xref: /openbsd-src/sys/kern/kern_fork.c (revision 608889ebe255266b621bd65a999b88dc9ad36dc0)
1 /*	$OpenBSD: kern_fork.c,v 1.241 2022/07/23 22:10:58 cheloha Exp $	*/
2 /*	$NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $	*/
3 
4 /*
5  * Copyright (c) 1982, 1986, 1989, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_fork.c	8.6 (Berkeley) 4/8/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/filedesc.h>
43 #include <sys/kernel.h>
44 #include <sys/malloc.h>
45 #include <sys/mount.h>
46 #include <sys/proc.h>
47 #include <sys/exec.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <sys/vnode.h>
51 #include <sys/vmmeter.h>
52 #include <sys/acct.h>
53 #include <sys/ktrace.h>
54 #include <sys/sched.h>
55 #include <sys/sysctl.h>
56 #include <sys/pool.h>
57 #include <sys/mman.h>
58 #include <sys/ptrace.h>
59 #include <sys/atomic.h>
60 #include <sys/pledge.h>
61 #include <sys/unistd.h>
62 
63 #include <sys/syscallargs.h>
64 
65 #include <uvm/uvm.h>
66 #include <machine/tcb.h>
67 
68 int	nprocesses = 1;		/* process 0 */
69 int	nthreads = 1;		/* proc 0 */
70 struct	forkstat forkstat;
71 
72 void fork_return(void *);
73 pid_t alloctid(void);
74 pid_t allocpid(void);
75 int ispidtaken(pid_t);
76 
77 void unveil_copy(struct process *parent, struct process *child);
78 
79 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr);
80 struct process *process_new(struct proc *, struct process *, int);
81 int fork_check_maxthread(uid_t _uid);
82 
83 void
84 fork_return(void *arg)
85 {
86 	struct proc *p = (struct proc *)arg;
87 
88 	if (p->p_p->ps_flags & PS_TRACED)
89 		psignal(p, SIGTRAP);
90 
91 	child_return(p);
92 }
93 
94 int
95 sys_fork(struct proc *p, void *v, register_t *retval)
96 {
97 	void (*func)(void *) = child_return;
98 	int flags;
99 
100 	flags = FORK_FORK;
101 	if (p->p_p->ps_ptmask & PTRACE_FORK) {
102 		flags |= FORK_PTRACE;
103 		func = fork_return;
104 	}
105 	return fork1(p, flags, func, NULL, retval, NULL);
106 }
107 
108 int
109 sys_vfork(struct proc *p, void *v, register_t *retval)
110 {
111 	return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL,
112 	    retval, NULL);
113 }
114 
115 int
116 sys___tfork(struct proc *p, void *v, register_t *retval)
117 {
118 	struct sys___tfork_args /* {
119 		syscallarg(const struct __tfork) *param;
120 		syscallarg(size_t) psize;
121 	} */ *uap = v;
122 	size_t psize = SCARG(uap, psize);
123 	struct __tfork param = { 0 };
124 	int error;
125 
126 	if (psize == 0 || psize > sizeof(param))
127 		return EINVAL;
128 	if ((error = copyin(SCARG(uap, param), &param, psize)))
129 		return error;
130 #ifdef KTRACE
131 	if (KTRPOINT(p, KTR_STRUCT))
132 		ktrstruct(p, "tfork", &param, sizeof(param));
133 #endif
134 #ifdef TCB_INVALID
135 	if (TCB_INVALID(param.tf_tcb))
136 		return EINVAL;
137 #endif /* TCB_INVALID */
138 
139 	return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid,
140 	    retval);
141 }
142 
143 /*
144  * Allocate and initialize a thread (proc) structure, given the parent thread.
145  */
146 struct proc *
147 thread_new(struct proc *parent, vaddr_t uaddr)
148 {
149 	struct proc *p;
150 
151 	p = pool_get(&proc_pool, PR_WAITOK);
152 	p->p_stat = SIDL;			/* protect against others */
153 	p->p_runpri = 0;
154 	p->p_flag = 0;
155 
156 	/*
157 	 * Make a proc table entry for the new process.
158 	 * Start by zeroing the section of proc that is zero-initialized,
159 	 * then copy the section that is copied directly from the parent.
160 	 */
161 	memset(&p->p_startzero, 0,
162 	    (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero);
163 	memcpy(&p->p_startcopy, &parent->p_startcopy,
164 	    (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy);
165 	crhold(p->p_ucred);
166 	p->p_addr = (struct user *)uaddr;
167 
168 	/*
169 	 * Initialize the timeouts.
170 	 */
171 	timeout_set(&p->p_sleep_to, endtsleep, p);
172 
173 	return p;
174 }
175 
176 /*
177  * Initialize common bits of a process structure, given the initial thread.
178  */
179 void
180 process_initialize(struct process *pr, struct proc *p)
181 {
182 	/* initialize the thread links */
183 	pr->ps_mainproc = p;
184 	TAILQ_INIT(&pr->ps_threads);
185 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
186 	pr->ps_refcnt = 1;
187 	p->p_p = pr;
188 
189 	/* give the process the same creds as the initial thread */
190 	pr->ps_ucred = p->p_ucred;
191 	crhold(pr->ps_ucred);
192 	/* new thread and new process */
193 	KASSERT(p->p_ucred->cr_refcnt.r_refs >= 2);
194 
195 	LIST_INIT(&pr->ps_children);
196 	LIST_INIT(&pr->ps_orphans);
197 	LIST_INIT(&pr->ps_ftlist);
198 	LIST_INIT(&pr->ps_sigiolst);
199 	TAILQ_INIT(&pr->ps_tslpqueue);
200 
201 	rw_init(&pr->ps_lock, "pslock");
202 	mtx_init(&pr->ps_mtx, IPL_HIGH);
203 
204 	timeout_set_kclock(&pr->ps_realit_to, realitexpire, pr,
205 	    KCLOCK_UPTIME, 0);
206 	timeout_set(&pr->ps_rucheck_to, rucheck, pr);
207 }
208 
209 
210 /*
211  * Allocate and initialize a new process.
212  */
213 struct process *
214 process_new(struct proc *p, struct process *parent, int flags)
215 {
216 	struct process *pr;
217 
218 	pr = pool_get(&process_pool, PR_WAITOK);
219 
220 	/*
221 	 * Make a process structure for the new process.
222 	 * Start by zeroing the section of proc that is zero-initialized,
223 	 * then copy the section that is copied directly from the parent.
224 	 */
225 	memset(&pr->ps_startzero, 0,
226 	    (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero);
227 	memcpy(&pr->ps_startcopy, &parent->ps_startcopy,
228 	    (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy);
229 
230 	process_initialize(pr, p);
231 	pr->ps_pid = allocpid();
232 	lim_fork(parent, pr);
233 
234 	/* post-copy fixups */
235 	pr->ps_pptr = parent;
236 	pr->ps_ppid = parent->ps_pid;
237 
238 	/* bump references to the text vnode (for sysctl) */
239 	pr->ps_textvp = parent->ps_textvp;
240 	if (pr->ps_textvp)
241 		vref(pr->ps_textvp);
242 
243 	/* copy unveil if unveil is active */
244 	unveil_copy(parent, pr);
245 
246 	pr->ps_flags = parent->ps_flags &
247 	    (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE | PS_WXNEEDED);
248 	if (parent->ps_session->s_ttyvp != NULL)
249 		pr->ps_flags |= parent->ps_flags & PS_CONTROLT;
250 
251 	/*
252 	 * Duplicate sub-structures as needed.
253 	 * Increase reference counts on shared objects.
254 	 */
255 	if (flags & FORK_SHAREFILES)
256 		pr->ps_fd = fdshare(parent);
257 	else
258 		pr->ps_fd = fdcopy(parent);
259 	pr->ps_sigacts = sigactsinit(parent);
260 	if (flags & FORK_SHAREVM)
261 		pr->ps_vmspace = uvmspace_share(parent);
262 	else
263 		pr->ps_vmspace = uvmspace_fork(parent);
264 
265 	if (parent->ps_flags & PS_PROFIL)
266 		startprofclock(pr);
267 	if (flags & FORK_PTRACE)
268 		pr->ps_flags |= parent->ps_flags & PS_TRACED;
269 	if (flags & FORK_NOZOMBIE)
270 		pr->ps_flags |= PS_NOZOMBIE;
271 	if (flags & FORK_SYSTEM)
272 		pr->ps_flags |= PS_SYSTEM;
273 
274 	/* mark as embryo to protect against others */
275 	pr->ps_flags |= PS_EMBRYO;
276 
277 	/* Force visibility of all of the above changes */
278 	membar_producer();
279 
280 	/* it's sufficiently inited to be globally visible */
281 	LIST_INSERT_HEAD(&allprocess, pr, ps_list);
282 
283 	return pr;
284 }
285 
286 /* print the 'table full' message once per 10 seconds */
287 struct timeval fork_tfmrate = { 10, 0 };
288 
289 int
290 fork_check_maxthread(uid_t uid)
291 {
292 	/*
293 	 * Although process entries are dynamically created, we still keep
294 	 * a global limit on the maximum number we will create. We reserve
295 	 * the last 5 processes to root. The variable nprocesses is the
296 	 * current number of processes, maxprocess is the limit.  Similar
297 	 * rules for threads (struct proc): we reserve the last 5 to root;
298 	 * the variable nthreads is the current number of procs, maxthread is
299 	 * the limit.
300 	 */
301 	if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) {
302 		static struct timeval lasttfm;
303 
304 		if (ratecheck(&lasttfm, &fork_tfmrate))
305 			tablefull("thread");
306 		return EAGAIN;
307 	}
308 	nthreads++;
309 
310 	return 0;
311 }
312 
313 static inline void
314 fork_thread_start(struct proc *p, struct proc *parent, int flags)
315 {
316 	struct cpu_info *ci;
317 	int s;
318 
319 	SCHED_LOCK(s);
320 	ci = sched_choosecpu_fork(parent, flags);
321 	setrunqueue(ci, p, p->p_usrpri);
322 	SCHED_UNLOCK(s);
323 }
324 
325 int
326 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg,
327     register_t *retval, struct proc **rnewprocp)
328 {
329 	struct process *curpr = curp->p_p;
330 	struct process *pr;
331 	struct proc *p;
332 	uid_t uid = curp->p_ucred->cr_ruid;
333 	struct vmspace *vm;
334 	int count;
335 	vaddr_t uaddr;
336 	int error;
337 	struct  ptrace_state *newptstat = NULL;
338 
339 	KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE
340 	    | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE
341 	    | FORK_SYSTEM)) == 0);
342 	KASSERT(func != NULL);
343 
344 	if ((error = fork_check_maxthread(uid)))
345 		return error;
346 
347 	if ((nprocesses >= maxprocess - 5 && uid != 0) ||
348 	    nprocesses >= maxprocess) {
349 		static struct timeval lasttfm;
350 
351 		if (ratecheck(&lasttfm, &fork_tfmrate))
352 			tablefull("process");
353 		nthreads--;
354 		return EAGAIN;
355 	}
356 	nprocesses++;
357 
358 	/*
359 	 * Increment the count of processes running with this uid.
360 	 * Don't allow a nonprivileged user to exceed their current limit.
361 	 */
362 	count = chgproccnt(uid, 1);
363 	if (uid != 0 && count > lim_cur(RLIMIT_NPROC)) {
364 		(void)chgproccnt(uid, -1);
365 		nprocesses--;
366 		nthreads--;
367 		return EAGAIN;
368 	}
369 
370 	uaddr = uvm_uarea_alloc();
371 	if (uaddr == 0) {
372 		(void)chgproccnt(uid, -1);
373 		nprocesses--;
374 		nthreads--;
375 		return (ENOMEM);
376 	}
377 
378 	/*
379 	 * From now on, we're committed to the fork and cannot fail.
380 	 */
381 	p = thread_new(curp, uaddr);
382 	pr = process_new(p, curpr, flags);
383 
384 	p->p_fd		= pr->ps_fd;
385 	p->p_vmspace	= pr->ps_vmspace;
386 	if (pr->ps_flags & PS_SYSTEM)
387 		atomic_setbits_int(&p->p_flag, P_SYSTEM);
388 
389 	if (flags & FORK_PPWAIT) {
390 		atomic_setbits_int(&pr->ps_flags, PS_PPWAIT);
391 		atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT);
392 	}
393 
394 #ifdef KTRACE
395 	/*
396 	 * Copy traceflag and tracefile if enabled.
397 	 * If not inherited, these were zeroed above.
398 	 */
399 	if (curpr->ps_traceflag & KTRFAC_INHERIT)
400 		ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp,
401 		    curpr->ps_tracecred);
402 #endif
403 
404 	/*
405 	 * Finish creating the child thread.  cpu_fork() will copy
406 	 * and update the pcb and make the child ready to run.  If
407 	 * this is a normal user fork, the child will exit directly
408 	 * to user mode via child_return() on its first time slice
409 	 * and will not return here.  If this is a kernel thread,
410 	 * the specified entry point will be executed.
411 	 */
412 	cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p);
413 
414 	vm = pr->ps_vmspace;
415 
416 	if (flags & FORK_FORK) {
417 		forkstat.cntfork++;
418 		forkstat.sizfork += vm->vm_dsize + vm->vm_ssize;
419 	} else if (flags & FORK_VFORK) {
420 		forkstat.cntvfork++;
421 		forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize;
422 	} else {
423 		forkstat.cntkthread++;
424 	}
425 
426 	if (pr->ps_flags & PS_TRACED && flags & FORK_FORK)
427 		newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK);
428 
429 	p->p_tid = alloctid();
430 
431 	LIST_INSERT_HEAD(&allproc, p, p_list);
432 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
433 	LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash);
434 	LIST_INSERT_AFTER(curpr, pr, ps_pglist);
435 	LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling);
436 
437 	if (pr->ps_flags & PS_TRACED) {
438 		pr->ps_oppid = curpr->ps_pid;
439 		process_reparent(pr, curpr->ps_pptr);
440 
441 		/*
442 		 * Set ptrace status.
443 		 */
444 		if (newptstat != NULL) {
445 			pr->ps_ptstat = newptstat;
446 			newptstat = NULL;
447 			curpr->ps_ptstat->pe_report_event = PTRACE_FORK;
448 			pr->ps_ptstat->pe_report_event = PTRACE_FORK;
449 			curpr->ps_ptstat->pe_other_pid = pr->ps_pid;
450 			pr->ps_ptstat->pe_other_pid = curpr->ps_pid;
451 		}
452 	}
453 
454 	/*
455 	 * For new processes, set accounting bits and mark as complete.
456 	 */
457 	nanouptime(&pr->ps_start);
458 	pr->ps_acflag = AFORK;
459 	atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO);
460 
461 	if ((flags & FORK_IDLE) == 0)
462 		fork_thread_start(p, curp, flags);
463 	else
464 		p->p_cpu = arg;
465 
466 	free(newptstat, M_SUBPROC, sizeof(*newptstat));
467 
468 	/*
469 	 * Notify any interested parties about the new process.
470 	 */
471 	KNOTE(&curpr->ps_klist, NOTE_FORK | pr->ps_pid);
472 
473 	/*
474 	 * Update stats now that we know the fork was successful.
475 	 */
476 	uvmexp.forks++;
477 	if (flags & FORK_PPWAIT)
478 		uvmexp.forks_ppwait++;
479 	if (flags & FORK_SHAREVM)
480 		uvmexp.forks_sharevm++;
481 
482 	/*
483 	 * Pass a pointer to the new process to the caller.
484 	 */
485 	if (rnewprocp != NULL)
486 		*rnewprocp = p;
487 
488 	/*
489 	 * Preserve synchronization semantics of vfork.  If waiting for
490 	 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT
491 	 * on ourselves, and sleep on our process for the latter flag
492 	 * to go away.
493 	 * XXX Need to stop other rthreads in the parent
494 	 */
495 	if (flags & FORK_PPWAIT)
496 		while (curpr->ps_flags & PS_ISPWAIT)
497 			tsleep_nsec(curpr, PWAIT, "ppwait", INFSLP);
498 
499 	/*
500 	 * If we're tracing the child, alert the parent too.
501 	 */
502 	if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED))
503 		psignal(curp, SIGTRAP);
504 
505 	/*
506 	 * Return child pid to parent process
507 	 */
508 	if (retval != NULL) {
509 		retval[0] = pr->ps_pid;
510 		retval[1] = 0;
511 	}
512 	return (0);
513 }
514 
515 int
516 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr,
517     register_t *retval)
518 {
519 	struct process *pr = curp->p_p;
520 	struct proc *p;
521 	pid_t tid;
522 	vaddr_t uaddr;
523 	int s, error;
524 
525 	if (stack == NULL)
526 		return EINVAL;
527 
528 	if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid)))
529 		return error;
530 
531 	uaddr = uvm_uarea_alloc();
532 	if (uaddr == 0) {
533 		nthreads--;
534 		return ENOMEM;
535 	}
536 
537 	/*
538 	 * From now on, we're committed to the fork and cannot fail.
539 	 */
540 	p = thread_new(curp, uaddr);
541 	atomic_setbits_int(&p->p_flag, P_THREAD);
542 	sigstkinit(&p->p_sigstk);
543 
544 	/* other links */
545 	p->p_p = pr;
546 	pr->ps_refcnt++;
547 
548 	/* local copies */
549 	p->p_fd		= pr->ps_fd;
550 	p->p_vmspace	= pr->ps_vmspace;
551 
552 	/*
553 	 * Finish creating the child thread.  cpu_fork() will copy
554 	 * and update the pcb and make the child ready to run.  The
555 	 * child will exit directly to user mode via child_return()
556 	 * on its first time slice and will not return here.
557 	 */
558 	cpu_fork(curp, p, stack, tcb, child_return, p);
559 
560 	p->p_tid = alloctid();
561 
562 	LIST_INSERT_HEAD(&allproc, p, p_list);
563 	LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash);
564 
565 	SCHED_LOCK(s);
566 	TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link);
567 	/*
568 	 * if somebody else wants to take us to single threaded mode,
569 	 * count ourselves in.
570 	 */
571 	if (pr->ps_single) {
572 		atomic_inc_int(&pr->ps_singlecount);
573 		atomic_setbits_int(&p->p_flag, P_SUSPSINGLE);
574 	}
575 	SCHED_UNLOCK(s);
576 
577 	/*
578 	 * Return tid to parent thread and copy it out to userspace
579 	 */
580 	retval[0] = tid = p->p_tid + THREAD_PID_OFFSET;
581 	retval[1] = 0;
582 	if (tidptr != NULL) {
583 		if (copyout(&tid, tidptr, sizeof(tid)))
584 			psignal(curp, SIGSEGV);
585 	}
586 
587 	fork_thread_start(p, curp, 0);
588 
589 	/*
590 	 * Update stats now that we know the fork was successful.
591 	 */
592 	forkstat.cnttfork++;
593 	uvmexp.forks++;
594 	uvmexp.forks_sharevm++;
595 
596 	return 0;
597 }
598 
599 
600 /* Find an unused tid */
601 pid_t
602 alloctid(void)
603 {
604 	pid_t tid;
605 
606 	do {
607 		/* (0 .. TID_MASK+1] */
608 		tid = 1 + (arc4random() & TID_MASK);
609 	} while (tfind(tid) != NULL);
610 
611 	return (tid);
612 }
613 
614 /*
615  * Checks for current use of a pid, either as a pid or pgid.
616  */
617 pid_t oldpids[128];
618 int
619 ispidtaken(pid_t pid)
620 {
621 	uint32_t i;
622 
623 	for (i = 0; i < nitems(oldpids); i++)
624 		if (pid == oldpids[i])
625 			return (1);
626 
627 	if (prfind(pid) != NULL)
628 		return (1);
629 	if (pgfind(pid) != NULL)
630 		return (1);
631 	if (zombiefind(pid) != NULL)
632 		return (1);
633 	return (0);
634 }
635 
636 /* Find an unused pid */
637 pid_t
638 allocpid(void)
639 {
640 	static int first = 1;
641 	pid_t pid;
642 
643 	/* The first PID allocated is always 1. */
644 	if (first) {
645 		first = 0;
646 		return 1;
647 	}
648 
649 	/*
650 	 * All subsequent PIDs are chosen randomly.  We need to
651 	 * find an unused PID in the range [2, PID_MAX].
652 	 */
653 	do {
654 		pid = 2 + arc4random_uniform(PID_MAX - 1);
655 	} while (ispidtaken(pid));
656 	return pid;
657 }
658 
659 void
660 freepid(pid_t pid)
661 {
662 	static uint32_t idx;
663 
664 	oldpids[idx++ % nitems(oldpids)] = pid;
665 }
666 
667 #if defined(MULTIPROCESSOR)
668 /*
669  * XXX This is a slight hack to get newly-formed processes to
670  * XXX acquire the kernel lock as soon as they run.
671  */
672 void
673 proc_trampoline_mp(void)
674 {
675 	SCHED_ASSERT_LOCKED();
676 	__mp_unlock(&sched_lock);
677 	spl0();
678 	SCHED_ASSERT_UNLOCKED();
679 	KERNEL_ASSERT_UNLOCKED();
680 
681 	KERNEL_LOCK();
682 }
683 #endif
684