1 /* $OpenBSD: kern_fork.c,v 1.176 2014/11/03 21:28:35 tedu Exp $ */ 2 /* $NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1989, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 38 */ 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/filedesc.h> 43 #include <sys/kernel.h> 44 #include <sys/malloc.h> 45 #include <sys/mount.h> 46 #include <sys/proc.h> 47 #include <sys/exec.h> 48 #include <sys/resourcevar.h> 49 #include <sys/signalvar.h> 50 #include <sys/vnode.h> 51 #include <sys/vmmeter.h> 52 #include <sys/file.h> 53 #include <sys/acct.h> 54 #include <sys/ktrace.h> 55 #include <sys/sched.h> 56 #include <sys/sysctl.h> 57 #include <dev/rndvar.h> 58 #include <sys/pool.h> 59 #include <sys/mman.h> 60 #include <sys/ptrace.h> 61 #include <sys/atomic.h> 62 #include <sys/unistd.h> 63 64 #include <sys/syscallargs.h> 65 66 #include "systrace.h" 67 #include <dev/systrace.h> 68 69 #include <uvm/uvm.h> 70 71 #ifdef __HAVE_MD_TCB 72 # include <machine/tcb.h> 73 #endif 74 75 int nprocesses = 1; /* process 0 */ 76 int nthreads = 1; /* proc 0 */ 77 int randompid; /* when set to 1, pid's go random */ 78 struct forkstat forkstat; 79 80 void fork_return(void *); 81 void tfork_child_return(void *); 82 int pidtaken(pid_t); 83 84 void process_new(struct proc *, struct process *, int); 85 86 void 87 fork_return(void *arg) 88 { 89 struct proc *p = (struct proc *)arg; 90 91 if (p->p_p->ps_flags & PS_TRACED) 92 psignal(p, SIGTRAP); 93 94 child_return(p); 95 } 96 97 /*ARGSUSED*/ 98 int 99 sys_fork(struct proc *p, void *v, register_t *retval) 100 { 101 int flags; 102 103 flags = FORK_FORK; 104 if (p->p_p->ps_ptmask & PTRACE_FORK) 105 flags |= FORK_PTRACE; 106 return (fork1(p, flags, NULL, 0, fork_return, NULL, retval, NULL)); 107 } 108 109 /*ARGSUSED*/ 110 int 111 sys_vfork(struct proc *p, void *v, register_t *retval) 112 { 113 return (fork1(p, FORK_VFORK|FORK_PPWAIT, NULL, 0, NULL, 114 NULL, retval, NULL)); 115 } 116 117 int 118 sys___tfork(struct proc *p, void *v, register_t *retval) 119 { 120 struct sys___tfork_args /* { 121 syscallarg(const struct __tfork) *param; 122 syscallarg(size_t) psize; 123 } */ *uap = v; 124 size_t psize = SCARG(uap, psize); 125 struct __tfork param = { 0 }; 126 int flags; 127 int error; 128 129 if (psize == 0 || psize > sizeof(param)) 130 return (EINVAL); 131 if ((error = copyin(SCARG(uap, param), ¶m, psize))) 132 return (error); 133 #ifdef KTRACE 134 if (KTRPOINT(p, KTR_STRUCT)) 135 ktrstruct(p, "tfork", ¶m, sizeof(param)); 136 #endif 137 138 flags = FORK_TFORK | FORK_THREAD | FORK_SIGHAND | FORK_SHAREVM 139 | FORK_SHAREFILES; 140 141 return (fork1(p, flags, param.tf_stack, param.tf_tid, 142 tfork_child_return, param.tf_tcb, retval, NULL)); 143 } 144 145 void 146 tfork_child_return(void *arg) 147 { 148 struct proc *p = curproc; 149 150 TCB_SET(p, arg); 151 child_return(p); 152 } 153 154 /* 155 * Allocate and initialize a new process. 156 */ 157 void 158 process_new(struct proc *p, struct process *parent, int flags) 159 { 160 struct process *pr; 161 162 pr = pool_get(&process_pool, PR_WAITOK); 163 pr->ps_mainproc = p; 164 165 TAILQ_INIT(&pr->ps_threads); 166 TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link); 167 pr->ps_pptr = parent; 168 LIST_INIT(&pr->ps_children); 169 pr->ps_refcnt = 1; 170 171 /* 172 * Make a process structure for the new process. 173 * Start by zeroing the section of proc that is zero-initialized, 174 * then copy the section that is copied directly from the parent. 175 */ 176 memset(&pr->ps_startzero, 0, 177 (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero); 178 memcpy(&pr->ps_startcopy, &parent->ps_startcopy, 179 (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy); 180 181 /* post-copy fixups */ 182 pr->ps_ucred = p->p_ucred; 183 crhold(pr->ps_ucred); 184 KASSERT(p->p_ucred->cr_ref >= 3); /* fork thr, new thr, new process */ 185 pr->ps_limit->p_refcnt++; 186 187 /* bump references to the text vnode (for sysctl) */ 188 pr->ps_textvp = parent->ps_textvp; 189 if (pr->ps_textvp) 190 vref(pr->ps_textvp); 191 192 timeout_set(&pr->ps_realit_to, realitexpire, pr); 193 194 pr->ps_flags = parent->ps_flags & (PS_SUGID | PS_SUGIDEXEC); 195 if (parent->ps_session->s_ttyvp != NULL) 196 pr->ps_flags |= parent->ps_flags & PS_CONTROLT; 197 198 p->p_p = pr; 199 200 /* 201 * Duplicate sub-structures as needed. 202 * Increase reference counts on shared objects. 203 */ 204 if (flags & FORK_SHAREFILES) 205 pr->ps_fd = fdshare(parent); 206 else 207 pr->ps_fd = fdcopy(parent); 208 if (flags & FORK_SIGHAND) 209 pr->ps_sigacts = sigactsshare(parent); 210 else 211 pr->ps_sigacts = sigactsinit(parent); 212 if (flags & FORK_SHAREVM) 213 pr->ps_vmspace = uvmspace_share(parent); 214 else 215 pr->ps_vmspace = uvmspace_fork(parent); 216 217 if (parent->ps_flags & PS_PROFIL) 218 startprofclock(pr); 219 if (flags & FORK_PTRACE) 220 pr->ps_flags |= parent->ps_flags & PS_TRACED; 221 if (flags & FORK_NOZOMBIE) 222 pr->ps_flags |= PS_NOZOMBIE; 223 if (flags & FORK_SYSTEM) 224 pr->ps_flags |= PS_SYSTEM; 225 226 /* mark as embryo to protect against others */ 227 pr->ps_flags |= PS_EMBRYO; 228 229 /* Force visibility of all of the above changes */ 230 membar_producer(); 231 232 /* it's sufficiently inited to be globally visible */ 233 LIST_INSERT_HEAD(&allprocess, pr, ps_list); 234 } 235 236 /* print the 'table full' message once per 10 seconds */ 237 struct timeval fork_tfmrate = { 10, 0 }; 238 239 int 240 fork1(struct proc *curp, int flags, void *stack, pid_t *tidptr, 241 void (*func)(void *), void *arg, register_t *retval, 242 struct proc **rnewprocp) 243 { 244 struct process *curpr = curp->p_p; 245 struct process *pr; 246 struct proc *p; 247 uid_t uid; 248 struct vmspace *vm; 249 int count; 250 vaddr_t uaddr; 251 int s; 252 struct ptrace_state *newptstat = NULL; 253 #if NSYSTRACE > 0 254 void *newstrp = NULL; 255 #endif 256 257 /* sanity check some flag combinations */ 258 if (flags & FORK_THREAD) { 259 if ((flags & FORK_SHAREFILES) == 0 || 260 (flags & FORK_SIGHAND) == 0 || 261 (flags & FORK_SYSTEM) != 0) 262 return (EINVAL); 263 } 264 if (flags & FORK_SIGHAND && (flags & FORK_SHAREVM) == 0) 265 return (EINVAL); 266 267 /* 268 * Although process entries are dynamically created, we still keep 269 * a global limit on the maximum number we will create. We reserve 270 * the last 5 processes to root. The variable nprocesses is the 271 * current number of processes, maxprocess is the limit. Similar 272 * rules for threads (struct proc): we reserve the last 5 to root; 273 * the variable nthreads is the current number of procs, maxthread is 274 * the limit. 275 */ 276 uid = curp->p_ucred->cr_ruid; 277 if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) { 278 static struct timeval lasttfm; 279 280 if (ratecheck(&lasttfm, &fork_tfmrate)) 281 tablefull("proc"); 282 return (EAGAIN); 283 } 284 nthreads++; 285 286 if ((flags & FORK_THREAD) == 0) { 287 if ((nprocesses >= maxprocess - 5 && uid != 0) || 288 nprocesses >= maxprocess) { 289 static struct timeval lasttfm; 290 291 if (ratecheck(&lasttfm, &fork_tfmrate)) 292 tablefull("process"); 293 nthreads--; 294 return (EAGAIN); 295 } 296 nprocesses++; 297 298 /* 299 * Increment the count of processes running with 300 * this uid. Don't allow a nonprivileged user to 301 * exceed their current limit. 302 */ 303 count = chgproccnt(uid, 1); 304 if (uid != 0 && count > curp->p_rlimit[RLIMIT_NPROC].rlim_cur) { 305 (void)chgproccnt(uid, -1); 306 nprocesses--; 307 nthreads--; 308 return (EAGAIN); 309 } 310 } 311 312 uaddr = uvm_uarea_alloc(); 313 if (uaddr == 0) { 314 if ((flags & FORK_THREAD) == 0) { 315 (void)chgproccnt(uid, -1); 316 nprocesses--; 317 } 318 nthreads--; 319 return (ENOMEM); 320 } 321 322 /* 323 * From now on, we're committed to the fork and cannot fail. 324 */ 325 326 /* Allocate new proc. */ 327 p = pool_get(&proc_pool, PR_WAITOK); 328 329 p->p_stat = SIDL; /* protect against others */ 330 p->p_flag = 0; 331 332 /* 333 * Make a proc table entry for the new process. 334 * Start by zeroing the section of proc that is zero-initialized, 335 * then copy the section that is copied directly from the parent. 336 */ 337 memset(&p->p_startzero, 0, 338 (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero); 339 memcpy(&p->p_startcopy, &curp->p_startcopy, 340 (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy); 341 crhold(p->p_ucred); 342 343 /* 344 * Initialize the timeouts. 345 */ 346 timeout_set(&p->p_sleep_to, endtsleep, p); 347 348 if (flags & FORK_THREAD) { 349 atomic_setbits_int(&p->p_flag, P_THREAD); 350 p->p_p = pr = curpr; 351 pr->ps_refcnt++; 352 } else { 353 process_new(p, curpr, flags); 354 pr = p->p_p; 355 } 356 p->p_fd = pr->ps_fd; 357 p->p_vmspace = pr->ps_vmspace; 358 if (pr->ps_flags & PS_SYSTEM) 359 atomic_setbits_int(&p->p_flag, P_SYSTEM); 360 361 if (flags & FORK_PPWAIT) { 362 atomic_setbits_int(&pr->ps_flags, PS_PPWAIT); 363 atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT); 364 } 365 366 #ifdef KTRACE 367 /* 368 * Copy traceflag and tracefile if enabled. 369 * If not inherited, these were zeroed above. 370 */ 371 if ((flags & FORK_THREAD) == 0 && curpr->ps_traceflag & KTRFAC_INHERIT) 372 ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp, 373 curpr->ps_tracecred); 374 #endif 375 376 /* 377 * set priority of child to be that of parent 378 * XXX should move p_estcpu into the region of struct proc which gets 379 * copied. 380 */ 381 scheduler_fork_hook(curp, p); 382 383 if (flags & FORK_THREAD) 384 sigstkinit(&p->p_sigstk); 385 386 /* 387 * If emulation has thread fork hook, call it now. 388 */ 389 if (pr->ps_emul->e_proc_fork) 390 (*pr->ps_emul->e_proc_fork)(p, curp); 391 392 p->p_addr = (struct user *)uaddr; 393 394 /* 395 * Finish creating the child thread. cpu_fork() will copy 396 * and update the pcb and make the child ready to run. If 397 * this is a normal user fork, the child will exit directly 398 * to user mode via child_return() on its first time slice 399 * and will not return here. If this is a kernel thread, 400 * the specified entry point will be executed. 401 */ 402 cpu_fork(curp, p, stack, 0, func ? func : child_return, arg ? arg : p); 403 404 vm = pr->ps_vmspace; 405 406 if (flags & FORK_FORK) { 407 forkstat.cntfork++; 408 forkstat.sizfork += vm->vm_dsize + vm->vm_ssize; 409 } else if (flags & FORK_VFORK) { 410 forkstat.cntvfork++; 411 forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize; 412 } else if (flags & FORK_TFORK) { 413 forkstat.cnttfork++; 414 } else { 415 forkstat.cntkthread++; 416 forkstat.sizkthread += vm->vm_dsize + vm->vm_ssize; 417 } 418 419 if (pr->ps_flags & PS_TRACED && flags & FORK_FORK) 420 newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK); 421 #if NSYSTRACE > 0 422 if (ISSET(curp->p_flag, P_SYSTRACE)) 423 newstrp = systrace_getproc(); 424 #endif 425 426 p->p_pid = allocpid(); 427 428 LIST_INSERT_HEAD(&allproc, p, p_list); 429 LIST_INSERT_HEAD(PIDHASH(p->p_pid), p, p_hash); 430 if ((flags & FORK_THREAD) == 0) { 431 LIST_INSERT_AFTER(curpr, pr, ps_pglist); 432 LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling); 433 434 if (pr->ps_flags & PS_TRACED) { 435 pr->ps_oppid = curpr->ps_pid; 436 if (pr->ps_pptr != curpr->ps_pptr) 437 proc_reparent(pr, curpr->ps_pptr); 438 439 /* 440 * Set ptrace status. 441 */ 442 if (flags & FORK_FORK) { 443 pr->ps_ptstat = newptstat; 444 newptstat = NULL; 445 curpr->ps_ptstat->pe_report_event = PTRACE_FORK; 446 pr->ps_ptstat->pe_report_event = PTRACE_FORK; 447 curpr->ps_ptstat->pe_other_pid = pr->ps_pid; 448 pr->ps_ptstat->pe_other_pid = curpr->ps_pid; 449 } 450 } 451 } else { 452 TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link); 453 /* 454 * if somebody else wants to take us to single threaded mode, 455 * count ourselves in. 456 */ 457 if (pr->ps_single) { 458 curpr->ps_singlecount++; 459 atomic_setbits_int(&p->p_flag, P_SUSPSINGLE); 460 } 461 } 462 463 #if NSYSTRACE > 0 464 if (newstrp) 465 systrace_fork(curp, p, newstrp); 466 #endif 467 468 if (tidptr != NULL) { 469 pid_t pid = p->p_pid + THREAD_PID_OFFSET; 470 471 if (copyout(&pid, tidptr, sizeof(pid))) 472 psignal(curp, SIGSEGV); 473 } 474 475 /* 476 * For new processes, set accounting bits and mark as complete. 477 */ 478 if ((flags & FORK_THREAD) == 0) { 479 getnanotime(&pr->ps_start); 480 pr->ps_acflag = AFORK; 481 atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO); 482 } 483 484 /* 485 * Make child runnable and add to run queue. 486 */ 487 if ((flags & FORK_IDLE) == 0) { 488 SCHED_LOCK(s); 489 p->p_stat = SRUN; 490 p->p_cpu = sched_choosecpu_fork(curp, flags); 491 setrunqueue(p); 492 SCHED_UNLOCK(s); 493 } else 494 p->p_cpu = arg; 495 496 if (newptstat) 497 free(newptstat, M_SUBPROC, sizeof(*newptstat)); 498 499 /* 500 * Notify any interested parties about the new process. 501 */ 502 if ((flags & FORK_THREAD) == 0) 503 KNOTE(&curpr->ps_klist, NOTE_FORK | p->p_pid); 504 505 /* 506 * Update stats now that we know the fork was successful. 507 */ 508 uvmexp.forks++; 509 if (flags & FORK_PPWAIT) 510 uvmexp.forks_ppwait++; 511 if (flags & FORK_SHAREVM) 512 uvmexp.forks_sharevm++; 513 514 /* 515 * Pass a pointer to the new process to the caller. 516 */ 517 if (rnewprocp != NULL) 518 *rnewprocp = p; 519 520 /* 521 * Preserve synchronization semantics of vfork. If waiting for 522 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT 523 * on ourselves, and sleep on our process for the latter flag 524 * to go away. 525 * XXX Need to stop other rthreads in the parent 526 */ 527 if (flags & FORK_PPWAIT) 528 while (curpr->ps_flags & PS_ISPWAIT) 529 tsleep(curpr, PWAIT, "ppwait", 0); 530 531 /* 532 * If we're tracing the child, alert the parent too. 533 */ 534 if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED)) 535 psignal(curp, SIGTRAP); 536 537 /* 538 * Return child pid to parent process, 539 * marking us as parent via retval[1]. 540 */ 541 if (retval != NULL) { 542 retval[0] = p->p_pid + 543 (flags & FORK_THREAD ? THREAD_PID_OFFSET : 0); 544 retval[1] = 0; 545 } 546 return (0); 547 } 548 549 /* 550 * Checks for current use of a pid, either as a pid or pgid. 551 */ 552 pid_t oldpids[100]; 553 int 554 ispidtaken(pid_t pid) 555 { 556 uint32_t i; 557 struct process *pr; 558 559 for (i = 0; i < nitems(oldpids); i++) 560 if (pid == oldpids[i]) 561 return (1); 562 563 if (pfind(pid) != NULL) 564 return (1); 565 if (pgfind(pid) != NULL) 566 return (1); 567 LIST_FOREACH(pr, &zombprocess, ps_list) { 568 if (pr->ps_pid == pid || 569 (pr->ps_pgrp && pr->ps_pgrp->pg_id == pid)) 570 return (1); 571 } 572 return (0); 573 } 574 575 /* Find an unused pid satisfying 1 <= lastpid <= PID_MAX */ 576 pid_t 577 allocpid(void) 578 { 579 static pid_t lastpid; 580 pid_t pid; 581 582 if (!randompid) { 583 /* only used early on for system processes */ 584 pid = ++lastpid; 585 } else { 586 do { 587 pid = 1 + arc4random_uniform(PID_MAX); 588 } while (ispidtaken(pid)); 589 } 590 591 return pid; 592 } 593 594 void 595 freepid(pid_t pid) 596 { 597 static uint32_t idx; 598 599 oldpids[idx++ % nitems(oldpids)] = pid; 600 } 601 602 #if defined(MULTIPROCESSOR) 603 /* 604 * XXX This is a slight hack to get newly-formed processes to 605 * XXX acquire the kernel lock as soon as they run. 606 */ 607 void 608 proc_trampoline_mp(void) 609 { 610 struct proc *p; 611 612 p = curproc; 613 614 SCHED_ASSERT_LOCKED(); 615 __mp_unlock(&sched_lock); 616 spl0(); 617 SCHED_ASSERT_UNLOCKED(); 618 KERNEL_ASSERT_UNLOCKED(); 619 620 KERNEL_LOCK(); 621 } 622 #endif 623