xref: /openbsd-src/sys/kern/kern_fork.c (revision 7350f337b9e3eb4461d99580e625c7ef148d107c)
1 /*	$OpenBSD: kern_fork.c,v 1.213 2019/06/21 09:39:48 visa Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/exec.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/vnode.h>
51 #include <sys/vmmeter.h>
52 #include <sys/acct.h>
53 #include <sys/ktrace.h>
54 #include <sys/sched.h>
55 #include <sys/sysctl.h>
56 #include <sys/pool.h>
57 #include <sys/mman.h>
58 #include <sys/ptrace.h>
59 #include <sys/atomic.h>
60 #include <sys/pledge.h>
61 #include <sys/unistd.h>
62 
63 #include <sys/syscallargs.h>
64 
65 #include <uvm/uvm.h>
66 #include <machine/tcb.h>
67 
68 #include "kcov.h"
69 
70 int	nprocesses = 1;		/* process 0 */
71 int	nthreads = 1;		/* proc 0 */
72 int	randompid;		/* when set to 1, pid's go random */
73 struct	forkstat forkstat;
74 
75 void fork_return(void *);
76 pid_t alloctid(void);
77 pid_t allocpid(void);
78 int ispidtaken(pid_t);
79 
80 void unveil_copy(struct process *parent, struct process *child);
81 
82 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr);
83 struct process *process_new(struct proc *, struct process *, int);
84 int fork_check_maxthread(uid_t _uid);
85 
86 void
87 fork_return(void *arg)
88 {
89 	struct proc *p = (struct proc *)arg;
90 
91 	if (p->p_p->ps_flags & PS_TRACED)
92 		psignal(p, SIGTRAP);
93 
94 	child_return(p);
95 }
96 
97 int
98 sys_fork(struct proc *p, void *v, register_t *retval)
99 {
100 	int flags;
101 
102 	flags = FORK_FORK;
103 	if (p->p_p->ps_ptmask & PTRACE_FORK)
104 		flags |= FORK_PTRACE;
105 	return fork1(p, flags, fork_return, NULL, retval, NULL);
106 }
107 
108 int
109 sys_vfork(struct proc *p, void *v, register_t *retval)
110 {
111 	return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL,
112 	    retval, NULL);
113 }
114 
115 int
116 sys___tfork(struct proc *p, void *v, register_t *retval)
117 {
118 	struct sys___tfork_args /* {
119 		syscallarg(const struct __tfork) *param;
120 		syscallarg(size_t) psize;
121 	} */ *uap = v;
122 	size_t psize = SCARG(uap, psize);
123 	struct __tfork param = { 0 };
124 	int error;
125 
126 	if (psize == 0 || psize > sizeof(param))
127 		return EINVAL;
128 	if ((error = copyin(SCARG(uap, param), &param, psize)))
129 		return error;
130 #ifdef KTRACE
131 	if (KTRPOINT(p, KTR_STRUCT))
132 		ktrstruct(p, "tfork", &param, sizeof(param));
133 #endif
134 #ifdef TCB_INVALID
135 	if (TCB_INVALID(param.tf_tcb))
136 		return EINVAL;
137 #endif /* TCB_INVALID */
138 
139 	return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid,
140 	    retval);
141 }
142 
143 /*
144  * Allocate and initialize a thread (proc) structure, given the parent thread.
145  */
146 struct proc *
147 thread_new(struct proc *parent, vaddr_t uaddr)
148 {
149 	struct proc *p;
150 
151 	p = pool_get(&proc_pool, PR_WAITOK);
152 	p->p_stat = SIDL;			/* protect against others */
153 	p->p_flag = 0;
154 	p->p_limit = NULL;
155 
156 	/*
157 	 * Make a proc table entry for the new process.
158 	 * Start by zeroing the section of proc that is zero-initialized,
159 	 * then copy the section that is copied directly from the parent.
160 	 */
161 	memset(&p->p_startzero, 0,
162 	    (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero);
163 	memcpy(&p->p_startcopy, &parent->p_startcopy,
164 	    (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy);
165 	crhold(p->p_ucred);
166 	p->p_addr = (struct user *)uaddr;
167 
168 	/*
169 	 * Initialize the timeouts.
170 	 */
171 	timeout_set(&p->p_sleep_to, endtsleep, p);
172 
173 	/*
174 	 * set priority of child to be that of parent
175 	 * XXX should move p_estcpu into the region of struct proc which gets
176 	 * copied.
177 	 */
178 	scheduler_fork_hook(parent, p);
179 
180 #ifdef WITNESS
181 	p->p_sleeplocks = NULL;
182 #endif
183 
184 #if NKCOV > 0
185 	p->p_kd = NULL;
186 #endif
187 
188 	return p;
189 }
190 
191 /*
192  * Initialize common bits of a process structure, given the initial thread.
193  */
194 void
195 process_initialize(struct process *pr, struct proc *p)
196 {
197 	/* initialize the thread links */
198 	pr->ps_mainproc = p;
199 	TAILQ_INIT(&pr->ps_threads);
200 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
201 	pr->ps_refcnt = 1;
202 	p->p_p = pr;
203 
204 	/* give the process the same creds as the initial thread */
205 	pr->ps_ucred = p->p_ucred;
206 	crhold(pr->ps_ucred);
207 	KASSERT(p->p_ucred->cr_ref >= 2);	/* new thread and new process */
208 
209 	LIST_INIT(&pr->ps_children);
210 	LIST_INIT(&pr->ps_ftlist);
211 	LIST_INIT(&pr->ps_kqlist);
212 	LIST_INIT(&pr->ps_sigiolst);
213 
214 	mtx_init(&pr->ps_mtx, IPL_MPFLOOR);
215 
216 	timeout_set(&pr->ps_realit_to, realitexpire, pr);
217 	timeout_set(&pr->ps_rucheck_to, rucheck, pr);
218 }
219 
220 
221 /*
222  * Allocate and initialize a new process.
223  */
224 struct process *
225 process_new(struct proc *p, struct process *parent, int flags)
226 {
227 	struct process *pr;
228 
229 	pr = pool_get(&process_pool, PR_WAITOK);
230 
231 	/*
232 	 * Make a process structure for the new process.
233 	 * Start by zeroing the section of proc that is zero-initialized,
234 	 * then copy the section that is copied directly from the parent.
235 	 */
236 	memset(&pr->ps_startzero, 0,
237 	    (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero);
238 	memcpy(&pr->ps_startcopy, &parent->ps_startcopy,
239 	    (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy);
240 
241 	process_initialize(pr, p);
242 	pr->ps_pid = allocpid();
243 	lim_fork(parent, pr);
244 
245 	/* post-copy fixups */
246 	pr->ps_pptr = parent;
247 
248 	/* bump references to the text vnode (for sysctl) */
249 	pr->ps_textvp = parent->ps_textvp;
250 	if (pr->ps_textvp)
251 		vref(pr->ps_textvp);
252 
253 	/* copy unveil if unveil is active */
254 	unveil_copy(parent, pr);
255 
256 	pr->ps_flags = parent->ps_flags &
257 	    (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE | PS_WXNEEDED);
258 	if (parent->ps_session->s_ttyvp != NULL)
259 		pr->ps_flags |= parent->ps_flags & PS_CONTROLT;
260 
261 	/*
262 	 * Duplicate sub-structures as needed.
263 	 * Increase reference counts on shared objects.
264 	 */
265 	if (flags & FORK_SHAREFILES)
266 		pr->ps_fd = fdshare(parent);
267 	else
268 		pr->ps_fd = fdcopy(parent);
269 	if (flags & FORK_SIGHAND)
270 		pr->ps_sigacts = sigactsshare(parent);
271 	else
272 		pr->ps_sigacts = sigactsinit(parent);
273 	if (flags & FORK_SHAREVM)
274 		pr->ps_vmspace = uvmspace_share(parent);
275 	else
276 		pr->ps_vmspace = uvmspace_fork(parent);
277 
278 	if (parent->ps_flags & PS_PROFIL)
279 		startprofclock(pr);
280 	if (flags & FORK_PTRACE)
281 		pr->ps_flags |= parent->ps_flags & PS_TRACED;
282 	if (flags & FORK_NOZOMBIE)
283 		pr->ps_flags |= PS_NOZOMBIE;
284 	if (flags & FORK_SYSTEM)
285 		pr->ps_flags |= PS_SYSTEM;
286 
287 	/* mark as embryo to protect against others */
288 	pr->ps_flags |= PS_EMBRYO;
289 
290 	/* Force visibility of all of the above changes */
291 	membar_producer();
292 
293 	/* it's sufficiently inited to be globally visible */
294 	LIST_INSERT_HEAD(&allprocess, pr, ps_list);
295 
296 	return pr;
297 }
298 
299 /* print the 'table full' message once per 10 seconds */
300 struct timeval fork_tfmrate = { 10, 0 };
301 
302 int
303 fork_check_maxthread(uid_t uid)
304 {
305 	/*
306 	 * Although process entries are dynamically created, we still keep
307 	 * a global limit on the maximum number we will create. We reserve
308 	 * the last 5 processes to root. The variable nprocesses is the
309 	 * current number of processes, maxprocess is the limit.  Similar
310 	 * rules for threads (struct proc): we reserve the last 5 to root;
311 	 * the variable nthreads is the current number of procs, maxthread is
312 	 * the limit.
313 	 */
314 	if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) {
315 		static struct timeval lasttfm;
316 
317 		if (ratecheck(&lasttfm, &fork_tfmrate))
318 			tablefull("proc");
319 		return EAGAIN;
320 	}
321 	nthreads++;
322 
323 	return 0;
324 }
325 
326 static inline void
327 fork_thread_start(struct proc *p, struct proc *parent, int flags)
328 {
329 	int s;
330 
331 	SCHED_LOCK(s);
332 	p->p_stat = SRUN;
333 	p->p_cpu = sched_choosecpu_fork(parent, flags);
334 	setrunqueue(p);
335 	SCHED_UNLOCK(s);
336 }
337 
338 int
339 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg,
340     register_t *retval, struct proc **rnewprocp)
341 {
342 	struct process *curpr = curp->p_p;
343 	struct process *pr;
344 	struct proc *p;
345 	uid_t uid = curp->p_ucred->cr_ruid;
346 	struct vmspace *vm;
347 	int count;
348 	vaddr_t uaddr;
349 	int error;
350 	struct  ptrace_state *newptstat = NULL;
351 
352 	KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE
353 	    | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE
354 	    | FORK_SYSTEM | FORK_SIGHAND)) == 0);
355 	KASSERT((flags & FORK_SIGHAND) == 0 || (flags & FORK_SHAREVM));
356 	KASSERT(func != NULL);
357 
358 	if ((error = fork_check_maxthread(uid)))
359 		return error;
360 
361 	if ((nprocesses >= maxprocess - 5 && uid != 0) ||
362 	    nprocesses >= maxprocess) {
363 		static struct timeval lasttfm;
364 
365 		if (ratecheck(&lasttfm, &fork_tfmrate))
366 			tablefull("process");
367 		nthreads--;
368 		return EAGAIN;
369 	}
370 	nprocesses++;
371 
372 	/*
373 	 * Increment the count of processes running with this uid.
374 	 * Don't allow a nonprivileged user to exceed their current limit.
375 	 */
376 	count = chgproccnt(uid, 1);
377 	if (uid != 0 && count > lim_cur(RLIMIT_NPROC)) {
378 		(void)chgproccnt(uid, -1);
379 		nprocesses--;
380 		nthreads--;
381 		return EAGAIN;
382 	}
383 
384 	uaddr = uvm_uarea_alloc();
385 	if (uaddr == 0) {
386 		(void)chgproccnt(uid, -1);
387 		nprocesses--;
388 		nthreads--;
389 		return (ENOMEM);
390 	}
391 
392 	/*
393 	 * From now on, we're committed to the fork and cannot fail.
394 	 */
395 	p = thread_new(curp, uaddr);
396 	pr = process_new(p, curpr, flags);
397 
398 	p->p_fd		= pr->ps_fd;
399 	p->p_vmspace	= pr->ps_vmspace;
400 	if (pr->ps_flags & PS_SYSTEM)
401 		atomic_setbits_int(&p->p_flag, P_SYSTEM);
402 
403 	if (flags & FORK_PPWAIT) {
404 		atomic_setbits_int(&pr->ps_flags, PS_PPWAIT);
405 		atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT);
406 	}
407 
408 #ifdef KTRACE
409 	/*
410 	 * Copy traceflag and tracefile if enabled.
411 	 * If not inherited, these were zeroed above.
412 	 */
413 	if (curpr->ps_traceflag & KTRFAC_INHERIT)
414 		ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp,
415 		    curpr->ps_tracecred);
416 #endif
417 
418 	/*
419 	 * Finish creating the child thread.  cpu_fork() will copy
420 	 * and update the pcb and make the child ready to run.  If
421 	 * this is a normal user fork, the child will exit directly
422 	 * to user mode via child_return() on its first time slice
423 	 * and will not return here.  If this is a kernel thread,
424 	 * the specified entry point will be executed.
425 	 */
426 	cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p);
427 
428 	vm = pr->ps_vmspace;
429 
430 	if (flags & FORK_FORK) {
431 		forkstat.cntfork++;
432 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
433 	} else if (flags & FORK_VFORK) {
434 		forkstat.cntvfork++;
435 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
436 	} else {
437 		forkstat.cntkthread++;
438 	}
439 
440 	if (pr->ps_flags & PS_TRACED && flags & FORK_FORK)
441 		newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK);
442 
443 	p->p_tid = alloctid();
444 
445 	LIST_INSERT_HEAD(&allproc, p, p_list);
446 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
447 	LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash);
448 	LIST_INSERT_AFTER(curpr, pr, ps_pglist);
449 	LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling);
450 
451 	if (pr->ps_flags & PS_TRACED) {
452 		pr->ps_oppid = curpr->ps_pid;
453 		if (pr->ps_pptr != curpr->ps_pptr)
454 			proc_reparent(pr, curpr->ps_pptr);
455 
456 		/*
457 		 * Set ptrace status.
458 		 */
459 		if (newptstat != NULL) {
460 			pr->ps_ptstat = newptstat;
461 			newptstat = NULL;
462 			curpr->ps_ptstat->pe_report_event = PTRACE_FORK;
463 			pr->ps_ptstat->pe_report_event = PTRACE_FORK;
464 			curpr->ps_ptstat->pe_other_pid = pr->ps_pid;
465 			pr->ps_ptstat->pe_other_pid = curpr->ps_pid;
466 		}
467 	}
468 
469 	/*
470 	 * For new processes, set accounting bits and mark as complete.
471 	 */
472 	getnanotime(&pr->ps_start);
473 	pr->ps_acflag = AFORK;
474 	atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO);
475 
476 	if ((flags & FORK_IDLE) == 0)
477 		fork_thread_start(p, curp, flags);
478 	else
479 		p->p_cpu = arg;
480 
481 	free(newptstat, M_SUBPROC, sizeof(*newptstat));
482 
483 	/*
484 	 * Notify any interested parties about the new process.
485 	 */
486 	KNOTE(&curpr->ps_klist, NOTE_FORK | pr->ps_pid);
487 
488 	/*
489 	 * Update stats now that we know the fork was successful.
490 	 */
491 	uvmexp.forks++;
492 	if (flags & FORK_PPWAIT)
493 		uvmexp.forks_ppwait++;
494 	if (flags & FORK_SHAREVM)
495 		uvmexp.forks_sharevm++;
496 
497 	/*
498 	 * Pass a pointer to the new process to the caller.
499 	 */
500 	if (rnewprocp != NULL)
501 		*rnewprocp = p;
502 
503 	/*
504 	 * Preserve synchronization semantics of vfork.  If waiting for
505 	 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT
506 	 * on ourselves, and sleep on our process for the latter flag
507 	 * to go away.
508 	 * XXX Need to stop other rthreads in the parent
509 	 */
510 	if (flags & FORK_PPWAIT)
511 		while (curpr->ps_flags & PS_ISPWAIT)
512 			tsleep(curpr, PWAIT, "ppwait", 0);
513 
514 	/*
515 	 * If we're tracing the child, alert the parent too.
516 	 */
517 	if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED))
518 		psignal(curp, SIGTRAP);
519 
520 	/*
521 	 * Return child pid to parent process
522 	 */
523 	if (retval != NULL) {
524 		retval[0] = pr->ps_pid;
525 		retval[1] = 0;
526 	}
527 	return (0);
528 }
529 
530 int
531 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr,
532     register_t *retval)
533 {
534 	struct process *pr = curp->p_p;
535 	struct proc *p;
536 	pid_t tid;
537 	vaddr_t uaddr;
538 	int error;
539 
540 	if (stack == NULL)
541 		return EINVAL;
542 
543 	if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid)))
544 		return error;
545 
546 	uaddr = uvm_uarea_alloc();
547 	if (uaddr == 0) {
548 		nthreads--;
549 		return ENOMEM;
550 	}
551 
552 	/*
553 	 * From now on, we're committed to the fork and cannot fail.
554 	 */
555 	p = thread_new(curp, uaddr);
556 	atomic_setbits_int(&p->p_flag, P_THREAD);
557 	sigstkinit(&p->p_sigstk);
558 
559 	/* other links */
560 	p->p_p = pr;
561 	pr->ps_refcnt++;
562 
563 	/* local copies */
564 	p->p_fd		= pr->ps_fd;
565 	p->p_vmspace	= pr->ps_vmspace;
566 
567 	/*
568 	 * Finish creating the child thread.  cpu_fork() will copy
569 	 * and update the pcb and make the child ready to run.  The
570 	 * child will exit directly to user mode via child_return()
571 	 * on its first time slice and will not return here.
572 	 */
573 	cpu_fork(curp, p, stack, tcb, child_return, p);
574 
575 	p->p_tid = alloctid();
576 
577 	LIST_INSERT_HEAD(&allproc, p, p_list);
578 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
579 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
580 
581 	/*
582 	 * if somebody else wants to take us to single threaded mode,
583 	 * count ourselves in.
584 	 */
585 	if (pr->ps_single) {
586 		pr->ps_singlecount++;
587 		atomic_setbits_int(&p->p_flag, P_SUSPSINGLE);
588 	}
589 
590 	/*
591 	 * Return tid to parent thread and copy it out to userspace
592 	 */
593 	retval[0] = tid = p->p_tid + THREAD_PID_OFFSET;
594 	retval[1] = 0;
595 	if (tidptr != NULL) {
596 		if (copyout(&tid, tidptr, sizeof(tid)))
597 			psignal(curp, SIGSEGV);
598 	}
599 
600 	fork_thread_start(p, curp, 0);
601 
602 	/*
603 	 * Update stats now that we know the fork was successful.
604 	 */
605 	forkstat.cnttfork++;
606 	uvmexp.forks++;
607 	uvmexp.forks_sharevm++;
608 
609 	return 0;
610 }
611 
612 
613 /* Find an unused tid */
614 pid_t
615 alloctid(void)
616 {
617 	pid_t tid;
618 
619 	do {
620 		/* (0 .. TID_MASK+1] */
621 		tid = 1 + (arc4random() & TID_MASK);
622 	} while (tfind(tid) != NULL);
623 
624 	return (tid);
625 }
626 
627 /*
628  * Checks for current use of a pid, either as a pid or pgid.
629  */
630 pid_t oldpids[128];
631 int
632 ispidtaken(pid_t pid)
633 {
634 	uint32_t i;
635 
636 	for (i = 0; i < nitems(oldpids); i++)
637 		if (pid == oldpids[i])
638 			return (1);
639 
640 	if (prfind(pid) != NULL)
641 		return (1);
642 	if (pgfind(pid) != NULL)
643 		return (1);
644 	if (zombiefind(pid) != NULL)
645 		return (1);
646 	return (0);
647 }
648 
649 /* Find an unused pid */
650 pid_t
651 allocpid(void)
652 {
653 	static pid_t lastpid;
654 	pid_t pid;
655 
656 	if (!randompid) {
657 		/* only used early on for system processes */
658 		pid = ++lastpid;
659 	} else {
660 		/* Find an unused pid satisfying lastpid < pid <= PID_MAX */
661 		do {
662 			pid = arc4random_uniform(PID_MAX - lastpid) + 1 +
663 			    lastpid;
664 		} while (ispidtaken(pid));
665 	}
666 
667 	return pid;
668 }
669 
670 void
671 freepid(pid_t pid)
672 {
673 	static uint32_t idx;
674 
675 	oldpids[idx++ % nitems(oldpids)] = pid;
676 }
677 
678 #if defined(MULTIPROCESSOR)
679 /*
680  * XXX This is a slight hack to get newly-formed processes to
681  * XXX acquire the kernel lock as soon as they run.
682  */
683 void
684 proc_trampoline_mp(void)
685 {
686 	SCHED_ASSERT_LOCKED();
687 	__mp_unlock(&sched_lock);
688 	spl0();
689 	SCHED_ASSERT_UNLOCKED();
690 	KERNEL_ASSERT_UNLOCKED();
691 
692 	KERNEL_LOCK();
693 }
694 #endif
695