1 /* $OpenBSD: kern_fork.c,v 1.253 2023/10/24 13:20:11 claudio Exp $ */ 2 /* $NetBSD: kern_fork.c,v 1.29 1996/02/09 18:59:34 christos Exp $ */ 3 4 /* 5 * Copyright (c) 1982, 1986, 1989, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)kern_fork.c 8.6 (Berkeley) 4/8/94 38 */ 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/filedesc.h> 43 #include <sys/malloc.h> 44 #include <sys/mount.h> 45 #include <sys/proc.h> 46 #include <sys/resourcevar.h> 47 #include <sys/signalvar.h> 48 #include <sys/vnode.h> 49 #include <sys/vmmeter.h> 50 #include <sys/acct.h> 51 #include <sys/ktrace.h> 52 #include <sys/sched.h> 53 #include <sys/smr.h> 54 #include <sys/sysctl.h> 55 #include <sys/pool.h> 56 #include <sys/mman.h> 57 #include <sys/ptrace.h> 58 #include <sys/atomic.h> 59 #include <sys/unistd.h> 60 #include <sys/tracepoint.h> 61 62 #include <sys/syscallargs.h> 63 64 #include <uvm/uvm.h> 65 #include <machine/tcb.h> 66 67 int nprocesses = 1; /* process 0 */ 68 int nthreads = 1; /* proc 0 */ 69 struct forkstat forkstat; 70 71 void fork_return(void *); 72 pid_t alloctid(void); 73 pid_t allocpid(void); 74 int ispidtaken(pid_t); 75 76 void unveil_copy(struct process *parent, struct process *child); 77 78 struct proc *thread_new(struct proc *_parent, vaddr_t _uaddr); 79 struct process *process_new(struct proc *, struct process *, int); 80 int fork_check_maxthread(uid_t _uid); 81 82 void 83 fork_return(void *arg) 84 { 85 struct proc *p = (struct proc *)arg; 86 87 if (p->p_p->ps_flags & PS_TRACED) 88 psignal(p, SIGTRAP); 89 90 child_return(p); 91 } 92 93 int 94 sys_fork(struct proc *p, void *v, register_t *retval) 95 { 96 void (*func)(void *) = child_return; 97 int flags; 98 99 flags = FORK_FORK; 100 if (p->p_p->ps_ptmask & PTRACE_FORK) { 101 flags |= FORK_PTRACE; 102 func = fork_return; 103 } 104 return fork1(p, flags, func, NULL, retval, NULL); 105 } 106 107 int 108 sys_vfork(struct proc *p, void *v, register_t *retval) 109 { 110 return fork1(p, FORK_VFORK|FORK_PPWAIT, child_return, NULL, 111 retval, NULL); 112 } 113 114 int 115 sys___tfork(struct proc *p, void *v, register_t *retval) 116 { 117 struct sys___tfork_args /* { 118 syscallarg(const struct __tfork) *param; 119 syscallarg(size_t) psize; 120 } */ *uap = v; 121 size_t psize = SCARG(uap, psize); 122 struct __tfork param = { 0 }; 123 int error; 124 125 if (psize == 0 || psize > sizeof(param)) 126 return EINVAL; 127 if ((error = copyin(SCARG(uap, param), ¶m, psize))) 128 return error; 129 #ifdef KTRACE 130 if (KTRPOINT(p, KTR_STRUCT)) 131 ktrstruct(p, "tfork", ¶m, sizeof(param)); 132 #endif 133 #ifdef TCB_INVALID 134 if (TCB_INVALID(param.tf_tcb)) 135 return EINVAL; 136 #endif /* TCB_INVALID */ 137 138 return thread_fork(p, param.tf_stack, param.tf_tcb, param.tf_tid, 139 retval); 140 } 141 142 /* 143 * Allocate and initialize a thread (proc) structure, given the parent thread. 144 */ 145 struct proc * 146 thread_new(struct proc *parent, vaddr_t uaddr) 147 { 148 struct proc *p; 149 150 p = pool_get(&proc_pool, PR_WAITOK); 151 p->p_stat = SIDL; /* protect against others */ 152 p->p_runpri = 0; 153 p->p_flag = 0; 154 155 /* 156 * Make a proc table entry for the new process. 157 * Start by zeroing the section of proc that is zero-initialized, 158 * then copy the section that is copied directly from the parent. 159 */ 160 memset(&p->p_startzero, 0, 161 (caddr_t)&p->p_endzero - (caddr_t)&p->p_startzero); 162 memcpy(&p->p_startcopy, &parent->p_startcopy, 163 (caddr_t)&p->p_endcopy - (caddr_t)&p->p_startcopy); 164 crhold(p->p_ucred); 165 p->p_addr = (struct user *)uaddr; 166 167 /* 168 * Initialize the timeouts. 169 */ 170 timeout_set(&p->p_sleep_to, endtsleep, p); 171 172 return p; 173 } 174 175 /* 176 * Initialize common bits of a process structure, given the initial thread. 177 */ 178 void 179 process_initialize(struct process *pr, struct proc *p) 180 { 181 /* initialize the thread links */ 182 pr->ps_mainproc = p; 183 TAILQ_INIT(&pr->ps_threads); 184 TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link); 185 pr->ps_threadcnt = 1; 186 p->p_p = pr; 187 188 /* give the process the same creds as the initial thread */ 189 pr->ps_ucred = p->p_ucred; 190 crhold(pr->ps_ucred); 191 /* new thread and new process */ 192 KASSERT(p->p_ucred->cr_refcnt.r_refs >= 2); 193 194 LIST_INIT(&pr->ps_children); 195 LIST_INIT(&pr->ps_orphans); 196 LIST_INIT(&pr->ps_ftlist); 197 LIST_INIT(&pr->ps_sigiolst); 198 TAILQ_INIT(&pr->ps_tslpqueue); 199 200 rw_init(&pr->ps_lock, "pslock"); 201 mtx_init(&pr->ps_mtx, IPL_HIGH); 202 203 timeout_set_flags(&pr->ps_realit_to, realitexpire, pr, 204 KCLOCK_UPTIME, 0); 205 timeout_set(&pr->ps_rucheck_to, rucheck, pr); 206 } 207 208 209 /* 210 * Allocate and initialize a new process. 211 */ 212 struct process * 213 process_new(struct proc *p, struct process *parent, int flags) 214 { 215 struct process *pr; 216 217 pr = pool_get(&process_pool, PR_WAITOK); 218 219 /* 220 * Make a process structure for the new process. 221 * Start by zeroing the section of proc that is zero-initialized, 222 * then copy the section that is copied directly from the parent. 223 */ 224 memset(&pr->ps_startzero, 0, 225 (caddr_t)&pr->ps_endzero - (caddr_t)&pr->ps_startzero); 226 memcpy(&pr->ps_startcopy, &parent->ps_startcopy, 227 (caddr_t)&pr->ps_endcopy - (caddr_t)&pr->ps_startcopy); 228 229 process_initialize(pr, p); 230 pr->ps_pid = allocpid(); 231 lim_fork(parent, pr); 232 233 /* post-copy fixups */ 234 pr->ps_pptr = parent; 235 pr->ps_ppid = parent->ps_pid; 236 237 /* bump references to the text vnode (for sysctl) */ 238 pr->ps_textvp = parent->ps_textvp; 239 if (pr->ps_textvp) 240 vref(pr->ps_textvp); 241 242 /* copy unveil if unveil is active */ 243 unveil_copy(parent, pr); 244 245 pr->ps_flags = parent->ps_flags & 246 (PS_SUGID | PS_SUGIDEXEC | PS_PLEDGE | PS_EXECPLEDGE | 247 PS_WXNEEDED | PS_CHROOT); 248 if (parent->ps_session->s_ttyvp != NULL) 249 pr->ps_flags |= parent->ps_flags & PS_CONTROLT; 250 251 /* 252 * Duplicate sub-structures as needed. 253 * Increase reference counts on shared objects. 254 */ 255 if (flags & FORK_SHAREFILES) 256 pr->ps_fd = fdshare(parent); 257 else 258 pr->ps_fd = fdcopy(parent); 259 pr->ps_sigacts = sigactsinit(parent); 260 if (flags & FORK_SHAREVM) 261 pr->ps_vmspace = uvmspace_share(parent); 262 else 263 pr->ps_vmspace = uvmspace_fork(parent); 264 265 if (parent->ps_flags & PS_PROFIL) 266 startprofclock(pr); 267 if (flags & FORK_PTRACE) 268 pr->ps_flags |= parent->ps_flags & PS_TRACED; 269 if (flags & FORK_NOZOMBIE) 270 pr->ps_flags |= PS_NOZOMBIE; 271 if (flags & FORK_SYSTEM) 272 pr->ps_flags |= PS_SYSTEM; 273 274 /* mark as embryo to protect against others */ 275 pr->ps_flags |= PS_EMBRYO; 276 277 /* Force visibility of all of the above changes */ 278 membar_producer(); 279 280 /* it's sufficiently inited to be globally visible */ 281 LIST_INSERT_HEAD(&allprocess, pr, ps_list); 282 283 return pr; 284 } 285 286 /* print the 'table full' message once per 10 seconds */ 287 struct timeval fork_tfmrate = { 10, 0 }; 288 289 int 290 fork_check_maxthread(uid_t uid) 291 { 292 /* 293 * Although process entries are dynamically created, we still keep 294 * a global limit on the maximum number we will create. We reserve 295 * the last 5 processes to root. The variable nprocesses is the 296 * current number of processes, maxprocess is the limit. Similar 297 * rules for threads (struct proc): we reserve the last 5 to root; 298 * the variable nthreads is the current number of procs, maxthread is 299 * the limit. 300 */ 301 if ((nthreads >= maxthread - 5 && uid != 0) || nthreads >= maxthread) { 302 static struct timeval lasttfm; 303 304 if (ratecheck(&lasttfm, &fork_tfmrate)) 305 tablefull("thread"); 306 return EAGAIN; 307 } 308 nthreads++; 309 310 return 0; 311 } 312 313 static inline void 314 fork_thread_start(struct proc *p, struct proc *parent, int flags) 315 { 316 struct cpu_info *ci; 317 int s; 318 319 SCHED_LOCK(s); 320 ci = sched_choosecpu_fork(parent, flags); 321 TRACEPOINT(sched, fork, p->p_tid + THREAD_PID_OFFSET, 322 p->p_p->ps_pid, CPU_INFO_UNIT(ci)); 323 setrunqueue(ci, p, p->p_usrpri); 324 SCHED_UNLOCK(s); 325 } 326 327 int 328 fork1(struct proc *curp, int flags, void (*func)(void *), void *arg, 329 register_t *retval, struct proc **rnewprocp) 330 { 331 struct process *curpr = curp->p_p; 332 struct process *pr; 333 struct proc *p; 334 uid_t uid = curp->p_ucred->cr_ruid; 335 struct vmspace *vm; 336 int count; 337 vaddr_t uaddr; 338 int error; 339 struct ptrace_state *newptstat = NULL; 340 341 KASSERT((flags & ~(FORK_FORK | FORK_VFORK | FORK_PPWAIT | FORK_PTRACE 342 | FORK_IDLE | FORK_SHAREVM | FORK_SHAREFILES | FORK_NOZOMBIE 343 | FORK_SYSTEM)) == 0); 344 KASSERT(func != NULL); 345 346 if ((error = fork_check_maxthread(uid))) 347 return error; 348 349 if ((nprocesses >= maxprocess - 5 && uid != 0) || 350 nprocesses >= maxprocess) { 351 static struct timeval lasttfm; 352 353 if (ratecheck(&lasttfm, &fork_tfmrate)) 354 tablefull("process"); 355 nthreads--; 356 return EAGAIN; 357 } 358 nprocesses++; 359 360 /* 361 * Increment the count of processes running with this uid. 362 * Don't allow a nonprivileged user to exceed their current limit. 363 */ 364 count = chgproccnt(uid, 1); 365 if (uid != 0 && count > lim_cur(RLIMIT_NPROC)) { 366 (void)chgproccnt(uid, -1); 367 nprocesses--; 368 nthreads--; 369 return EAGAIN; 370 } 371 372 uaddr = uvm_uarea_alloc(); 373 if (uaddr == 0) { 374 (void)chgproccnt(uid, -1); 375 nprocesses--; 376 nthreads--; 377 return (ENOMEM); 378 } 379 380 /* 381 * From now on, we're committed to the fork and cannot fail. 382 */ 383 p = thread_new(curp, uaddr); 384 pr = process_new(p, curpr, flags); 385 386 p->p_fd = pr->ps_fd; 387 p->p_vmspace = pr->ps_vmspace; 388 if (pr->ps_flags & PS_SYSTEM) 389 atomic_setbits_int(&p->p_flag, P_SYSTEM); 390 391 if (flags & FORK_PPWAIT) { 392 atomic_setbits_int(&pr->ps_flags, PS_PPWAIT); 393 atomic_setbits_int(&curpr->ps_flags, PS_ISPWAIT); 394 } 395 396 #ifdef KTRACE 397 /* 398 * Copy traceflag and tracefile if enabled. 399 * If not inherited, these were zeroed above. 400 */ 401 if (curpr->ps_traceflag & KTRFAC_INHERIT) 402 ktrsettrace(pr, curpr->ps_traceflag, curpr->ps_tracevp, 403 curpr->ps_tracecred); 404 #endif 405 406 /* 407 * Finish creating the child thread. cpu_fork() will copy 408 * and update the pcb and make the child ready to run. If 409 * this is a normal user fork, the child will exit directly 410 * to user mode via child_return() on its first time slice 411 * and will not return here. If this is a kernel thread, 412 * the specified entry point will be executed. 413 */ 414 cpu_fork(curp, p, NULL, NULL, func, arg ? arg : p); 415 416 vm = pr->ps_vmspace; 417 418 if (flags & FORK_FORK) { 419 forkstat.cntfork++; 420 forkstat.sizfork += vm->vm_dsize + vm->vm_ssize; 421 } else if (flags & FORK_VFORK) { 422 forkstat.cntvfork++; 423 forkstat.sizvfork += vm->vm_dsize + vm->vm_ssize; 424 } else { 425 forkstat.cntkthread++; 426 } 427 428 if (pr->ps_flags & PS_TRACED && flags & FORK_FORK) 429 newptstat = malloc(sizeof(*newptstat), M_SUBPROC, M_WAITOK); 430 431 p->p_tid = alloctid(); 432 433 LIST_INSERT_HEAD(&allproc, p, p_list); 434 LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash); 435 LIST_INSERT_HEAD(PIDHASH(pr->ps_pid), pr, ps_hash); 436 LIST_INSERT_AFTER(curpr, pr, ps_pglist); 437 LIST_INSERT_HEAD(&curpr->ps_children, pr, ps_sibling); 438 439 if (pr->ps_flags & PS_TRACED) { 440 pr->ps_oppid = curpr->ps_pid; 441 process_reparent(pr, curpr->ps_pptr); 442 443 /* 444 * Set ptrace status. 445 */ 446 if (newptstat != NULL) { 447 pr->ps_ptstat = newptstat; 448 newptstat = NULL; 449 curpr->ps_ptstat->pe_report_event = PTRACE_FORK; 450 pr->ps_ptstat->pe_report_event = PTRACE_FORK; 451 curpr->ps_ptstat->pe_other_pid = pr->ps_pid; 452 pr->ps_ptstat->pe_other_pid = curpr->ps_pid; 453 } 454 } 455 456 /* 457 * For new processes, set accounting bits and mark as complete. 458 */ 459 nanouptime(&pr->ps_start); 460 pr->ps_acflag = AFORK; 461 atomic_clearbits_int(&pr->ps_flags, PS_EMBRYO); 462 463 if ((flags & FORK_IDLE) == 0) 464 fork_thread_start(p, curp, flags); 465 else 466 p->p_cpu = arg; 467 468 free(newptstat, M_SUBPROC, sizeof(*newptstat)); 469 470 /* 471 * Notify any interested parties about the new process. 472 */ 473 knote_locked(&curpr->ps_klist, NOTE_FORK | pr->ps_pid); 474 475 /* 476 * Update stats now that we know the fork was successful. 477 */ 478 uvmexp.forks++; 479 if (flags & FORK_PPWAIT) 480 uvmexp.forks_ppwait++; 481 if (flags & FORK_SHAREVM) 482 uvmexp.forks_sharevm++; 483 484 /* 485 * Pass a pointer to the new process to the caller. 486 */ 487 if (rnewprocp != NULL) 488 *rnewprocp = p; 489 490 /* 491 * Preserve synchronization semantics of vfork. If waiting for 492 * child to exec or exit, set PS_PPWAIT on child and PS_ISPWAIT 493 * on ourselves, and sleep on our process for the latter flag 494 * to go away. 495 * XXX Need to stop other rthreads in the parent 496 */ 497 if (flags & FORK_PPWAIT) 498 while (curpr->ps_flags & PS_ISPWAIT) 499 tsleep_nsec(curpr, PWAIT, "ppwait", INFSLP); 500 501 /* 502 * If we're tracing the child, alert the parent too. 503 */ 504 if ((flags & FORK_PTRACE) && (curpr->ps_flags & PS_TRACED)) 505 psignal(curp, SIGTRAP); 506 507 /* 508 * Return child pid to parent process 509 */ 510 if (retval != NULL) 511 *retval = pr->ps_pid; 512 return (0); 513 } 514 515 int 516 thread_fork(struct proc *curp, void *stack, void *tcb, pid_t *tidptr, 517 register_t *retval) 518 { 519 struct process *pr = curp->p_p; 520 struct proc *p; 521 pid_t tid; 522 vaddr_t uaddr; 523 int s, error; 524 525 if (stack == NULL) 526 return EINVAL; 527 528 if ((error = fork_check_maxthread(curp->p_ucred->cr_ruid))) 529 return error; 530 531 uaddr = uvm_uarea_alloc(); 532 if (uaddr == 0) { 533 nthreads--; 534 return ENOMEM; 535 } 536 537 /* 538 * From now on, we're committed to the fork and cannot fail. 539 */ 540 p = thread_new(curp, uaddr); 541 atomic_setbits_int(&p->p_flag, P_THREAD); 542 sigstkinit(&p->p_sigstk); 543 memset(p->p_name, 0, sizeof p->p_name); 544 545 /* other links */ 546 p->p_p = pr; 547 pr->ps_threadcnt++; 548 549 /* local copies */ 550 p->p_fd = pr->ps_fd; 551 p->p_vmspace = pr->ps_vmspace; 552 553 /* 554 * Finish creating the child thread. cpu_fork() will copy 555 * and update the pcb and make the child ready to run. The 556 * child will exit directly to user mode via child_return() 557 * on its first time slice and will not return here. 558 */ 559 cpu_fork(curp, p, stack, tcb, child_return, p); 560 561 p->p_tid = alloctid(); 562 563 LIST_INSERT_HEAD(&allproc, p, p_list); 564 LIST_INSERT_HEAD(TIDHASH(p->p_tid), p, p_hash); 565 566 SCHED_LOCK(s); 567 TAILQ_INSERT_TAIL(&pr->ps_threads, p, p_thr_link); 568 569 /* 570 * if somebody else wants to take us to single threaded mode, 571 * count ourselves in. 572 */ 573 if (pr->ps_single) { 574 atomic_inc_int(&pr->ps_singlecount); 575 atomic_setbits_int(&p->p_flag, P_SUSPSINGLE); 576 } 577 SCHED_UNLOCK(s); 578 579 /* 580 * Return tid to parent thread and copy it out to userspace 581 */ 582 *retval = tid = p->p_tid + THREAD_PID_OFFSET; 583 if (tidptr != NULL) { 584 if (copyout(&tid, tidptr, sizeof(tid))) 585 psignal(curp, SIGSEGV); 586 } 587 588 fork_thread_start(p, curp, 0); 589 590 /* 591 * Update stats now that we know the fork was successful. 592 */ 593 forkstat.cnttfork++; 594 uvmexp.forks++; 595 uvmexp.forks_sharevm++; 596 597 return 0; 598 } 599 600 601 /* Find an unused tid */ 602 pid_t 603 alloctid(void) 604 { 605 pid_t tid; 606 607 do { 608 /* (0 .. TID_MASK+1] */ 609 tid = 1 + (arc4random() & TID_MASK); 610 } while (tfind(tid) != NULL); 611 612 return (tid); 613 } 614 615 /* 616 * Checks for current use of a pid, either as a pid or pgid. 617 */ 618 pid_t oldpids[128]; 619 int 620 ispidtaken(pid_t pid) 621 { 622 uint32_t i; 623 624 for (i = 0; i < nitems(oldpids); i++) 625 if (pid == oldpids[i]) 626 return (1); 627 628 if (prfind(pid) != NULL) 629 return (1); 630 if (pgfind(pid) != NULL) 631 return (1); 632 if (zombiefind(pid) != NULL) 633 return (1); 634 return (0); 635 } 636 637 /* Find an unused pid */ 638 pid_t 639 allocpid(void) 640 { 641 static int first = 1; 642 pid_t pid; 643 644 /* The first PID allocated is always 1. */ 645 if (first) { 646 first = 0; 647 return 1; 648 } 649 650 /* 651 * All subsequent PIDs are chosen randomly. We need to 652 * find an unused PID in the range [2, PID_MAX]. 653 */ 654 do { 655 pid = 2 + arc4random_uniform(PID_MAX - 1); 656 } while (ispidtaken(pid)); 657 return pid; 658 } 659 660 void 661 freepid(pid_t pid) 662 { 663 static uint32_t idx; 664 665 oldpids[idx++ % nitems(oldpids)] = pid; 666 } 667 668 /* Do machine independent parts of switching to a new process */ 669 void 670 proc_trampoline_mi(void) 671 { 672 struct schedstate_percpu *spc = &curcpu()->ci_schedstate; 673 struct proc *p = curproc; 674 675 SCHED_ASSERT_LOCKED(); 676 677 clear_resched(curcpu()); 678 679 #if defined(MULTIPROCESSOR) 680 __mp_unlock(&sched_lock); 681 #endif 682 spl0(); 683 684 SCHED_ASSERT_UNLOCKED(); 685 KERNEL_ASSERT_UNLOCKED(); 686 assertwaitok(); 687 smr_idle(); 688 689 /* Start any optional clock interrupts needed by the thread. */ 690 if (ISSET(p->p_p->ps_flags, PS_ITIMER)) { 691 atomic_setbits_int(&spc->spc_schedflags, SPCF_ITIMER); 692 clockintr_advance(spc->spc_itimer, hardclock_period); 693 } 694 if (ISSET(p->p_p->ps_flags, PS_PROFIL)) { 695 atomic_setbits_int(&spc->spc_schedflags, SPCF_PROFCLOCK); 696 clockintr_advance(spc->spc_profclock, profclock_period); 697 } 698 699 nanouptime(&spc->spc_runtime); 700 KERNEL_LOCK(); 701 } 702