xref: /openbsd-src/sys/kern/kern_fork.c (revision 9e1c4ad6e2bbf8b384cf2d699b693050eff32d3b)
1 /*	$OpenBSD: kern_fork.c,v 1.231 2021/01/17 15:28:21 mvs Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/exec.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/vnode.h>
51 #include <sys/vmmeter.h>
52 #include <sys/acct.h>
53 #include <sys/ktrace.h>
54 #include <sys/sched.h>
55 #include <sys/smr.h>
56 #include <sys/sysctl.h>
57 #include <sys/pool.h>
58 #include <sys/mman.h>
59 #include <sys/ptrace.h>
60 #include <sys/atomic.h>
61 #include <sys/pledge.h>
62 #include <sys/unistd.h>
63 
64 #include <sys/syscallargs.h>
65 
66 #include <uvm/uvm.h>
67 #include <machine/tcb.h>
68 
69 int	nprocesses = 1;		/* process 0 */
70 int	nthreads = 1;		/* proc 0 */
71 int	randompid;		/* when set to 1, pid's go random */
72 struct	forkstat forkstat;
73 
74 void fork_return(void *);
75 pid_t alloctid(void);
76 pid_t allocpid(void);
77 int ispidtaken(pid_t);
78 
79 void unveil_copy(struct process *parent, struct process *child);
80 
81 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr);
82 struct process *process_new(struct proc *, struct process *, int);
83 int fork_check_maxthread(uid_t _uid);
84 
85 void
86 fork_return(void *arg)
87 {
88 	struct proc *p = (struct proc *)arg;
89 
90 	if (p->p_p->ps_flags & PS_TRACED)
91 		psignal(p, SIGTRAP);
92 
93 	child_return(p);
94 }
95 
96 int
97 sys_fork(struct proc *p, void *v, register_t *retval)
98 {
99 	int flags;
100 
101 	flags = FORK_FORK;
102 	if (p->p_p->ps_ptmask & PTRACE_FORK)
103 		flags |= FORK_PTRACE;
104 	return fork1(p, flags, fork_return, NULL, retval, NULL);
105 }
106 
107 int
108 sys_vfork(struct proc *p, void *v, register_t *retval)
109 {
110 	return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL,
111 	    retval, NULL);
112 }
113 
114 int
115 sys___tfork(struct proc *p, void *v, register_t *retval)
116 {
117 	struct sys___tfork_args /* {
118 		syscallarg(const struct __tfork) *param;
119 		syscallarg(size_t) psize;
120 	} */ *uap = v;
121 	size_t psize = SCARG(uap, psize);
122 	struct __tfork param = { 0 };
123 	int error;
124 
125 	if (psize == 0 || psize > sizeof(param))
126 		return EINVAL;
127 	if ((error = copyin(SCARG(uap, param), &param, psize)))
128 		return error;
129 #ifdef KTRACE
130 	if (KTRPOINT(p, KTR_STRUCT))
131 		ktrstruct(p, "tfork", &param, sizeof(param));
132 #endif
133 #ifdef TCB_INVALID
134 	if (TCB_INVALID(param.tf_tcb))
135 		return EINVAL;
136 #endif /* TCB_INVALID */
137 
138 	return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid,
139 	    retval);
140 }
141 
142 /*
143  * Allocate and initialize a thread (proc) structure, given the parent thread.
144  */
145 struct proc *
146 thread_new(struct proc *parent, vaddr_t uaddr)
147 {
148 	struct proc *p;
149 
150 	p = pool_get(&proc_pool, PR_WAITOK);
151 	p->p_stat = SIDL;			/* protect against others */
152 	p->p_runpri = 0;
153 	p->p_flag = 0;
154 
155 	/*
156 	 * Make a proc table entry for the new process.
157 	 * Start by zeroing the section of proc that is zero-initialized,
158 	 * then copy the section that is copied directly from the parent.
159 	 */
160 	memset(&p->p_startzero, 0,
161 	    (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero);
162 	memcpy(&p->p_startcopy, &parent->p_startcopy,
163 	    (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy);
164 	crhold(p->p_ucred);
165 	p->p_addr = (struct user *)uaddr;
166 
167 	/*
168 	 * Initialize the timeouts.
169 	 */
170 	timeout_set(&p->p_sleep_to, endtsleep, p);
171 
172 	return p;
173 }
174 
175 /*
176  * Initialize common bits of a process structure, given the initial thread.
177  */
178 void
179 process_initialize(struct process *pr, struct proc *p)
180 {
181 	/* initialize the thread links */
182 	pr->ps_mainproc = p;
183 	SMR_TAILQ_INIT(&pr->ps_threads);
184 	SMR_TAILQ_INSERT_TAIL_LOCKED(&pr->ps_threads, p, p_thr_link);
185 	pr->ps_refcnt = 1;
186 	p->p_p = pr;
187 
188 	/* give the process the same creds as the initial thread */
189 	pr->ps_ucred = p->p_ucred;
190 	crhold(pr->ps_ucred);
191 	KASSERT(p->p_ucred->cr_ref >= 2);	/* new thread and new process */
192 
193 	LIST_INIT(&pr->ps_children);
194 	LIST_INIT(&pr->ps_orphans);
195 	LIST_INIT(&pr->ps_ftlist);
196 	LIST_INIT(&pr->ps_sigiolst);
197 	TAILQ_INIT(&pr->ps_tslpqueue);
198 
199 	rw_init(&pr->ps_lock, "pslock");
200 	mtx_init(&pr->ps_mtx, IPL_MPFLOOR);
201 
202 	timeout_set_kclock(&pr->ps_realit_to, realitexpire, pr, 0,
203 	    KCLOCK_UPTIME);
204 	timeout_set(&pr->ps_rucheck_to, rucheck, pr);
205 }
206 
207 
208 /*
209  * Allocate and initialize a new process.
210  */
211 struct process *
212 process_new(struct proc *p, struct process *parent, int flags)
213 {
214 	struct process *pr;
215 
216 	pr = pool_get(&process_pool, PR_WAITOK);
217 
218 	/*
219 	 * Make a process structure for the new process.
220 	 * Start by zeroing the section of proc that is zero-initialized,
221 	 * then copy the section that is copied directly from the parent.
222 	 */
223 	memset(&pr->ps_startzero, 0,
224 	    (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero);
225 	memcpy(&pr->ps_startcopy, &parent->ps_startcopy,
226 	    (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy);
227 
228 	process_initialize(pr, p);
229 	pr->ps_pid = allocpid();
230 	lim_fork(parent, pr);
231 
232 	/* post-copy fixups */
233 	pr->ps_pptr = parent;
234 	pr->ps_ppid = parent->ps_pid;
235 
236 	/* bump references to the text vnode (for sysctl) */
237 	pr->ps_textvp = parent->ps_textvp;
238 	if (pr->ps_textvp)
239 		vref(pr->ps_textvp);
240 
241 	/* copy unveil if unveil is active */
242 	unveil_copy(parent, pr);
243 
244 	pr->ps_flags = parent->ps_flags &
245 	    (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE | PS_WXNEEDED);
246 	if (parent->ps_session->s_ttyvp != NULL)
247 		pr->ps_flags |= parent->ps_flags & PS_CONTROLT;
248 
249 	/*
250 	 * Duplicate sub-structures as needed.
251 	 * Increase reference counts on shared objects.
252 	 */
253 	if (flags & FORK_SHAREFILES)
254 		pr->ps_fd = fdshare(parent);
255 	else
256 		pr->ps_fd = fdcopy(parent);
257 	pr->ps_sigacts = sigactsinit(parent);
258 	if (flags & FORK_SHAREVM)
259 		pr->ps_vmspace = uvmspace_share(parent);
260 	else
261 		pr->ps_vmspace = uvmspace_fork(parent);
262 
263 	if (parent->ps_flags & PS_PROFIL)
264 		startprofclock(pr);
265 	if (flags & FORK_PTRACE)
266 		pr->ps_flags |= parent->ps_flags & PS_TRACED;
267 	if (flags & FORK_NOZOMBIE)
268 		pr->ps_flags |= PS_NOZOMBIE;
269 	if (flags & FORK_SYSTEM)
270 		pr->ps_flags |= PS_SYSTEM;
271 
272 	/* mark as embryo to protect against others */
273 	pr->ps_flags |= PS_EMBRYO;
274 
275 	/* Force visibility of all of the above changes */
276 	membar_producer();
277 
278 	/* it's sufficiently inited to be globally visible */
279 	LIST_INSERT_HEAD(&allprocess, pr, ps_list);
280 
281 	return pr;
282 }
283 
284 /* print the 'table full' message once per 10 seconds */
285 struct timeval fork_tfmrate = { 10, 0 };
286 
287 int
288 fork_check_maxthread(uid_t uid)
289 {
290 	/*
291 	 * Although process entries are dynamically created, we still keep
292 	 * a global limit on the maximum number we will create. We reserve
293 	 * the last 5 processes to root. The variable nprocesses is the
294 	 * current number of processes, maxprocess is the limit.  Similar
295 	 * rules for threads (struct proc): we reserve the last 5 to root;
296 	 * the variable nthreads is the current number of procs, maxthread is
297 	 * the limit.
298 	 */
299 	if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) {
300 		static struct timeval lasttfm;
301 
302 		if (ratecheck(&lasttfm, &fork_tfmrate))
303 			tablefull("proc");
304 		return EAGAIN;
305 	}
306 	nthreads++;
307 
308 	return 0;
309 }
310 
311 static inline void
312 fork_thread_start(struct proc *p, struct proc *parent, int flags)
313 {
314 	struct cpu_info *ci;
315 	int s;
316 
317 	SCHED_LOCK(s);
318 	ci = sched_choosecpu_fork(parent, flags);
319 	setrunqueue(ci, p, p->p_usrpri);
320 	SCHED_UNLOCK(s);
321 }
322 
323 int
324 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg,
325     register_t *retval, struct proc **rnewprocp)
326 {
327 	struct process *curpr = curp->p_p;
328 	struct process *pr;
329 	struct proc *p;
330 	uid_t uid = curp->p_ucred->cr_ruid;
331 	struct vmspace *vm;
332 	int count;
333 	vaddr_t uaddr;
334 	int error;
335 	struct  ptrace_state *newptstat = NULL;
336 
337 	KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE
338 	    | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE
339 	    | FORK_SYSTEM)) == 0);
340 	KASSERT(func != NULL);
341 
342 	if ((error = fork_check_maxthread(uid)))
343 		return error;
344 
345 	if ((nprocesses >= maxprocess - 5 && uid != 0) ||
346 	    nprocesses >= maxprocess) {
347 		static struct timeval lasttfm;
348 
349 		if (ratecheck(&lasttfm, &fork_tfmrate))
350 			tablefull("process");
351 		nthreads--;
352 		return EAGAIN;
353 	}
354 	nprocesses++;
355 
356 	/*
357 	 * Increment the count of processes running with this uid.
358 	 * Don't allow a nonprivileged user to exceed their current limit.
359 	 */
360 	count = chgproccnt(uid, 1);
361 	if (uid != 0 && count > lim_cur(RLIMIT_NPROC)) {
362 		(void)chgproccnt(uid, -1);
363 		nprocesses--;
364 		nthreads--;
365 		return EAGAIN;
366 	}
367 
368 	uaddr = uvm_uarea_alloc();
369 	if (uaddr == 0) {
370 		(void)chgproccnt(uid, -1);
371 		nprocesses--;
372 		nthreads--;
373 		return (ENOMEM);
374 	}
375 
376 	/*
377 	 * From now on, we're committed to the fork and cannot fail.
378 	 */
379 	p = thread_new(curp, uaddr);
380 	pr = process_new(p, curpr, flags);
381 
382 	p->p_fd		= pr->ps_fd;
383 	p->p_vmspace	= pr->ps_vmspace;
384 	if (pr->ps_flags & PS_SYSTEM)
385 		atomic_setbits_int(&p->p_flag, P_SYSTEM);
386 
387 	if (flags & FORK_PPWAIT) {
388 		atomic_setbits_int(&pr->ps_flags, PS_PPWAIT);
389 		atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT);
390 	}
391 
392 #ifdef KTRACE
393 	/*
394 	 * Copy traceflag and tracefile if enabled.
395 	 * If not inherited, these were zeroed above.
396 	 */
397 	if (curpr->ps_traceflag & KTRFAC_INHERIT)
398 		ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp,
399 		    curpr->ps_tracecred);
400 #endif
401 
402 	/*
403 	 * Finish creating the child thread.  cpu_fork() will copy
404 	 * and update the pcb and make the child ready to run.  If
405 	 * this is a normal user fork, the child will exit directly
406 	 * to user mode via child_return() on its first time slice
407 	 * and will not return here.  If this is a kernel thread,
408 	 * the specified entry point will be executed.
409 	 */
410 	cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p);
411 
412 	vm = pr->ps_vmspace;
413 
414 	if (flags & FORK_FORK) {
415 		forkstat.cntfork++;
416 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
417 	} else if (flags & FORK_VFORK) {
418 		forkstat.cntvfork++;
419 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
420 	} else {
421 		forkstat.cntkthread++;
422 	}
423 
424 	if (pr->ps_flags & PS_TRACED && flags & FORK_FORK)
425 		newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK);
426 
427 	p->p_tid = alloctid();
428 
429 	LIST_INSERT_HEAD(&allproc, p, p_list);
430 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
431 	LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash);
432 	LIST_INSERT_AFTER(curpr, pr, ps_pglist);
433 	LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling);
434 
435 	if (pr->ps_flags & PS_TRACED) {
436 		pr->ps_oppid = curpr->ps_pid;
437 		process_reparent(pr, curpr->ps_pptr);
438 
439 		/*
440 		 * Set ptrace status.
441 		 */
442 		if (newptstat != NULL) {
443 			pr->ps_ptstat = newptstat;
444 			newptstat = NULL;
445 			curpr->ps_ptstat->pe_report_event = PTRACE_FORK;
446 			pr->ps_ptstat->pe_report_event = PTRACE_FORK;
447 			curpr->ps_ptstat->pe_other_pid = pr->ps_pid;
448 			pr->ps_ptstat->pe_other_pid = curpr->ps_pid;
449 		}
450 	}
451 
452 	/*
453 	 * For new processes, set accounting bits and mark as complete.
454 	 */
455 	nanouptime(&pr->ps_start);
456 	pr->ps_acflag = AFORK;
457 	atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO);
458 
459 	if ((flags & FORK_IDLE) == 0)
460 		fork_thread_start(p, curp, flags);
461 	else
462 		p->p_cpu = arg;
463 
464 	free(newptstat, M_SUBPROC, sizeof(*newptstat));
465 
466 	/*
467 	 * Notify any interested parties about the new process.
468 	 */
469 	KNOTE(&curpr->ps_klist, NOTE_FORK | pr->ps_pid);
470 
471 	/*
472 	 * Update stats now that we know the fork was successful.
473 	 */
474 	uvmexp.forks++;
475 	if (flags & FORK_PPWAIT)
476 		uvmexp.forks_ppwait++;
477 	if (flags & FORK_SHAREVM)
478 		uvmexp.forks_sharevm++;
479 
480 	/*
481 	 * Pass a pointer to the new process to the caller.
482 	 */
483 	if (rnewprocp != NULL)
484 		*rnewprocp = p;
485 
486 	/*
487 	 * Preserve synchronization semantics of vfork.  If waiting for
488 	 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT
489 	 * on ourselves, and sleep on our process for the latter flag
490 	 * to go away.
491 	 * XXX Need to stop other rthreads in the parent
492 	 */
493 	if (flags & FORK_PPWAIT)
494 		while (curpr->ps_flags & PS_ISPWAIT)
495 			tsleep_nsec(curpr, PWAIT, "ppwait", INFSLP);
496 
497 	/*
498 	 * If we're tracing the child, alert the parent too.
499 	 */
500 	if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED))
501 		psignal(curp, SIGTRAP);
502 
503 	/*
504 	 * Return child pid to parent process
505 	 */
506 	if (retval != NULL) {
507 		retval[0] = pr->ps_pid;
508 		retval[1] = 0;
509 	}
510 	return (0);
511 }
512 
513 int
514 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr,
515     register_t *retval)
516 {
517 	struct process *pr = curp->p_p;
518 	struct proc *p;
519 	pid_t tid;
520 	vaddr_t uaddr;
521 	int s, error;
522 
523 	if (stack == NULL)
524 		return EINVAL;
525 
526 	if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid)))
527 		return error;
528 
529 	uaddr = uvm_uarea_alloc();
530 	if (uaddr == 0) {
531 		nthreads--;
532 		return ENOMEM;
533 	}
534 
535 	/*
536 	 * From now on, we're committed to the fork and cannot fail.
537 	 */
538 	p = thread_new(curp, uaddr);
539 	atomic_setbits_int(&p->p_flag, P_THREAD);
540 	sigstkinit(&p->p_sigstk);
541 
542 	/* other links */
543 	p->p_p = pr;
544 	pr->ps_refcnt++;
545 
546 	/* local copies */
547 	p->p_fd		= pr->ps_fd;
548 	p->p_vmspace	= pr->ps_vmspace;
549 
550 	/*
551 	 * Finish creating the child thread.  cpu_fork() will copy
552 	 * and update the pcb and make the child ready to run.  The
553 	 * child will exit directly to user mode via child_return()
554 	 * on its first time slice and will not return here.
555 	 */
556 	cpu_fork(curp, p, stack, tcb, child_return, p);
557 
558 	p->p_tid = alloctid();
559 
560 	LIST_INSERT_HEAD(&allproc, p, p_list);
561 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
562 	SMR_TAILQ_INSERT_TAIL_LOCKED(&pr->ps_threads, p, p_thr_link);
563 
564 	/*
565 	 * if somebody else wants to take us to single threaded mode,
566 	 * count ourselves in.
567 	 */
568 	SCHED_LOCK(s);
569 	if (pr->ps_single) {
570 		atomic_inc_int(&pr->ps_singlecount);
571 		atomic_setbits_int(&p->p_flag, P_SUSPSINGLE);
572 	}
573 	SCHED_UNLOCK(s);
574 
575 	/*
576 	 * Return tid to parent thread and copy it out to userspace
577 	 */
578 	retval[0] = tid = p->p_tid + THREAD_PID_OFFSET;
579 	retval[1] = 0;
580 	if (tidptr != NULL) {
581 		if (copyout(&tid, tidptr, sizeof(tid)))
582 			psignal(curp, SIGSEGV);
583 	}
584 
585 	fork_thread_start(p, curp, 0);
586 
587 	/*
588 	 * Update stats now that we know the fork was successful.
589 	 */
590 	forkstat.cnttfork++;
591 	uvmexp.forks++;
592 	uvmexp.forks_sharevm++;
593 
594 	return 0;
595 }
596 
597 
598 /* Find an unused tid */
599 pid_t
600 alloctid(void)
601 {
602 	pid_t tid;
603 
604 	do {
605 		/* (0 .. TID_MASK+1] */
606 		tid = 1 + (arc4random() & TID_MASK);
607 	} while (tfind(tid) != NULL);
608 
609 	return (tid);
610 }
611 
612 /*
613  * Checks for current use of a pid, either as a pid or pgid.
614  */
615 pid_t oldpids[128];
616 int
617 ispidtaken(pid_t pid)
618 {
619 	uint32_t i;
620 
621 	for (i = 0; i < nitems(oldpids); i++)
622 		if (pid == oldpids[i])
623 			return (1);
624 
625 	if (prfind(pid) != NULL)
626 		return (1);
627 	if (pgfind(pid) != NULL)
628 		return (1);
629 	if (zombiefind(pid) != NULL)
630 		return (1);
631 	return (0);
632 }
633 
634 /* Find an unused pid */
635 pid_t
636 allocpid(void)
637 {
638 	static pid_t lastpid;
639 	pid_t pid;
640 
641 	if (!randompid) {
642 		/* only used early on for system processes */
643 		pid = ++lastpid;
644 	} else {
645 		/* Find an unused pid satisfying lastpid < pid <= PID_MAX */
646 		do {
647 			pid = arc4random_uniform(PID_MAX - lastpid) + 1 +
648 			    lastpid;
649 		} while (ispidtaken(pid));
650 	}
651 
652 	return pid;
653 }
654 
655 void
656 freepid(pid_t pid)
657 {
658 	static uint32_t idx;
659 
660 	oldpids[idx++ % nitems(oldpids)] = pid;
661 }
662 
663 #if defined(MULTIPROCESSOR)
664 /*
665  * XXX This is a slight hack to get newly-formed processes to
666  * XXX acquire the kernel lock as soon as they run.
667  */
668 void
669 proc_trampoline_mp(void)
670 {
671 	SCHED_ASSERT_LOCKED();
672 	__mp_unlock(&sched_lock);
673 	spl0();
674 	SCHED_ASSERT_UNLOCKED();
675 	KERNEL_ASSERT_UNLOCKED();
676 
677 	KERNEL_LOCK();
678 }
679 #endif
680