xref: /openbsd-src/sys/kern/kern_fork.c (revision 77aba2bee5ee76372cb89b527db49a2cbedea730)
1 /*	$OpenBSD: kern_fork.c,v 1.240 2022/05/13 15:32:00 claudio Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/exec.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/vnode.h>
51 #include <sys/vmmeter.h>
52 #include <sys/acct.h>
53 #include <sys/ktrace.h>
54 #include <sys/sched.h>
55 #include <sys/sysctl.h>
56 #include <sys/pool.h>
57 #include <sys/mman.h>
58 #include <sys/ptrace.h>
59 #include <sys/atomic.h>
60 #include <sys/pledge.h>
61 #include <sys/unistd.h>
62 
63 #include <sys/syscallargs.h>
64 
65 #include <uvm/uvm.h>
66 #include <machine/tcb.h>
67 
68 int	nprocesses = 1;		/* process 0 */
69 int	nthreads = 1;		/* proc 0 */
70 int	randompid;		/* when set to 1, pid's go random */
71 struct	forkstat forkstat;
72 
73 void fork_return(void *);
74 pid_t alloctid(void);
75 pid_t allocpid(void);
76 int ispidtaken(pid_t);
77 
78 void unveil_copy(struct process *parent, struct process *child);
79 
80 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr);
81 struct process *process_new(struct proc *, struct process *, int);
82 int fork_check_maxthread(uid_t _uid);
83 
84 void
85 fork_return(void *arg)
86 {
87 	struct proc *p = (struct proc *)arg;
88 
89 	if (p->p_p->ps_flags & PS_TRACED)
90 		psignal(p, SIGTRAP);
91 
92 	child_return(p);
93 }
94 
95 int
96 sys_fork(struct proc *p, void *v, register_t *retval)
97 {
98 	void (*func)(void *) = child_return;
99 	int flags;
100 
101 	flags = FORK_FORK;
102 	if (p->p_p->ps_ptmask & PTRACE_FORK) {
103 		flags |= FORK_PTRACE;
104 		func = fork_return;
105 	}
106 	return fork1(p, flags, func, NULL, retval, NULL);
107 }
108 
109 int
110 sys_vfork(struct proc *p, void *v, register_t *retval)
111 {
112 	return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL,
113 	    retval, NULL);
114 }
115 
116 int
117 sys___tfork(struct proc *p, void *v, register_t *retval)
118 {
119 	struct sys___tfork_args /* {
120 		syscallarg(const struct __tfork) *param;
121 		syscallarg(size_t) psize;
122 	} */ *uap = v;
123 	size_t psize = SCARG(uap, psize);
124 	struct __tfork param = { 0 };
125 	int error;
126 
127 	if (psize == 0 || psize > sizeof(param))
128 		return EINVAL;
129 	if ((error = copyin(SCARG(uap, param), &param, psize)))
130 		return error;
131 #ifdef KTRACE
132 	if (KTRPOINT(p, KTR_STRUCT))
133 		ktrstruct(p, "tfork", &param, sizeof(param));
134 #endif
135 #ifdef TCB_INVALID
136 	if (TCB_INVALID(param.tf_tcb))
137 		return EINVAL;
138 #endif /* TCB_INVALID */
139 
140 	return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid,
141 	    retval);
142 }
143 
144 /*
145  * Allocate and initialize a thread (proc) structure, given the parent thread.
146  */
147 struct proc *
148 thread_new(struct proc *parent, vaddr_t uaddr)
149 {
150 	struct proc *p;
151 
152 	p = pool_get(&proc_pool, PR_WAITOK);
153 	p->p_stat = SIDL;			/* protect against others */
154 	p->p_runpri = 0;
155 	p->p_flag = 0;
156 
157 	/*
158 	 * Make a proc table entry for the new process.
159 	 * Start by zeroing the section of proc that is zero-initialized,
160 	 * then copy the section that is copied directly from the parent.
161 	 */
162 	memset(&p->p_startzero, 0,
163 	    (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero);
164 	memcpy(&p->p_startcopy, &parent->p_startcopy,
165 	    (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy);
166 	crhold(p->p_ucred);
167 	p->p_addr = (struct user *)uaddr;
168 
169 	/*
170 	 * Initialize the timeouts.
171 	 */
172 	timeout_set(&p->p_sleep_to, endtsleep, p);
173 
174 	return p;
175 }
176 
177 /*
178  * Initialize common bits of a process structure, given the initial thread.
179  */
180 void
181 process_initialize(struct process *pr, struct proc *p)
182 {
183 	/* initialize the thread links */
184 	pr->ps_mainproc = p;
185 	TAILQ_INIT(&pr->ps_threads);
186 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
187 	pr->ps_refcnt = 1;
188 	p->p_p = pr;
189 
190 	/* give the process the same creds as the initial thread */
191 	pr->ps_ucred = p->p_ucred;
192 	crhold(pr->ps_ucred);
193 	/* new thread and new process */
194 	KASSERT(p->p_ucred->cr_refcnt.r_refs >= 2);
195 
196 	LIST_INIT(&pr->ps_children);
197 	LIST_INIT(&pr->ps_orphans);
198 	LIST_INIT(&pr->ps_ftlist);
199 	LIST_INIT(&pr->ps_sigiolst);
200 	TAILQ_INIT(&pr->ps_tslpqueue);
201 
202 	rw_init(&pr->ps_lock, "pslock");
203 	mtx_init(&pr->ps_mtx, IPL_HIGH);
204 
205 	timeout_set_kclock(&pr->ps_realit_to, realitexpire, pr,
206 	    KCLOCK_UPTIME, 0);
207 	timeout_set(&pr->ps_rucheck_to, rucheck, pr);
208 }
209 
210 
211 /*
212  * Allocate and initialize a new process.
213  */
214 struct process *
215 process_new(struct proc *p, struct process *parent, int flags)
216 {
217 	struct process *pr;
218 
219 	pr = pool_get(&process_pool, PR_WAITOK);
220 
221 	/*
222 	 * Make a process structure for the new process.
223 	 * Start by zeroing the section of proc that is zero-initialized,
224 	 * then copy the section that is copied directly from the parent.
225 	 */
226 	memset(&pr->ps_startzero, 0,
227 	    (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero);
228 	memcpy(&pr->ps_startcopy, &parent->ps_startcopy,
229 	    (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy);
230 
231 	process_initialize(pr, p);
232 	pr->ps_pid = allocpid();
233 	lim_fork(parent, pr);
234 
235 	/* post-copy fixups */
236 	pr->ps_pptr = parent;
237 	pr->ps_ppid = parent->ps_pid;
238 
239 	/* bump references to the text vnode (for sysctl) */
240 	pr->ps_textvp = parent->ps_textvp;
241 	if (pr->ps_textvp)
242 		vref(pr->ps_textvp);
243 
244 	/* copy unveil if unveil is active */
245 	unveil_copy(parent, pr);
246 
247 	pr->ps_flags = parent->ps_flags &
248 	    (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE | PS_WXNEEDED);
249 	if (parent->ps_session->s_ttyvp != NULL)
250 		pr->ps_flags |= parent->ps_flags & PS_CONTROLT;
251 
252 	/*
253 	 * Duplicate sub-structures as needed.
254 	 * Increase reference counts on shared objects.
255 	 */
256 	if (flags & FORK_SHAREFILES)
257 		pr->ps_fd = fdshare(parent);
258 	else
259 		pr->ps_fd = fdcopy(parent);
260 	pr->ps_sigacts = sigactsinit(parent);
261 	if (flags & FORK_SHAREVM)
262 		pr->ps_vmspace = uvmspace_share(parent);
263 	else
264 		pr->ps_vmspace = uvmspace_fork(parent);
265 
266 	if (parent->ps_flags & PS_PROFIL)
267 		startprofclock(pr);
268 	if (flags & FORK_PTRACE)
269 		pr->ps_flags |= parent->ps_flags & PS_TRACED;
270 	if (flags & FORK_NOZOMBIE)
271 		pr->ps_flags |= PS_NOZOMBIE;
272 	if (flags & FORK_SYSTEM)
273 		pr->ps_flags |= PS_SYSTEM;
274 
275 	/* mark as embryo to protect against others */
276 	pr->ps_flags |= PS_EMBRYO;
277 
278 	/* Force visibility of all of the above changes */
279 	membar_producer();
280 
281 	/* it's sufficiently inited to be globally visible */
282 	LIST_INSERT_HEAD(&allprocess, pr, ps_list);
283 
284 	return pr;
285 }
286 
287 /* print the 'table full' message once per 10 seconds */
288 struct timeval fork_tfmrate = { 10, 0 };
289 
290 int
291 fork_check_maxthread(uid_t uid)
292 {
293 	/*
294 	 * Although process entries are dynamically created, we still keep
295 	 * a global limit on the maximum number we will create. We reserve
296 	 * the last 5 processes to root. The variable nprocesses is the
297 	 * current number of processes, maxprocess is the limit.  Similar
298 	 * rules for threads (struct proc): we reserve the last 5 to root;
299 	 * the variable nthreads is the current number of procs, maxthread is
300 	 * the limit.
301 	 */
302 	if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) {
303 		static struct timeval lasttfm;
304 
305 		if (ratecheck(&lasttfm, &fork_tfmrate))
306 			tablefull("thread");
307 		return EAGAIN;
308 	}
309 	nthreads++;
310 
311 	return 0;
312 }
313 
314 static inline void
315 fork_thread_start(struct proc *p, struct proc *parent, int flags)
316 {
317 	struct cpu_info *ci;
318 	int s;
319 
320 	SCHED_LOCK(s);
321 	ci = sched_choosecpu_fork(parent, flags);
322 	setrunqueue(ci, p, p->p_usrpri);
323 	SCHED_UNLOCK(s);
324 }
325 
326 int
327 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg,
328     register_t *retval, struct proc **rnewprocp)
329 {
330 	struct process *curpr = curp->p_p;
331 	struct process *pr;
332 	struct proc *p;
333 	uid_t uid = curp->p_ucred->cr_ruid;
334 	struct vmspace *vm;
335 	int count;
336 	vaddr_t uaddr;
337 	int error;
338 	struct  ptrace_state *newptstat = NULL;
339 
340 	KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE
341 	    | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE
342 	    | FORK_SYSTEM)) == 0);
343 	KASSERT(func != NULL);
344 
345 	if ((error = fork_check_maxthread(uid)))
346 		return error;
347 
348 	if ((nprocesses >= maxprocess - 5 && uid != 0) ||
349 	    nprocesses >= maxprocess) {
350 		static struct timeval lasttfm;
351 
352 		if (ratecheck(&lasttfm, &fork_tfmrate))
353 			tablefull("process");
354 		nthreads--;
355 		return EAGAIN;
356 	}
357 	nprocesses++;
358 
359 	/*
360 	 * Increment the count of processes running with this uid.
361 	 * Don't allow a nonprivileged user to exceed their current limit.
362 	 */
363 	count = chgproccnt(uid, 1);
364 	if (uid != 0 && count > lim_cur(RLIMIT_NPROC)) {
365 		(void)chgproccnt(uid, -1);
366 		nprocesses--;
367 		nthreads--;
368 		return EAGAIN;
369 	}
370 
371 	uaddr = uvm_uarea_alloc();
372 	if (uaddr == 0) {
373 		(void)chgproccnt(uid, -1);
374 		nprocesses--;
375 		nthreads--;
376 		return (ENOMEM);
377 	}
378 
379 	/*
380 	 * From now on, we're committed to the fork and cannot fail.
381 	 */
382 	p = thread_new(curp, uaddr);
383 	pr = process_new(p, curpr, flags);
384 
385 	p->p_fd		= pr->ps_fd;
386 	p->p_vmspace	= pr->ps_vmspace;
387 	if (pr->ps_flags & PS_SYSTEM)
388 		atomic_setbits_int(&p->p_flag, P_SYSTEM);
389 
390 	if (flags & FORK_PPWAIT) {
391 		atomic_setbits_int(&pr->ps_flags, PS_PPWAIT);
392 		atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT);
393 	}
394 
395 #ifdef KTRACE
396 	/*
397 	 * Copy traceflag and tracefile if enabled.
398 	 * If not inherited, these were zeroed above.
399 	 */
400 	if (curpr->ps_traceflag & KTRFAC_INHERIT)
401 		ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp,
402 		    curpr->ps_tracecred);
403 #endif
404 
405 	/*
406 	 * Finish creating the child thread.  cpu_fork() will copy
407 	 * and update the pcb and make the child ready to run.  If
408 	 * this is a normal user fork, the child will exit directly
409 	 * to user mode via child_return() on its first time slice
410 	 * and will not return here.  If this is a kernel thread,
411 	 * the specified entry point will be executed.
412 	 */
413 	cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p);
414 
415 	vm = pr->ps_vmspace;
416 
417 	if (flags & FORK_FORK) {
418 		forkstat.cntfork++;
419 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
420 	} else if (flags & FORK_VFORK) {
421 		forkstat.cntvfork++;
422 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
423 	} else {
424 		forkstat.cntkthread++;
425 	}
426 
427 	if (pr->ps_flags & PS_TRACED && flags & FORK_FORK)
428 		newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK);
429 
430 	p->p_tid = alloctid();
431 
432 	LIST_INSERT_HEAD(&allproc, p, p_list);
433 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
434 	LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash);
435 	LIST_INSERT_AFTER(curpr, pr, ps_pglist);
436 	LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling);
437 
438 	if (pr->ps_flags & PS_TRACED) {
439 		pr->ps_oppid = curpr->ps_pid;
440 		process_reparent(pr, curpr->ps_pptr);
441 
442 		/*
443 		 * Set ptrace status.
444 		 */
445 		if (newptstat != NULL) {
446 			pr->ps_ptstat = newptstat;
447 			newptstat = NULL;
448 			curpr->ps_ptstat->pe_report_event = PTRACE_FORK;
449 			pr->ps_ptstat->pe_report_event = PTRACE_FORK;
450 			curpr->ps_ptstat->pe_other_pid = pr->ps_pid;
451 			pr->ps_ptstat->pe_other_pid = curpr->ps_pid;
452 		}
453 	}
454 
455 	/*
456 	 * For new processes, set accounting bits and mark as complete.
457 	 */
458 	nanouptime(&pr->ps_start);
459 	pr->ps_acflag = AFORK;
460 	atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO);
461 
462 	if ((flags & FORK_IDLE) == 0)
463 		fork_thread_start(p, curp, flags);
464 	else
465 		p->p_cpu = arg;
466 
467 	free(newptstat, M_SUBPROC, sizeof(*newptstat));
468 
469 	/*
470 	 * Notify any interested parties about the new process.
471 	 */
472 	KNOTE(&curpr->ps_klist, NOTE_FORK | pr->ps_pid);
473 
474 	/*
475 	 * Update stats now that we know the fork was successful.
476 	 */
477 	uvmexp.forks++;
478 	if (flags & FORK_PPWAIT)
479 		uvmexp.forks_ppwait++;
480 	if (flags & FORK_SHAREVM)
481 		uvmexp.forks_sharevm++;
482 
483 	/*
484 	 * Pass a pointer to the new process to the caller.
485 	 */
486 	if (rnewprocp != NULL)
487 		*rnewprocp = p;
488 
489 	/*
490 	 * Preserve synchronization semantics of vfork.  If waiting for
491 	 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT
492 	 * on ourselves, and sleep on our process for the latter flag
493 	 * to go away.
494 	 * XXX Need to stop other rthreads in the parent
495 	 */
496 	if (flags & FORK_PPWAIT)
497 		while (curpr->ps_flags & PS_ISPWAIT)
498 			tsleep_nsec(curpr, PWAIT, "ppwait", INFSLP);
499 
500 	/*
501 	 * If we're tracing the child, alert the parent too.
502 	 */
503 	if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED))
504 		psignal(curp, SIGTRAP);
505 
506 	/*
507 	 * Return child pid to parent process
508 	 */
509 	if (retval != NULL) {
510 		retval[0] = pr->ps_pid;
511 		retval[1] = 0;
512 	}
513 	return (0);
514 }
515 
516 int
517 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr,
518     register_t *retval)
519 {
520 	struct process *pr = curp->p_p;
521 	struct proc *p;
522 	pid_t tid;
523 	vaddr_t uaddr;
524 	int s, error;
525 
526 	if (stack == NULL)
527 		return EINVAL;
528 
529 	if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid)))
530 		return error;
531 
532 	uaddr = uvm_uarea_alloc();
533 	if (uaddr == 0) {
534 		nthreads--;
535 		return ENOMEM;
536 	}
537 
538 	/*
539 	 * From now on, we're committed to the fork and cannot fail.
540 	 */
541 	p = thread_new(curp, uaddr);
542 	atomic_setbits_int(&p->p_flag, P_THREAD);
543 	sigstkinit(&p->p_sigstk);
544 
545 	/* other links */
546 	p->p_p = pr;
547 	pr->ps_refcnt++;
548 
549 	/* local copies */
550 	p->p_fd		= pr->ps_fd;
551 	p->p_vmspace	= pr->ps_vmspace;
552 
553 	/*
554 	 * Finish creating the child thread.  cpu_fork() will copy
555 	 * and update the pcb and make the child ready to run.  The
556 	 * child will exit directly to user mode via child_return()
557 	 * on its first time slice and will not return here.
558 	 */
559 	cpu_fork(curp, p, stack, tcb, child_return, p);
560 
561 	p->p_tid = alloctid();
562 
563 	LIST_INSERT_HEAD(&allproc, p, p_list);
564 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
565 
566 	SCHED_LOCK(s);
567 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
568 	/*
569 	 * if somebody else wants to take us to single threaded mode,
570 	 * count ourselves in.
571 	 */
572 	if (pr->ps_single) {
573 		atomic_inc_int(&pr->ps_singlecount);
574 		atomic_setbits_int(&p->p_flag, P_SUSPSINGLE);
575 	}
576 	SCHED_UNLOCK(s);
577 
578 	/*
579 	 * Return tid to parent thread and copy it out to userspace
580 	 */
581 	retval[0] = tid = p->p_tid + THREAD_PID_OFFSET;
582 	retval[1] = 0;
583 	if (tidptr != NULL) {
584 		if (copyout(&tid, tidptr, sizeof(tid)))
585 			psignal(curp, SIGSEGV);
586 	}
587 
588 	fork_thread_start(p, curp, 0);
589 
590 	/*
591 	 * Update stats now that we know the fork was successful.
592 	 */
593 	forkstat.cnttfork++;
594 	uvmexp.forks++;
595 	uvmexp.forks_sharevm++;
596 
597 	return 0;
598 }
599 
600 
601 /* Find an unused tid */
602 pid_t
603 alloctid(void)
604 {
605 	pid_t tid;
606 
607 	do {
608 		/* (0 .. TID_MASK+1] */
609 		tid = 1 + (arc4random() & TID_MASK);
610 	} while (tfind(tid) != NULL);
611 
612 	return (tid);
613 }
614 
615 /*
616  * Checks for current use of a pid, either as a pid or pgid.
617  */
618 pid_t oldpids[128];
619 int
620 ispidtaken(pid_t pid)
621 {
622 	uint32_t i;
623 
624 	for (i = 0; i < nitems(oldpids); i++)
625 		if (pid == oldpids[i])
626 			return (1);
627 
628 	if (prfind(pid) != NULL)
629 		return (1);
630 	if (pgfind(pid) != NULL)
631 		return (1);
632 	if (zombiefind(pid) != NULL)
633 		return (1);
634 	return (0);
635 }
636 
637 /* Find an unused pid */
638 pid_t
639 allocpid(void)
640 {
641 	static pid_t lastpid;
642 	pid_t pid;
643 
644 	if (!randompid) {
645 		/* only used early on for system processes */
646 		pid = ++lastpid;
647 	} else {
648 		/* Find an unused pid satisfying lastpid < pid <= PID_MAX */
649 		do {
650 			pid = arc4random_uniform(PID_MAX - lastpid) + 1 +
651 			    lastpid;
652 		} while (ispidtaken(pid));
653 	}
654 
655 	return pid;
656 }
657 
658 void
659 freepid(pid_t pid)
660 {
661 	static uint32_t idx;
662 
663 	oldpids[idx++ % nitems(oldpids)] = pid;
664 }
665 
666 #if defined(MULTIPROCESSOR)
667 /*
668  * XXX This is a slight hack to get newly-formed processes to
669  * XXX acquire the kernel lock as soon as they run.
670  */
671 void
672 proc_trampoline_mp(void)
673 {
674 	SCHED_ASSERT_LOCKED();
675 	__mp_unlock(&sched_lock);
676 	spl0();
677 	SCHED_ASSERT_UNLOCKED();
678 	KERNEL_ASSERT_UNLOCKED();
679 
680 	KERNEL_LOCK();
681 }
682 #endif
683