xref: /openbsd-src/sys/kern/kern_event.c (revision c0dd97bfcad3dab6c31ec12b9de1274fd2d2f993)
1 /*	$OpenBSD: kern_event.c,v 1.81 2017/10/11 08:06:56 mpi Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/kern/kern_event.c,v 1.22 2001/02/23 20:32:42 jlemon Exp $
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/proc.h>
35 #include <sys/pledge.h>
36 #include <sys/malloc.h>
37 #include <sys/unistd.h>
38 #include <sys/file.h>
39 #include <sys/filedesc.h>
40 #include <sys/fcntl.h>
41 #include <sys/selinfo.h>
42 #include <sys/queue.h>
43 #include <sys/event.h>
44 #include <sys/eventvar.h>
45 #include <sys/ktrace.h>
46 #include <sys/pool.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/stat.h>
51 #include <sys/uio.h>
52 #include <sys/mount.h>
53 #include <sys/poll.h>
54 #include <sys/syscallargs.h>
55 #include <sys/timeout.h>
56 
57 int	kqueue_scan(struct kqueue *kq, int maxevents,
58 		    struct kevent *ulistp, const struct timespec *timeout,
59 		    struct proc *p, int *retval);
60 
61 int	kqueue_read(struct file *fp, off_t *poff, struct uio *uio,
62 		    struct ucred *cred);
63 int	kqueue_write(struct file *fp, off_t *poff, struct uio *uio,
64 		    struct ucred *cred);
65 int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
66 		    struct proc *p);
67 int	kqueue_poll(struct file *fp, int events, struct proc *p);
68 int	kqueue_kqfilter(struct file *fp, struct knote *kn);
69 int	kqueue_stat(struct file *fp, struct stat *st, struct proc *p);
70 int	kqueue_close(struct file *fp, struct proc *p);
71 void	kqueue_wakeup(struct kqueue *kq);
72 
73 struct fileops kqueueops = {
74 	kqueue_read,
75 	kqueue_write,
76 	kqueue_ioctl,
77 	kqueue_poll,
78 	kqueue_kqfilter,
79 	kqueue_stat,
80 	kqueue_close
81 };
82 
83 void	knote_attach(struct knote *kn, struct filedesc *fdp);
84 void	knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp);
85 void	knote_enqueue(struct knote *kn);
86 void	knote_dequeue(struct knote *kn);
87 #define knote_alloc() ((struct knote *)pool_get(&knote_pool, PR_WAITOK))
88 #define knote_free(kn) pool_put(&knote_pool, (kn))
89 
90 void	filt_kqdetach(struct knote *kn);
91 int	filt_kqueue(struct knote *kn, long hint);
92 int	filt_procattach(struct knote *kn);
93 void	filt_procdetach(struct knote *kn);
94 int	filt_proc(struct knote *kn, long hint);
95 int	filt_fileattach(struct knote *kn);
96 void	filt_timerexpire(void *knx);
97 int	filt_timerattach(struct knote *kn);
98 void	filt_timerdetach(struct knote *kn);
99 int	filt_timer(struct knote *kn, long hint);
100 void	filt_seltruedetach(struct knote *kn);
101 
102 struct filterops kqread_filtops =
103 	{ 1, NULL, filt_kqdetach, filt_kqueue };
104 struct filterops proc_filtops =
105 	{ 0, filt_procattach, filt_procdetach, filt_proc };
106 struct filterops file_filtops =
107 	{ 1, filt_fileattach, NULL, NULL };
108 struct filterops timer_filtops =
109         { 0, filt_timerattach, filt_timerdetach, filt_timer };
110 
111 struct	pool knote_pool;
112 struct	pool kqueue_pool;
113 int kq_ntimeouts = 0;
114 int kq_timeoutmax = (4 * 1024);
115 
116 #define KNOTE_ACTIVATE(kn) do {						\
117 	kn->kn_status |= KN_ACTIVE;					\
118 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
119 		knote_enqueue(kn);					\
120 } while(0)
121 
122 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
123 
124 extern struct filterops sig_filtops;
125 #ifdef notyet
126 extern struct filterops aio_filtops;
127 #endif
128 
129 /*
130  * Table for for all system-defined filters.
131  */
132 struct filterops *sysfilt_ops[] = {
133 	&file_filtops,			/* EVFILT_READ */
134 	&file_filtops,			/* EVFILT_WRITE */
135 	NULL, /*&aio_filtops,*/		/* EVFILT_AIO */
136 	&file_filtops,			/* EVFILT_VNODE */
137 	&proc_filtops,			/* EVFILT_PROC */
138 	&sig_filtops,			/* EVFILT_SIGNAL */
139 	&timer_filtops,			/* EVFILT_TIMER */
140 };
141 
142 void KQREF(struct kqueue *);
143 void KQRELE(struct kqueue *);
144 
145 void
146 KQREF(struct kqueue *kq)
147 {
148 	++kq->kq_refs;
149 }
150 
151 void
152 KQRELE(struct kqueue *kq)
153 {
154 	if (--kq->kq_refs == 0) {
155 		pool_put(&kqueue_pool, kq);
156 	}
157 }
158 
159 void kqueue_init(void);
160 
161 void
162 kqueue_init(void)
163 {
164 
165 	pool_init(&kqueue_pool, sizeof(struct kqueue), 0, IPL_NONE, PR_WAITOK,
166 	    "kqueuepl", NULL);
167 	pool_init(&knote_pool, sizeof(struct knote), 0, IPL_NONE, PR_WAITOK,
168 	    "knotepl", NULL);
169 }
170 
171 int
172 filt_fileattach(struct knote *kn)
173 {
174 	struct file *fp = kn->kn_fp;
175 
176 	return fp->f_ops->fo_kqfilter(fp, kn);
177 }
178 
179 int
180 kqueue_kqfilter(struct file *fp, struct knote *kn)
181 {
182 	struct kqueue *kq = kn->kn_fp->f_data;
183 
184 	if (kn->kn_filter != EVFILT_READ)
185 		return (EINVAL);
186 
187 	kn->kn_fop = &kqread_filtops;
188 	SLIST_INSERT_HEAD(&kq->kq_sel.si_note, kn, kn_selnext);
189 	return (0);
190 }
191 
192 void
193 filt_kqdetach(struct knote *kn)
194 {
195 	struct kqueue *kq = kn->kn_fp->f_data;
196 
197 	SLIST_REMOVE(&kq->kq_sel.si_note, kn, knote, kn_selnext);
198 }
199 
200 int
201 filt_kqueue(struct knote *kn, long hint)
202 {
203 	struct kqueue *kq = kn->kn_fp->f_data;
204 
205 	kn->kn_data = kq->kq_count;
206 	return (kn->kn_data > 0);
207 }
208 
209 int
210 filt_procattach(struct knote *kn)
211 {
212 	struct process *pr;
213 
214 	if ((curproc->p_p->ps_flags & PS_PLEDGE) &&
215 	    (curproc->p_p->ps_pledge & PLEDGE_PROC) == 0)
216 		return pledge_fail(curproc, EPERM, PLEDGE_PROC);
217 
218 	if (kn->kn_id > PID_MAX)
219 		return ESRCH;
220 
221 	pr = prfind(kn->kn_id);
222 	if (pr == NULL)
223 		return (ESRCH);
224 
225 	/* exiting processes can't be specified */
226 	if (pr->ps_flags & PS_EXITING)
227 		return (ESRCH);
228 
229 	kn->kn_ptr.p_process = pr;
230 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
231 
232 	/*
233 	 * internal flag indicating registration done by kernel
234 	 */
235 	if (kn->kn_flags & EV_FLAG1) {
236 		kn->kn_data = kn->kn_sdata;		/* ppid */
237 		kn->kn_fflags = NOTE_CHILD;
238 		kn->kn_flags &= ~EV_FLAG1;
239 	}
240 
241 	/* XXX lock the proc here while adding to the list? */
242 	SLIST_INSERT_HEAD(&pr->ps_klist, kn, kn_selnext);
243 
244 	return (0);
245 }
246 
247 /*
248  * The knote may be attached to a different process, which may exit,
249  * leaving nothing for the knote to be attached to.  So when the process
250  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
251  * it will be deleted when read out.  However, as part of the knote deletion,
252  * this routine is called, so a check is needed to avoid actually performing
253  * a detach, because the original process does not exist any more.
254  */
255 void
256 filt_procdetach(struct knote *kn)
257 {
258 	struct process *pr = kn->kn_ptr.p_process;
259 
260 	if (kn->kn_status & KN_DETACHED)
261 		return;
262 
263 	/* XXX locking?  this might modify another process. */
264 	SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
265 }
266 
267 int
268 filt_proc(struct knote *kn, long hint)
269 {
270 	u_int event;
271 
272 	/*
273 	 * mask off extra data
274 	 */
275 	event = (u_int)hint & NOTE_PCTRLMASK;
276 
277 	/*
278 	 * if the user is interested in this event, record it.
279 	 */
280 	if (kn->kn_sfflags & event)
281 		kn->kn_fflags |= event;
282 
283 	/*
284 	 * process is gone, so flag the event as finished and remove it
285 	 * from the process's klist
286 	 */
287 	if (event == NOTE_EXIT) {
288 		struct process *pr = kn->kn_ptr.p_process;
289 
290 		kn->kn_status |= KN_DETACHED;
291 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
292 		kn->kn_data = pr->ps_mainproc->p_xstat;
293 		SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
294 		return (1);
295 	}
296 
297 	/*
298 	 * process forked, and user wants to track the new process,
299 	 * so attach a new knote to it, and immediately report an
300 	 * event with the parent's pid.
301 	 */
302 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
303 		struct kevent kev;
304 		int error;
305 
306 		/*
307 		 * register knote with new process.
308 		 */
309 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
310 		kev.filter = kn->kn_filter;
311 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
312 		kev.fflags = kn->kn_sfflags;
313 		kev.data = kn->kn_id;			/* parent */
314 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
315 		error = kqueue_register(kn->kn_kq, &kev, NULL);
316 		if (error)
317 			kn->kn_fflags |= NOTE_TRACKERR;
318 	}
319 
320 	return (kn->kn_fflags != 0);
321 }
322 
323 static void
324 filt_timer_timeout_add(struct knote *kn)
325 {
326 	struct timeval tv;
327 	int tticks;
328 
329 	tv.tv_sec = kn->kn_sdata / 1000;
330 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
331 	tticks = tvtohz(&tv);
332 	timeout_add(kn->kn_hook, tticks ? tticks : 1);
333 }
334 
335 void
336 filt_timerexpire(void *knx)
337 {
338 	struct knote *kn = knx;
339 
340 	kn->kn_data++;
341 	KNOTE_ACTIVATE(kn);
342 
343 	if ((kn->kn_flags & EV_ONESHOT) == 0)
344 		filt_timer_timeout_add(kn);
345 }
346 
347 
348 /*
349  * data contains amount of time to sleep, in milliseconds
350  */
351 int
352 filt_timerattach(struct knote *kn)
353 {
354 	struct timeout *to;
355 
356 	if (kq_ntimeouts > kq_timeoutmax)
357 		return (ENOMEM);
358 	kq_ntimeouts++;
359 
360 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
361 	to = malloc(sizeof(*to), M_KEVENT, M_WAITOK);
362 	timeout_set(to, filt_timerexpire, kn);
363 	kn->kn_hook = to;
364 	filt_timer_timeout_add(kn);
365 
366 	return (0);
367 }
368 
369 void
370 filt_timerdetach(struct knote *kn)
371 {
372 	struct timeout *to;
373 
374 	to = (struct timeout *)kn->kn_hook;
375 	timeout_del(to);
376 	free(to, M_KEVENT, sizeof(*to));
377 	kq_ntimeouts--;
378 }
379 
380 int
381 filt_timer(struct knote *kn, long hint)
382 {
383 	return (kn->kn_data != 0);
384 }
385 
386 
387 /*
388  * filt_seltrue:
389  *
390  *	This filter "event" routine simulates seltrue().
391  */
392 int
393 filt_seltrue(struct knote *kn, long hint)
394 {
395 
396 	/*
397 	 * We don't know how much data can be read/written,
398 	 * but we know that it *can* be.  This is about as
399 	 * good as select/poll does as well.
400 	 */
401 	kn->kn_data = 0;
402 	return (1);
403 }
404 
405 /*
406  * This provides full kqfilter entry for device switch tables, which
407  * has same effect as filter using filt_seltrue() as filter method.
408  */
409 void
410 filt_seltruedetach(struct knote *kn)
411 {
412 	/* Nothing to do */
413 }
414 
415 const struct filterops seltrue_filtops =
416 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
417 
418 int
419 seltrue_kqfilter(dev_t dev, struct knote *kn)
420 {
421 	switch (kn->kn_filter) {
422 	case EVFILT_READ:
423 	case EVFILT_WRITE:
424 		kn->kn_fop = &seltrue_filtops;
425 		break;
426 	default:
427 		return (EINVAL);
428 	}
429 
430 	/* Nothing more to do */
431 	return (0);
432 }
433 
434 int
435 sys_kqueue(struct proc *p, void *v, register_t *retval)
436 {
437 	struct filedesc *fdp = p->p_fd;
438 	struct kqueue *kq;
439 	struct file *fp;
440 	int fd, error;
441 
442 	fdplock(fdp);
443 	error = falloc(p, 0, &fp, &fd);
444 	fdpunlock(fdp);
445 	if (error)
446 		return (error);
447 	fp->f_flag = FREAD | FWRITE;
448 	fp->f_type = DTYPE_KQUEUE;
449 	fp->f_ops = &kqueueops;
450 	kq = pool_get(&kqueue_pool, PR_WAITOK|PR_ZERO);
451 	TAILQ_INIT(&kq->kq_head);
452 	fp->f_data = kq;
453 	KQREF(kq);
454 	*retval = fd;
455 	if (fdp->fd_knlistsize < 0)
456 		fdp->fd_knlistsize = 0;		/* this process has a kq */
457 	kq->kq_fdp = fdp;
458 	FILE_SET_MATURE(fp, p);
459 	return (0);
460 }
461 
462 int
463 sys_kevent(struct proc *p, void *v, register_t *retval)
464 {
465 	struct filedesc* fdp = p->p_fd;
466 	struct sys_kevent_args /* {
467 		syscallarg(int)	fd;
468 		syscallarg(const struct kevent *) changelist;
469 		syscallarg(int)	nchanges;
470 		syscallarg(struct kevent *) eventlist;
471 		syscallarg(int)	nevents;
472 		syscallarg(const struct timespec *) timeout;
473 	} */ *uap = v;
474 	struct kevent *kevp;
475 	struct kqueue *kq;
476 	struct file *fp;
477 	struct timespec ts;
478 	int i, n, nerrors, error;
479 	struct kevent kev[KQ_NEVENTS];
480 
481 	if ((fp = fd_getfile(fdp, SCARG(uap, fd))) == NULL ||
482 	    (fp->f_type != DTYPE_KQUEUE))
483 		return (EBADF);
484 
485 	FREF(fp);
486 
487 	if (SCARG(uap, timeout) != NULL) {
488 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
489 		if (error)
490 			goto done;
491 #ifdef KTRACE
492 		if (KTRPOINT(p, KTR_STRUCT))
493 			ktrreltimespec(p, &ts);
494 #endif
495 		SCARG(uap, timeout) = &ts;
496 	}
497 
498 	kq = fp->f_data;
499 	nerrors = 0;
500 
501 	while (SCARG(uap, nchanges) > 0) {
502 		n = SCARG(uap, nchanges) > KQ_NEVENTS ?
503 		    KQ_NEVENTS : SCARG(uap, nchanges);
504 		error = copyin(SCARG(uap, changelist), kev,
505 		    n * sizeof(struct kevent));
506 		if (error)
507 			goto done;
508 #ifdef KTRACE
509 		if (KTRPOINT(p, KTR_STRUCT))
510 			ktrevent(p, kev, n);
511 #endif
512 		for (i = 0; i < n; i++) {
513 			kevp = &kev[i];
514 			kevp->flags &= ~EV_SYSFLAGS;
515 			error = kqueue_register(kq, kevp, p);
516 			if (error || (kevp->flags & EV_RECEIPT)) {
517 				if (SCARG(uap, nevents) != 0) {
518 					kevp->flags = EV_ERROR;
519 					kevp->data = error;
520 					copyout(kevp, SCARG(uap, eventlist),
521 					    sizeof(*kevp));
522 					SCARG(uap, eventlist)++;
523 					SCARG(uap, nevents)--;
524 					nerrors++;
525 				} else {
526 					goto done;
527 				}
528 			}
529 		}
530 		SCARG(uap, nchanges) -= n;
531 		SCARG(uap, changelist) += n;
532 	}
533 	if (nerrors) {
534 		*retval = nerrors;
535 		error = 0;
536 		goto done;
537 	}
538 
539 	KQREF(kq);
540 	FRELE(fp, p);
541 	error = kqueue_scan(kq, SCARG(uap, nevents), SCARG(uap, eventlist),
542 	    SCARG(uap, timeout), p, &n);
543 	KQRELE(kq);
544 	*retval = n;
545 	return (error);
546 
547  done:
548 	FRELE(fp, p);
549 	return (error);
550 }
551 
552 int
553 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
554 {
555 	struct filedesc *fdp = kq->kq_fdp;
556 	struct filterops *fops = NULL;
557 	struct file *fp = NULL;
558 	struct knote *kn = NULL;
559 	int s, error = 0;
560 
561 	if (kev->filter < 0) {
562 		if (kev->filter + EVFILT_SYSCOUNT < 0)
563 			return (EINVAL);
564 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
565 	}
566 
567 	if (fops == NULL) {
568 		/*
569 		 * XXX
570 		 * filter attach routine is responsible for ensuring that
571 		 * the identifier can be attached to it.
572 		 */
573 		return (EINVAL);
574 	}
575 
576 	if (fops->f_isfd) {
577 		/* validate descriptor */
578 		if (kev->ident > INT_MAX)
579 			return (EBADF);
580 		if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
581 			return (EBADF);
582 		FREF(fp);
583 
584 		if (kev->ident < fdp->fd_knlistsize) {
585 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link) {
586 				if (kq == kn->kn_kq &&
587 				    kev->filter == kn->kn_filter)
588 					break;
589 			}
590 		}
591 	} else {
592 		if (fdp->fd_knhashmask != 0) {
593 			struct klist *list;
594 
595 			list = &fdp->fd_knhash[
596 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
597 			SLIST_FOREACH(kn, list, kn_link) {
598 				if (kev->ident == kn->kn_id &&
599 				    kq == kn->kn_kq &&
600 				    kev->filter == kn->kn_filter)
601 					break;
602 			}
603 		}
604 	}
605 
606 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
607 		error = ENOENT;
608 		goto done;
609 	}
610 
611 	/*
612 	 * kn now contains the matching knote, or NULL if no match
613 	 */
614 	if (kev->flags & EV_ADD) {
615 
616 		if (kn == NULL) {
617 			kn = knote_alloc();
618 			if (kn == NULL) {
619 				error = ENOMEM;
620 				goto done;
621 			}
622 			kn->kn_fp = fp;
623 			kn->kn_kq = kq;
624 			kn->kn_fop = fops;
625 
626 			/*
627 			 * apply reference count to knote structure, and
628 			 * do not release it at the end of this routine.
629 			 */
630 			fp = NULL;
631 
632 			kn->kn_sfflags = kev->fflags;
633 			kn->kn_sdata = kev->data;
634 			kev->fflags = 0;
635 			kev->data = 0;
636 			kn->kn_kevent = *kev;
637 
638 			knote_attach(kn, fdp);
639 			if ((error = fops->f_attach(kn)) != 0) {
640 				knote_drop(kn, p, fdp);
641 				goto done;
642 			}
643 		} else {
644 			/*
645 			 * The user may change some filter values after the
646 			 * initial EV_ADD, but doing so will not reset any
647 			 * filters which have already been triggered.
648 			 */
649 			kn->kn_sfflags = kev->fflags;
650 			kn->kn_sdata = kev->data;
651 			kn->kn_kevent.udata = kev->udata;
652 		}
653 
654 		s = splhigh();
655 		if (kn->kn_fop->f_event(kn, 0))
656 			KNOTE_ACTIVATE(kn);
657 		splx(s);
658 
659 	} else if (kev->flags & EV_DELETE) {
660 		kn->kn_fop->f_detach(kn);
661 		knote_drop(kn, p, p->p_fd);
662 		goto done;
663 	}
664 
665 	if ((kev->flags & EV_DISABLE) &&
666 	    ((kn->kn_status & KN_DISABLED) == 0)) {
667 		s = splhigh();
668 		kn->kn_status |= KN_DISABLED;
669 		splx(s);
670 	}
671 
672 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
673 		s = splhigh();
674 		kn->kn_status &= ~KN_DISABLED;
675 		if ((kn->kn_status & KN_ACTIVE) &&
676 		    ((kn->kn_status & KN_QUEUED) == 0))
677 			knote_enqueue(kn);
678 		splx(s);
679 	}
680 
681 done:
682 	if (fp != NULL)
683 		FRELE(fp, p);
684 	return (error);
685 }
686 
687 int
688 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent *ulistp,
689 	const struct timespec *tsp, struct proc *p, int *retval)
690 {
691 	struct kevent *kevp;
692 	struct timeval atv, rtv, ttv;
693 	struct knote *kn, marker;
694 	int s, count, timeout, nkev = 0, error = 0;
695 	struct kevent kev[KQ_NEVENTS];
696 
697 	count = maxevents;
698 	if (count == 0)
699 		goto done;
700 
701 	if (tsp != NULL) {
702 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
703 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
704 			/* No timeout, just poll */
705 			timeout = -1;
706 			goto start;
707 		}
708 		if (itimerfix(&atv)) {
709 			error = EINVAL;
710 			goto done;
711 		}
712 
713 		timeout = atv.tv_sec > 24 * 60 * 60 ?
714 		    24 * 60 * 60 * hz : tvtohz(&atv);
715 
716 		getmicrouptime(&rtv);
717 		timeradd(&atv, &rtv, &atv);
718 	} else {
719 		atv.tv_sec = 0;
720 		atv.tv_usec = 0;
721 		timeout = 0;
722 	}
723 	goto start;
724 
725 retry:
726 	if (atv.tv_sec || atv.tv_usec) {
727 		getmicrouptime(&rtv);
728 		if (timercmp(&rtv, &atv, >=))
729 			goto done;
730 		ttv = atv;
731 		timersub(&ttv, &rtv, &ttv);
732 		timeout = ttv.tv_sec > 24 * 60 * 60 ?
733 		    24 * 60 * 60 * hz : tvtohz(&ttv);
734 	}
735 
736 start:
737 	if (kq->kq_state & KQ_DYING) {
738 		error = EBADF;
739 		goto done;
740 	}
741 
742 	kevp = &kev[0];
743 	s = splhigh();
744 	if (kq->kq_count == 0) {
745 		if (timeout < 0) {
746 			error = EWOULDBLOCK;
747 		} else {
748 			kq->kq_state |= KQ_SLEEP;
749 			error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
750 		}
751 		splx(s);
752 		if (error == 0)
753 			goto retry;
754 		/* don't restart after signals... */
755 		if (error == ERESTART)
756 			error = EINTR;
757 		else if (error == EWOULDBLOCK)
758 			error = 0;
759 		goto done;
760 	}
761 
762 	TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
763 	while (count) {
764 		kn = TAILQ_FIRST(&kq->kq_head);
765 		if (kn == &marker) {
766 			TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
767 			splx(s);
768 			if (count == maxevents)
769 				goto retry;
770 			goto done;
771 		}
772 
773 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
774 		kq->kq_count--;
775 
776 		if (kn->kn_status & KN_DISABLED) {
777 			kn->kn_status &= ~KN_QUEUED;
778 			continue;
779 		}
780 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
781 		    kn->kn_fop->f_event(kn, 0) == 0) {
782 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
783 			continue;
784 		}
785 		*kevp = kn->kn_kevent;
786 		kevp++;
787 		nkev++;
788 		if (kn->kn_flags & EV_ONESHOT) {
789 			kn->kn_status &= ~KN_QUEUED;
790 			splx(s);
791 			kn->kn_fop->f_detach(kn);
792 			knote_drop(kn, p, p->p_fd);
793 			s = splhigh();
794 		} else if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
795 			if (kn->kn_flags & EV_CLEAR) {
796 				kn->kn_data = 0;
797 				kn->kn_fflags = 0;
798 			}
799 			if (kn->kn_flags & EV_DISPATCH)
800 				kn->kn_status |= KN_DISABLED;
801 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
802 		} else {
803 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
804 			kq->kq_count++;
805 		}
806 		count--;
807 		if (nkev == KQ_NEVENTS) {
808 			splx(s);
809 #ifdef KTRACE
810 			if (KTRPOINT(p, KTR_STRUCT))
811 				ktrevent(p, kev, nkev);
812 #endif
813 			error = copyout(kev, ulistp,
814 			    sizeof(struct kevent) * nkev);
815 			ulistp += nkev;
816 			nkev = 0;
817 			kevp = &kev[0];
818 			s = splhigh();
819 			if (error)
820 				break;
821 		}
822 	}
823 	TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
824 	splx(s);
825 done:
826 	if (nkev != 0) {
827 #ifdef KTRACE
828 		if (KTRPOINT(p, KTR_STRUCT))
829 			ktrevent(p, kev, nkev);
830 #endif
831 		error = copyout(kev, ulistp,
832 		    sizeof(struct kevent) * nkev);
833 	}
834 	*retval = maxevents - count;
835 	return (error);
836 }
837 
838 /*
839  * XXX
840  * This could be expanded to call kqueue_scan, if desired.
841  */
842 int
843 kqueue_read(struct file *fp, off_t *poff, struct uio *uio, struct ucred *cred)
844 {
845 	return (ENXIO);
846 }
847 
848 int
849 kqueue_write(struct file *fp, off_t *poff, struct uio *uio, struct ucred *cred)
850 
851 {
852 	return (ENXIO);
853 }
854 
855 int
856 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
857 {
858 	return (ENOTTY);
859 }
860 
861 int
862 kqueue_poll(struct file *fp, int events, struct proc *p)
863 {
864 	struct kqueue *kq = (struct kqueue *)fp->f_data;
865 	int revents = 0;
866 	int s = splhigh();
867 
868 	if (events & (POLLIN | POLLRDNORM)) {
869 		if (kq->kq_count) {
870 			revents |= events & (POLLIN | POLLRDNORM);
871 		} else {
872 			selrecord(p, &kq->kq_sel);
873 			kq->kq_state |= KQ_SEL;
874 		}
875 	}
876 	splx(s);
877 	return (revents);
878 }
879 
880 int
881 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
882 {
883 	struct kqueue *kq = fp->f_data;
884 
885 	memset(st, 0, sizeof(*st));
886 	st->st_size = kq->kq_count;
887 	st->st_blksize = sizeof(struct kevent);
888 	st->st_mode = S_IFIFO;
889 	return (0);
890 }
891 
892 int
893 kqueue_close(struct file *fp, struct proc *p)
894 {
895 	struct kqueue *kq = fp->f_data;
896 	struct filedesc *fdp = p->p_fd;
897 	struct knote **knp, *kn, *kn0;
898 	int i;
899 
900 	for (i = 0; i < fdp->fd_knlistsize; i++) {
901 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
902 		kn = *knp;
903 		while (kn != NULL) {
904 			kn0 = SLIST_NEXT(kn, kn_link);
905 			if (kq == kn->kn_kq) {
906 				kn->kn_fop->f_detach(kn);
907 				FRELE(kn->kn_fp, p);
908 				knote_free(kn);
909 				*knp = kn0;
910 			} else {
911 				knp = &SLIST_NEXT(kn, kn_link);
912 			}
913 			kn = kn0;
914 		}
915 	}
916 	if (fdp->fd_knhashmask != 0) {
917 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
918 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
919 			kn = *knp;
920 			while (kn != NULL) {
921 				kn0 = SLIST_NEXT(kn, kn_link);
922 				if (kq == kn->kn_kq) {
923 					kn->kn_fop->f_detach(kn);
924 		/* XXX non-fd release of kn->kn_ptr */
925 					knote_free(kn);
926 					*knp = kn0;
927 				} else {
928 					knp = &SLIST_NEXT(kn, kn_link);
929 				}
930 				kn = kn0;
931 			}
932 		}
933 	}
934 	fp->f_data = NULL;
935 
936 	kq->kq_state |= KQ_DYING;
937 	kqueue_wakeup(kq);
938 	KQRELE(kq);
939 
940 	return (0);
941 }
942 
943 void
944 kqueue_wakeup(struct kqueue *kq)
945 {
946 
947 	if (kq->kq_state & KQ_SLEEP) {
948 		kq->kq_state &= ~KQ_SLEEP;
949 		wakeup(kq);
950 	}
951 	if (kq->kq_state & KQ_SEL) {
952 		kq->kq_state &= ~KQ_SEL;
953 		selwakeup(&kq->kq_sel);
954 	} else
955 		KNOTE(&kq->kq_sel.si_note, 0);
956 }
957 
958 /*
959  * activate one knote.
960  */
961 void
962 knote_activate(struct knote *kn)
963 {
964 	KNOTE_ACTIVATE(kn);
965 }
966 
967 /*
968  * walk down a list of knotes, activating them if their event has triggered.
969  */
970 void
971 knote(struct klist *list, long hint)
972 {
973 	struct knote *kn, *kn0;
974 
975 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, kn0)
976 		if (kn->kn_fop->f_event(kn, hint))
977 			KNOTE_ACTIVATE(kn);
978 }
979 
980 /*
981  * remove all knotes from a specified klist
982  */
983 void
984 knote_remove(struct proc *p, struct klist *list)
985 {
986 	struct knote *kn;
987 
988 	while ((kn = SLIST_FIRST(list)) != NULL) {
989 		kn->kn_fop->f_detach(kn);
990 		knote_drop(kn, p, p->p_fd);
991 	}
992 }
993 
994 /*
995  * remove all knotes referencing a specified fd
996  */
997 void
998 knote_fdclose(struct proc *p, int fd)
999 {
1000 	struct filedesc *fdp = p->p_fd;
1001 	struct klist *list = &fdp->fd_knlist[fd];
1002 
1003 	knote_remove(p, list);
1004 }
1005 
1006 /*
1007  * handle a process exiting, including the triggering of NOTE_EXIT notes
1008  * XXX this could be more efficient, doing a single pass down the klist
1009  */
1010 void
1011 knote_processexit(struct proc *p)
1012 {
1013 	struct process *pr = p->p_p;
1014 
1015 	KNOTE(&pr->ps_klist, NOTE_EXIT);
1016 
1017 	/* remove other knotes hanging off the process */
1018 	knote_remove(p, &pr->ps_klist);
1019 }
1020 
1021 void
1022 knote_attach(struct knote *kn, struct filedesc *fdp)
1023 {
1024 	struct klist *list;
1025 	int size;
1026 
1027 	if (!kn->kn_fop->f_isfd) {
1028 		if (fdp->fd_knhashmask == 0)
1029 			fdp->fd_knhash = hashinit(KN_HASHSIZE, M_TEMP,
1030 			    M_WAITOK, &fdp->fd_knhashmask);
1031 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1032 		goto done;
1033 	}
1034 
1035 	if (fdp->fd_knlistsize <= kn->kn_id) {
1036 		size = fdp->fd_knlistsize;
1037 		while (size <= kn->kn_id)
1038 			size += KQEXTENT;
1039 		list = mallocarray(size, sizeof(struct klist), M_TEMP,
1040 		    M_WAITOK);
1041 		memcpy(list, fdp->fd_knlist,
1042 		    fdp->fd_knlistsize * sizeof(struct klist));
1043 		memset(&list[fdp->fd_knlistsize], 0,
1044 		    (size - fdp->fd_knlistsize) * sizeof(struct klist));
1045 		free(fdp->fd_knlist, M_TEMP,
1046 		    fdp->fd_knlistsize * sizeof(struct klist));
1047 		fdp->fd_knlistsize = size;
1048 		fdp->fd_knlist = list;
1049 	}
1050 	list = &fdp->fd_knlist[kn->kn_id];
1051 done:
1052 	SLIST_INSERT_HEAD(list, kn, kn_link);
1053 	kn->kn_status = 0;
1054 }
1055 
1056 /*
1057  * should be called at spl == 0, since we don't want to hold spl
1058  * while calling FRELE and knote_free.
1059  */
1060 void
1061 knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp)
1062 {
1063 	struct klist *list;
1064 
1065 	if (kn->kn_fop->f_isfd)
1066 		list = &fdp->fd_knlist[kn->kn_id];
1067 	else
1068 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1069 
1070 	SLIST_REMOVE(list, kn, knote, kn_link);
1071 	if (kn->kn_status & KN_QUEUED)
1072 		knote_dequeue(kn);
1073 	if (kn->kn_fop->f_isfd)
1074 		FRELE(kn->kn_fp, p);
1075 	knote_free(kn);
1076 }
1077 
1078 
1079 void
1080 knote_enqueue(struct knote *kn)
1081 {
1082 	struct kqueue *kq = kn->kn_kq;
1083 	int s = splhigh();
1084 
1085 	KASSERT((kn->kn_status & KN_QUEUED) == 0);
1086 
1087 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1088 	kn->kn_status |= KN_QUEUED;
1089 	kq->kq_count++;
1090 	splx(s);
1091 	kqueue_wakeup(kq);
1092 }
1093 
1094 void
1095 knote_dequeue(struct knote *kn)
1096 {
1097 	struct kqueue *kq = kn->kn_kq;
1098 	int s = splhigh();
1099 
1100 	KASSERT(kn->kn_status & KN_QUEUED);
1101 
1102 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1103 	kn->kn_status &= ~KN_QUEUED;
1104 	kq->kq_count--;
1105 	splx(s);
1106 }
1107 
1108 void
1109 klist_invalidate(struct klist *list)
1110 {
1111 	struct knote *kn;
1112 
1113 	SLIST_FOREACH(kn, list, kn_selnext) {
1114 		kn->kn_status |= KN_DETACHED;
1115 		kn->kn_flags |= EV_EOF | EV_ONESHOT;
1116 	}
1117 }
1118