xref: /openbsd-src/sys/kern/kern_fork.c (revision 636eb1092aad7ee44a83ea0cb1f71bba59f1bc3b)
1 /*	$OpenBSD: kern_fork.c,v 1.40 2001/06/27 04:49:42 art Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/map.h>
47 #include <sys/filedesc.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/mount.h>
51 #include <sys/proc.h>
52 #include <sys/resourcevar.h>
53 #include <sys/signalvar.h>
54 #include <sys/vnode.h>
55 #include <sys/file.h>
56 #include <sys/acct.h>
57 #include <sys/ktrace.h>
58 #include <sys/sched.h>
59 #include <dev/rndvar.h>
60 #include <sys/pool.h>
61 
62 #include <sys/syscallargs.h>
63 
64 #include <vm/vm.h>
65 #include <vm/vm_kern.h>
66 
67 #include <uvm/uvm_extern.h>
68 #include <uvm/uvm_map.h>
69 
70 int	nprocs = 1;		/* process 0 */
71 int	randompid;		/* when set to 1, pid's go random */
72 pid_t	lastpid;
73 struct	forkstat forkstat;
74 
75 
76 /*ARGSUSED*/
77 int
78 sys_fork(p, v, retval)
79 	struct proc *p;
80 	void *v;
81 	register_t *retval;
82 {
83 	return (fork1(p, SIGCHLD, FORK_FORK, NULL, 0, retval));
84 }
85 
86 /*ARGSUSED*/
87 int
88 sys_vfork(p, v, retval)
89 	struct proc *p;
90 	void *v;
91 	register_t *retval;
92 {
93 	return (fork1(p, SIGCHLD, FORK_VFORK|FORK_PPWAIT, NULL, 0, retval));
94 }
95 
96 int
97 sys_rfork(p, v, retval)
98 	struct proc *p;
99 	void *v;
100 	register_t *retval;
101 {
102 	struct sys_rfork_args /* {
103 		syscallarg(int) flags;
104 	} */ *uap = v;
105 
106 	int rforkflags;
107 	int flags;
108 
109 	flags = FORK_RFORK;
110 	rforkflags = SCARG(uap, flags);
111 
112 	if ((rforkflags & RFPROC) == 0)
113 		return (EINVAL);
114 
115 	switch(rforkflags & (RFFDG|RFCFDG)) {
116 	case (RFFDG|RFCFDG):
117 		return EINVAL;
118 	case RFCFDG:
119 		flags |= FORK_CLEANFILES;
120 		break;
121 	case RFFDG:
122 		break;
123 	default:
124 		flags |= FORK_SHAREFILES;
125 		break;
126 	}
127 
128 	if (rforkflags & RFNOWAIT)
129 		flags |= FORK_NOZOMBIE;
130 
131 	if (rforkflags & RFMEM)
132 		flags |= FORK_VMNOSTACK;
133 
134 	return (fork1(p, SIGCHLD, flags, NULL, 0, retval));
135 }
136 
137 int
138 fork1(p1, exitsig, flags, stack, stacksize, retval)
139 	register struct proc *p1;
140 	int exitsig;
141 	int flags;
142 	void *stack;
143 	size_t stacksize;
144 	register_t *retval;
145 {
146 	struct proc *p2;
147 	uid_t uid;
148 	struct proc *newproc;
149 	struct vmspace *vm;
150 	int count;
151 	static int pidchecked = 0;
152 	vaddr_t uaddr;
153 	int s;
154 	extern void endtsleep __P((void *));
155 	extern void realitexpire __P((void *));
156 
157 	/*
158 	 * Although process entries are dynamically created, we still keep
159 	 * a global limit on the maximum number we will create. We reserve
160 	 * the last 5 processes to root. The variable nprocs is the current
161 	 * number of processes, maxproc is the limit.
162 	 */
163 	uid = p1->p_cred->p_ruid;
164 	if ((nprocs >= maxproc - 5 && uid != 0) || nprocs >= maxproc) {
165 		tablefull("proc");
166 		return (EAGAIN);
167 	}
168 
169 	/*
170 	 * Increment the count of procs running with this uid. Don't allow
171 	 * a nonprivileged user to exceed their current limit.
172 	 */
173 	count = chgproccnt(uid, 1);
174 	if (uid != 0 && count > p1->p_rlimit[RLIMIT_NPROC].rlim_cur) {
175 		(void)chgproccnt(uid, -1);
176 		return (EAGAIN);
177 	}
178 
179 	/*
180 	 * Allocate a pcb and kernel stack for the process
181 	 */
182 #if defined(arc) || defined(mips_cachealias)
183 	uaddr = kmem_alloc_upage(kernel_map, USPACE);
184 #else
185 	uaddr = uvm_km_valloc(kernel_map, USPACE);
186 #endif
187 	if (uaddr == 0)
188 		return ENOMEM;
189 
190 	/* Allocate new proc. */
191 	newproc = pool_get(&proc_pool, PR_WAITOK);
192 
193 	lastpid++;
194 	if (randompid)
195 		lastpid = PID_MAX;
196 retry:
197 	/*
198 	 * If the process ID prototype has wrapped around,
199 	 * restart somewhat above 0, as the low-numbered procs
200 	 * tend to include daemons that don't exit.
201 	 */
202 	if (lastpid >= PID_MAX) {
203 		lastpid = arc4random() % PID_MAX;
204 		pidchecked = 0;
205 	}
206 	if (lastpid >= pidchecked) {
207 		int doingzomb = 0;
208 
209 		pidchecked = PID_MAX;
210 		/*
211 		 * Scan the active and zombie procs to check whether this pid
212 		 * is in use.  Remember the lowest pid that's greater
213 		 * than lastpid, so we can avoid checking for a while.
214 		 */
215 		p2 = LIST_FIRST(&allproc);
216 again:
217 		for (; p2 != 0; p2 = LIST_NEXT(p2, p_list)) {
218 			while (p2->p_pid == lastpid ||
219 			    p2->p_pgrp->pg_id == lastpid) {
220 				lastpid++;
221 				if (lastpid >= pidchecked)
222 					goto retry;
223 			}
224 			if (p2->p_pid > lastpid && pidchecked > p2->p_pid)
225 				pidchecked = p2->p_pid;
226 			if (p2->p_pgrp->pg_id > lastpid &&
227 			    pidchecked > p2->p_pgrp->pg_id)
228 				pidchecked = p2->p_pgrp->pg_id;
229 		}
230 		if (!doingzomb) {
231 			doingzomb = 1;
232 			p2 = LIST_FIRST(&zombproc);
233 			goto again;
234 		}
235 	}
236 
237 	nprocs++;
238 	p2 = newproc;
239 	p2->p_stat = SIDL;			/* protect against others */
240 	p2->p_pid = lastpid;
241 	p2->p_exitsig = exitsig;
242 	LIST_INSERT_HEAD(&allproc, p2, p_list);
243 	p2->p_forw = p2->p_back = NULL;		/* shouldn't be necessary */
244 	LIST_INSERT_HEAD(PIDHASH(p2->p_pid), p2, p_hash);
245 
246 	/*
247 	 * Make a proc table entry for the new process.
248 	 * Start by zeroing the section of proc that is zero-initialized,
249 	 * then copy the section that is copied directly from the parent.
250 	 */
251 	bzero(&p2->p_startzero,
252 	    (unsigned) ((caddr_t)&p2->p_endzero - (caddr_t)&p2->p_startzero));
253 	bcopy(&p1->p_startcopy, &p2->p_startcopy,
254 	    (unsigned) ((caddr_t)&p2->p_endcopy - (caddr_t)&p2->p_startcopy));
255 
256 	/*
257 	 * Initialize the timeouts.
258 	 */
259 	timeout_set(&p2->p_sleep_to, endtsleep, p2);
260 	timeout_set(&p2->p_realit_to, realitexpire, p2);
261 
262 	/*
263 	 * Duplicate sub-structures as needed.
264 	 * Increase reference counts on shared objects.
265 	 * The p_stats and p_sigacts substructs are set in vm_fork.
266 	 */
267 	p2->p_flag = P_INMEM;
268 	p2->p_emul = p1->p_emul;
269 	if (p1->p_flag & P_PROFIL)
270 		startprofclock(p2);
271 	p2->p_flag |= (p1->p_flag & (P_SUGID | P_SUGIDEXEC));
272 	MALLOC(p2->p_cred, struct pcred *, sizeof(struct pcred),
273 	    M_SUBPROC, M_WAITOK);
274 	bcopy(p1->p_cred, p2->p_cred, sizeof(*p2->p_cred));
275 	p2->p_cred->p_refcnt = 1;
276 	crhold(p1->p_ucred);
277 
278 	/* bump references to the text vnode (for procfs) */
279 	p2->p_textvp = p1->p_textvp;
280 	if (p2->p_textvp)
281 		VREF(p2->p_textvp);
282 
283 	if (flags & FORK_CLEANFILES)
284 		p2->p_fd = fdinit(p1);
285 	else if (flags & FORK_SHAREFILES)
286 		p2->p_fd = fdshare(p1);
287 	else
288 		p2->p_fd = fdcopy(p1);
289 
290 	/*
291 	 * If p_limit is still copy-on-write, bump refcnt,
292 	 * otherwise get a copy that won't be modified.
293 	 * (If PL_SHAREMOD is clear, the structure is shared
294 	 * copy-on-write.)
295 	 */
296 	if (p1->p_limit->p_lflags & PL_SHAREMOD)
297 		p2->p_limit = limcopy(p1->p_limit);
298 	else {
299 		p2->p_limit = p1->p_limit;
300 		p2->p_limit->p_refcnt++;
301 	}
302 
303 	if (p1->p_session->s_ttyvp != NULL && p1->p_flag & P_CONTROLT)
304 		p2->p_flag |= P_CONTROLT;
305 	if (flags & FORK_PPWAIT)
306 		p2->p_flag |= P_PPWAIT;
307 	LIST_INSERT_AFTER(p1, p2, p_pglist);
308 	p2->p_pptr = p1;
309 	if (flags & FORK_NOZOMBIE)
310 		p2->p_flag |= P_NOZOMBIE;
311 	LIST_INSERT_HEAD(&p1->p_children, p2, p_sibling);
312 	LIST_INIT(&p2->p_children);
313 
314 #ifdef KTRACE
315 	/*
316 	 * Copy traceflag and tracefile if enabled.
317 	 * If not inherited, these were zeroed above.
318 	 */
319 	if (p1->p_traceflag & KTRFAC_INHERIT) {
320 		p2->p_traceflag = p1->p_traceflag;
321 		if ((p2->p_tracep = p1->p_tracep) != NULL)
322 			VREF(p2->p_tracep);
323 	}
324 #endif
325 
326 	/*
327 	 * set priority of child to be that of parent
328 	 * XXX should move p_estcpu into the region of struct proc which gets
329 	 * copied.
330 	 */
331 	scheduler_fork_hook(p1, p2);
332 
333 	/*
334 	 * Create signal actions for the child process.
335 	 */
336 	if (flags & FORK_SIGHAND)
337 		sigactsshare(p1, p2);
338 	else
339 		p2->p_sigacts = sigactsinit(p1);
340 
341 	/*
342 	 * This begins the section where we must prevent the parent
343 	 * from being swapped.
344 	 */
345 	PHOLD(p1);
346 
347 	if (flags & FORK_VMNOSTACK) {
348 		/* share as much address space as possible */
349 		(void) uvm_map_inherit(&p1->p_vmspace->vm_map,
350 		    VM_MIN_ADDRESS, VM_MAXUSER_ADDRESS - MAXSSIZ,
351 		    VM_INHERIT_SHARE);
352 	}
353 
354 	p2->p_addr = (struct user *)uaddr;
355 
356 #ifdef __FORK_BRAINDAMAGE
357 	/*
358 	 * Set return values for child before vm_fork,
359 	 * so they can be copied to child stack.
360 	 * We return 0, rather than the traditional behaviour of modifying the
361 	 * return value in the system call stub.
362 	 * NOTE: the kernel stack may be at a different location in the child
363 	 * process, and thus addresses of automatic variables (including retval)
364 	 * may be invalid after vm_fork returns in the child process.
365 	 */
366 	retval[0] = 0;
367 	retval[1] = 1;
368 	if (vm_fork(p1, p2, stack, stacksize))
369 		return (0);
370 #else
371 	/*
372 	 * Finish creating the child process.  It will return through a
373 	 * different path later.
374 	 */
375 	uvm_fork(p1, p2, ((flags & FORK_SHAREVM) ? TRUE : FALSE), stack,
376 	    stacksize);
377 #endif
378 	vm = p2->p_vmspace;
379 
380 	if (flags & FORK_FORK) {
381 		forkstat.cntfork++;
382 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
383 	} else if (flags & FORK_VFORK) {
384 		forkstat.cntvfork++;
385 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
386 	} else if (flags & FORK_RFORK) {
387 		forkstat.cntrfork++;
388 		forkstat.sizrfork += vm->vm_dsize + vm->vm_ssize;
389 	} else {
390 		forkstat.cntkthread++;
391 		forkstat.sizkthread += vm->vm_dsize + vm->vm_ssize;
392 	}
393 
394 	/*
395 	 * Make child runnable, set start time, and add to run queue.
396 	 */
397 	s = splstatclock();
398 	p2->p_stats->p_start = time;
399 	p2->p_acflag = AFORK;
400 	p2->p_stat = SRUN;
401 	setrunqueue(p2);
402 	splx(s);
403 
404 	/*
405 	 * Now can be swapped.
406 	 */
407 	PRELE(p1);
408 
409 	uvmexp.forks++;
410 	if (flags & FORK_PPWAIT)
411 		uvmexp.forks_ppwait++;
412 	if (flags & FORK_SHAREVM)
413 		uvmexp.forks_sharevm++;
414 
415 	/*
416 	 * tell any interested parties about the new process
417 	 */
418 	KNOTE(&p1->p_klist, NOTE_FORK | p2->p_pid);
419 
420 	/*
421 	 * Preserve synchronization semantics of vfork.  If waiting for
422 	 * child to exec or exit, set P_PPWAIT on child, and sleep on our
423 	 * proc (in case of exit).
424 	 */
425 	if (flags & FORK_PPWAIT)
426 		while (p2->p_flag & P_PPWAIT)
427 			tsleep(p1, PWAIT, "ppwait", 0);
428 
429 	/*
430 	 * Return child pid to parent process,
431 	 * marking us as parent via retval[1].
432 	 */
433 	retval[0] = p2->p_pid;
434 	retval[1] = 0;
435 	return (0);
436 }
437 
438