm++;
602 
603 	return 0;
604 }
605 
606 
607 /* Find an unused tid */
608 pid_t
609 alloctid(void)
610 {
611 	pid_t tid;
612 
613 	do {
614 		/* (0 .. TID_MASK+1] */
615 		tid = 1 + (arc4random() & TID_MASK);
616 	} while (tfind(tid) != NULL);
617 
618 	return (tid);
619 }
620 
621 /*
622  * Checks for current use of a pid, either as a pid or pgid.
623  */
624 pid_t oldpids[128];
625 int
626 ispidtaken(pid_t pid)
627 {
628 	uint32_t i;
629 
630 	for (i = 0; i < nitems(oldpids); i++)
631 		if (pid == oldpids[i])
632 			return (1);
633 
634 	if (prfind(pid) != NULL)
635 		return (1);
636 	if (pgfind(pid) != NULL)
637 		return (1);
638 	if (zombiefind(pid) != NULL)
639 		return (1);
640 	return (0);
641 }
642 
643 /* Find an unused pid */
644 pid_t
645 allocpid(void)
646 {
647 	static pid_t lastpid;
648 	pid_t pid;
649 
650 	if (!randompid) {
651 		/* only used early on for system processes */
652 		pid = ++lastpid;
653 	} else {
654 		/* Find an unused pid satisfying lastpid < pid <= PID_MAX */
655 		do {
656 			pid = arc4random_uniform(PID_MAX - lastpid) + 1 +
657 			    lastpid;
658 		} while (ispidtaken(pid));
659 	}
660 
661 	return pid;
662 }
663 
664 void
665 freepid(pid_t pid)
666 {
667 	static uint32_t idx;
668 
669 	oldpids[idx++ % nitems(oldpids)] = pid;
670 }
671 
672 #if defined(MULTIPROCESSOR)
673 /*
674  * XXX This is a slight hack to get newly-formed processes to
675  * XXX acquire the kernel lock as soon as they run.
676  */
677 void
678 proc_trampoline_mp(void)
679 {
680 	SCHED_ASSERT_LOCKED();
681 	__mp_unlock(&sched_lock);
682 	spl0();
683 	SCHED_ASSERT_UNLOCKED();
684 	KERNEL_ASSERT_UNLOCKED();
685 
686 	KERNEL_LOCK();
687 }
688 #endif
689