xref: /openbsd-src/sys/kern/kern_event.c (revision aa997e528a848ca5596493c2a801bdd6fb26ae61)
1 /*	$OpenBSD: kern_event.c,v 1.85 2018/04/03 09:10:02 mpi Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/kern/kern_event.c,v 1.22 2001/02/23 20:32:42 jlemon Exp $
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/proc.h>
35 #include <sys/pledge.h>
36 #include <sys/malloc.h>
37 #include <sys/unistd.h>
38 #include <sys/file.h>
39 #include <sys/filedesc.h>
40 #include <sys/fcntl.h>
41 #include <sys/selinfo.h>
42 #include <sys/queue.h>
43 #include <sys/event.h>
44 #include <sys/eventvar.h>
45 #include <sys/ktrace.h>
46 #include <sys/pool.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/stat.h>
51 #include <sys/uio.h>
52 #include <sys/mount.h>
53 #include <sys/poll.h>
54 #include <sys/syscallargs.h>
55 #include <sys/timeout.h>
56 
57 int	kqueue_scan(struct kqueue *kq, int maxevents,
58 		    struct kevent *ulistp, const struct timespec *timeout,
59 		    struct proc *p, int *retval);
60 
61 int	kqueue_read(struct file *fp, off_t *poff, struct uio *uio,
62 		    struct ucred *cred);
63 int	kqueue_write(struct file *fp, off_t *poff, struct uio *uio,
64 		    struct ucred *cred);
65 int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
66 		    struct proc *p);
67 int	kqueue_poll(struct file *fp, int events, struct proc *p);
68 int	kqueue_kqfilter(struct file *fp, struct knote *kn);
69 int	kqueue_stat(struct file *fp, struct stat *st, struct proc *p);
70 int	kqueue_close(struct file *fp, struct proc *p);
71 void	kqueue_wakeup(struct kqueue *kq);
72 
73 struct fileops kqueueops = {
74 	kqueue_read,
75 	kqueue_write,
76 	kqueue_ioctl,
77 	kqueue_poll,
78 	kqueue_kqfilter,
79 	kqueue_stat,
80 	kqueue_close
81 };
82 
83 void	knote_attach(struct knote *kn, struct filedesc *fdp);
84 void	knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp);
85 void	knote_enqueue(struct knote *kn);
86 void	knote_dequeue(struct knote *kn);
87 #define knote_alloc() ((struct knote *)pool_get(&knote_pool, PR_WAITOK))
88 #define knote_free(kn) pool_put(&knote_pool, (kn))
89 
90 void	filt_kqdetach(struct knote *kn);
91 int	filt_kqueue(struct knote *kn, long hint);
92 int	filt_procattach(struct knote *kn);
93 void	filt_procdetach(struct knote *kn);
94 int	filt_proc(struct knote *kn, long hint);
95 int	filt_fileattach(struct knote *kn);
96 void	filt_timerexpire(void *knx);
97 int	filt_timerattach(struct knote *kn);
98 void	filt_timerdetach(struct knote *kn);
99 int	filt_timer(struct knote *kn, long hint);
100 void	filt_seltruedetach(struct knote *kn);
101 
102 struct filterops kqread_filtops =
103 	{ 1, NULL, filt_kqdetach, filt_kqueue };
104 struct filterops proc_filtops =
105 	{ 0, filt_procattach, filt_procdetach, filt_proc };
106 struct filterops file_filtops =
107 	{ 1, filt_fileattach, NULL, NULL };
108 struct filterops timer_filtops =
109         { 0, filt_timerattach, filt_timerdetach, filt_timer };
110 
111 struct	pool knote_pool;
112 struct	pool kqueue_pool;
113 int kq_ntimeouts = 0;
114 int kq_timeoutmax = (4 * 1024);
115 
116 #define KNOTE_ACTIVATE(kn) do {						\
117 	kn->kn_status |= KN_ACTIVE;					\
118 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
119 		knote_enqueue(kn);					\
120 } while(0)
121 
122 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
123 
124 extern struct filterops sig_filtops;
125 #ifdef notyet
126 extern struct filterops aio_filtops;
127 #endif
128 
129 /*
130  * Table for for all system-defined filters.
131  */
132 struct filterops *sysfilt_ops[] = {
133 	&file_filtops,			/* EVFILT_READ */
134 	&file_filtops,			/* EVFILT_WRITE */
135 	NULL, /*&aio_filtops,*/		/* EVFILT_AIO */
136 	&file_filtops,			/* EVFILT_VNODE */
137 	&proc_filtops,			/* EVFILT_PROC */
138 	&sig_filtops,			/* EVFILT_SIGNAL */
139 	&timer_filtops,			/* EVFILT_TIMER */
140 	&file_filtops,			/* EVFILT_DEVICE */
141 };
142 
143 void KQREF(struct kqueue *);
144 void KQRELE(struct kqueue *);
145 
146 void
147 KQREF(struct kqueue *kq)
148 {
149 	++kq->kq_refs;
150 }
151 
152 void
153 KQRELE(struct kqueue *kq)
154 {
155 	if (--kq->kq_refs == 0) {
156 		pool_put(&kqueue_pool, kq);
157 	}
158 }
159 
160 void kqueue_init(void);
161 
162 void
163 kqueue_init(void)
164 {
165 
166 	pool_init(&kqueue_pool, sizeof(struct kqueue), 0, IPL_NONE, PR_WAITOK,
167 	    "kqueuepl", NULL);
168 	pool_init(&knote_pool, sizeof(struct knote), 0, IPL_NONE, PR_WAITOK,
169 	    "knotepl", NULL);
170 }
171 
172 int
173 filt_fileattach(struct knote *kn)
174 {
175 	struct file *fp = kn->kn_fp;
176 
177 	return fp->f_ops->fo_kqfilter(fp, kn);
178 }
179 
180 int
181 kqueue_kqfilter(struct file *fp, struct knote *kn)
182 {
183 	struct kqueue *kq = kn->kn_fp->f_data;
184 
185 	if (kn->kn_filter != EVFILT_READ)
186 		return (EINVAL);
187 
188 	kn->kn_fop = &kqread_filtops;
189 	SLIST_INSERT_HEAD(&kq->kq_sel.si_note, kn, kn_selnext);
190 	return (0);
191 }
192 
193 void
194 filt_kqdetach(struct knote *kn)
195 {
196 	struct kqueue *kq = kn->kn_fp->f_data;
197 
198 	SLIST_REMOVE(&kq->kq_sel.si_note, kn, knote, kn_selnext);
199 }
200 
201 int
202 filt_kqueue(struct knote *kn, long hint)
203 {
204 	struct kqueue *kq = kn->kn_fp->f_data;
205 
206 	kn->kn_data = kq->kq_count;
207 	return (kn->kn_data > 0);
208 }
209 
210 int
211 filt_procattach(struct knote *kn)
212 {
213 	struct process *pr;
214 
215 	if ((curproc->p_p->ps_flags & PS_PLEDGE) &&
216 	    (curproc->p_p->ps_pledge & PLEDGE_PROC) == 0)
217 		return pledge_fail(curproc, EPERM, PLEDGE_PROC);
218 
219 	if (kn->kn_id > PID_MAX)
220 		return ESRCH;
221 
222 	pr = prfind(kn->kn_id);
223 	if (pr == NULL)
224 		return (ESRCH);
225 
226 	/* exiting processes can't be specified */
227 	if (pr->ps_flags & PS_EXITING)
228 		return (ESRCH);
229 
230 	kn->kn_ptr.p_process = pr;
231 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
232 
233 	/*
234 	 * internal flag indicating registration done by kernel
235 	 */
236 	if (kn->kn_flags & EV_FLAG1) {
237 		kn->kn_data = kn->kn_sdata;		/* ppid */
238 		kn->kn_fflags = NOTE_CHILD;
239 		kn->kn_flags &= ~EV_FLAG1;
240 	}
241 
242 	/* XXX lock the proc here while adding to the list? */
243 	SLIST_INSERT_HEAD(&pr->ps_klist, kn, kn_selnext);
244 
245 	return (0);
246 }
247 
248 /*
249  * The knote may be attached to a different process, which may exit,
250  * leaving nothing for the knote to be attached to.  So when the process
251  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
252  * it will be deleted when read out.  However, as part of the knote deletion,
253  * this routine is called, so a check is needed to avoid actually performing
254  * a detach, because the original process does not exist any more.
255  */
256 void
257 filt_procdetach(struct knote *kn)
258 {
259 	struct process *pr = kn->kn_ptr.p_process;
260 
261 	if (kn->kn_status & KN_DETACHED)
262 		return;
263 
264 	/* XXX locking?  this might modify another process. */
265 	SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
266 }
267 
268 int
269 filt_proc(struct knote *kn, long hint)
270 {
271 	u_int event;
272 
273 	/*
274 	 * mask off extra data
275 	 */
276 	event = (u_int)hint & NOTE_PCTRLMASK;
277 
278 	/*
279 	 * if the user is interested in this event, record it.
280 	 */
281 	if (kn->kn_sfflags & event)
282 		kn->kn_fflags |= event;
283 
284 	/*
285 	 * process is gone, so flag the event as finished and remove it
286 	 * from the process's klist
287 	 */
288 	if (event == NOTE_EXIT) {
289 		struct process *pr = kn->kn_ptr.p_process;
290 
291 		kn->kn_status |= KN_DETACHED;
292 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
293 		kn->kn_data = pr->ps_mainproc->p_xstat;
294 		SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
295 		return (1);
296 	}
297 
298 	/*
299 	 * process forked, and user wants to track the new process,
300 	 * so attach a new knote to it, and immediately report an
301 	 * event with the parent's pid.
302 	 */
303 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
304 		struct kevent kev;
305 		int error;
306 
307 		/*
308 		 * register knote with new process.
309 		 */
310 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
311 		kev.filter = kn->kn_filter;
312 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
313 		kev.fflags = kn->kn_sfflags;
314 		kev.data = kn->kn_id;			/* parent */
315 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
316 		error = kqueue_register(kn->kn_kq, &kev, NULL);
317 		if (error)
318 			kn->kn_fflags |= NOTE_TRACKERR;
319 	}
320 
321 	return (kn->kn_fflags != 0);
322 }
323 
324 static void
325 filt_timer_timeout_add(struct knote *kn)
326 {
327 	struct timeval tv;
328 	int tticks;
329 
330 	tv.tv_sec = kn->kn_sdata / 1000;
331 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
332 	tticks = tvtohz(&tv);
333 	timeout_add(kn->kn_hook, tticks ? tticks : 1);
334 }
335 
336 void
337 filt_timerexpire(void *knx)
338 {
339 	struct knote *kn = knx;
340 
341 	kn->kn_data++;
342 	KNOTE_ACTIVATE(kn);
343 
344 	if ((kn->kn_flags & EV_ONESHOT) == 0)
345 		filt_timer_timeout_add(kn);
346 }
347 
348 
349 /*
350  * data contains amount of time to sleep, in milliseconds
351  */
352 int
353 filt_timerattach(struct knote *kn)
354 {
355 	struct timeout *to;
356 
357 	if (kq_ntimeouts > kq_timeoutmax)
358 		return (ENOMEM);
359 	kq_ntimeouts++;
360 
361 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
362 	to = malloc(sizeof(*to), M_KEVENT, M_WAITOK);
363 	timeout_set(to, filt_timerexpire, kn);
364 	kn->kn_hook = to;
365 	filt_timer_timeout_add(kn);
366 
367 	return (0);
368 }
369 
370 void
371 filt_timerdetach(struct knote *kn)
372 {
373 	struct timeout *to;
374 
375 	to = (struct timeout *)kn->kn_hook;
376 	timeout_del(to);
377 	free(to, M_KEVENT, sizeof(*to));
378 	kq_ntimeouts--;
379 }
380 
381 int
382 filt_timer(struct knote *kn, long hint)
383 {
384 	return (kn->kn_data != 0);
385 }
386 
387 
388 /*
389  * filt_seltrue:
390  *
391  *	This filter "event" routine simulates seltrue().
392  */
393 int
394 filt_seltrue(struct knote *kn, long hint)
395 {
396 
397 	/*
398 	 * We don't know how much data can be read/written,
399 	 * but we know that it *can* be.  This is about as
400 	 * good as select/poll does as well.
401 	 */
402 	kn->kn_data = 0;
403 	return (1);
404 }
405 
406 /*
407  * This provides full kqfilter entry for device switch tables, which
408  * has same effect as filter using filt_seltrue() as filter method.
409  */
410 void
411 filt_seltruedetach(struct knote *kn)
412 {
413 	/* Nothing to do */
414 }
415 
416 const struct filterops seltrue_filtops =
417 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
418 
419 int
420 seltrue_kqfilter(dev_t dev, struct knote *kn)
421 {
422 	switch (kn->kn_filter) {
423 	case EVFILT_READ:
424 	case EVFILT_WRITE:
425 		kn->kn_fop = &seltrue_filtops;
426 		break;
427 	default:
428 		return (EINVAL);
429 	}
430 
431 	/* Nothing more to do */
432 	return (0);
433 }
434 
435 int
436 sys_kqueue(struct proc *p, void *v, register_t *retval)
437 {
438 	struct filedesc *fdp = p->p_fd;
439 	struct kqueue *kq;
440 	struct file *fp;
441 	int fd, error;
442 
443 	fdplock(fdp);
444 	error = falloc(p, 0, &fp, &fd);
445 	fdpunlock(fdp);
446 	if (error)
447 		return (error);
448 	fp->f_flag = FREAD | FWRITE;
449 	fp->f_type = DTYPE_KQUEUE;
450 	fp->f_ops = &kqueueops;
451 	kq = pool_get(&kqueue_pool, PR_WAITOK|PR_ZERO);
452 	TAILQ_INIT(&kq->kq_head);
453 	fp->f_data = kq;
454 	KQREF(kq);
455 	*retval = fd;
456 	if (fdp->fd_knlistsize < 0)
457 		fdp->fd_knlistsize = 0;		/* this process has a kq */
458 	kq->kq_fdp = fdp;
459 	FILE_SET_MATURE(fp, p);
460 	return (0);
461 }
462 
463 int
464 sys_kevent(struct proc *p, void *v, register_t *retval)
465 {
466 	struct filedesc* fdp = p->p_fd;
467 	struct sys_kevent_args /* {
468 		syscallarg(int)	fd;
469 		syscallarg(const struct kevent *) changelist;
470 		syscallarg(int)	nchanges;
471 		syscallarg(struct kevent *) eventlist;
472 		syscallarg(int)	nevents;
473 		syscallarg(const struct timespec *) timeout;
474 	} */ *uap = v;
475 	struct kevent *kevp;
476 	struct kqueue *kq;
477 	struct file *fp;
478 	struct timespec ts;
479 	int i, n, nerrors, error;
480 	struct kevent kev[KQ_NEVENTS];
481 
482 	if ((fp = fd_getfile(fdp, SCARG(uap, fd))) == NULL)
483 		return (EBADF);
484 	FREF(fp);
485 
486 	if (fp->f_type != DTYPE_KQUEUE) {
487 		error = EBADF;
488 		goto done;
489 	}
490 
491 	if (SCARG(uap, timeout) != NULL) {
492 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
493 		if (error)
494 			goto done;
495 #ifdef KTRACE
496 		if (KTRPOINT(p, KTR_STRUCT))
497 			ktrreltimespec(p, &ts);
498 #endif
499 		SCARG(uap, timeout) = &ts;
500 	}
501 
502 	kq = fp->f_data;
503 	nerrors = 0;
504 
505 	while (SCARG(uap, nchanges) > 0) {
506 		n = SCARG(uap, nchanges) > KQ_NEVENTS ?
507 		    KQ_NEVENTS : SCARG(uap, nchanges);
508 		error = copyin(SCARG(uap, changelist), kev,
509 		    n * sizeof(struct kevent));
510 		if (error)
511 			goto done;
512 #ifdef KTRACE
513 		if (KTRPOINT(p, KTR_STRUCT))
514 			ktrevent(p, kev, n);
515 #endif
516 		for (i = 0; i < n; i++) {
517 			kevp = &kev[i];
518 			kevp->flags &= ~EV_SYSFLAGS;
519 			error = kqueue_register(kq, kevp, p);
520 			if (error || (kevp->flags & EV_RECEIPT)) {
521 				if (SCARG(uap, nevents) != 0) {
522 					kevp->flags = EV_ERROR;
523 					kevp->data = error;
524 					copyout(kevp, SCARG(uap, eventlist),
525 					    sizeof(*kevp));
526 					SCARG(uap, eventlist)++;
527 					SCARG(uap, nevents)--;
528 					nerrors++;
529 				} else {
530 					goto done;
531 				}
532 			}
533 		}
534 		SCARG(uap, nchanges) -= n;
535 		SCARG(uap, changelist) += n;
536 	}
537 	if (nerrors) {
538 		*retval = nerrors;
539 		error = 0;
540 		goto done;
541 	}
542 
543 	KQREF(kq);
544 	FRELE(fp, p);
545 	error = kqueue_scan(kq, SCARG(uap, nevents), SCARG(uap, eventlist),
546 	    SCARG(uap, timeout), p, &n);
547 	KQRELE(kq);
548 	*retval = n;
549 	return (error);
550 
551  done:
552 	FRELE(fp, p);
553 	return (error);
554 }
555 
556 int
557 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
558 {
559 	struct filedesc *fdp = kq->kq_fdp;
560 	struct filterops *fops = NULL;
561 	struct file *fp = NULL;
562 	struct knote *kn = NULL;
563 	int s, error = 0;
564 
565 	if (kev->filter < 0) {
566 		if (kev->filter + EVFILT_SYSCOUNT < 0)
567 			return (EINVAL);
568 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
569 	}
570 
571 	if (fops == NULL) {
572 		/*
573 		 * XXX
574 		 * filter attach routine is responsible for ensuring that
575 		 * the identifier can be attached to it.
576 		 */
577 		return (EINVAL);
578 	}
579 
580 	if (fops->f_isfd) {
581 		/* validate descriptor */
582 		if (kev->ident > INT_MAX)
583 			return (EBADF);
584 		if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
585 			return (EBADF);
586 		FREF(fp);
587 
588 		if (kev->ident < fdp->fd_knlistsize) {
589 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link) {
590 				if (kq == kn->kn_kq &&
591 				    kev->filter == kn->kn_filter)
592 					break;
593 			}
594 		}
595 	} else {
596 		if (fdp->fd_knhashmask != 0) {
597 			struct klist *list;
598 
599 			list = &fdp->fd_knhash[
600 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
601 			SLIST_FOREACH(kn, list, kn_link) {
602 				if (kev->ident == kn->kn_id &&
603 				    kq == kn->kn_kq &&
604 				    kev->filter == kn->kn_filter)
605 					break;
606 			}
607 		}
608 	}
609 
610 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
611 		error = ENOENT;
612 		goto done;
613 	}
614 
615 	/*
616 	 * kn now contains the matching knote, or NULL if no match
617 	 */
618 	if (kev->flags & EV_ADD) {
619 
620 		if (kn == NULL) {
621 			kn = knote_alloc();
622 			if (kn == NULL) {
623 				error = ENOMEM;
624 				goto done;
625 			}
626 			kn->kn_fp = fp;
627 			kn->kn_kq = kq;
628 			kn->kn_fop = fops;
629 
630 			/*
631 			 * apply reference count to knote structure, and
632 			 * do not release it at the end of this routine.
633 			 */
634 			fp = NULL;
635 
636 			kn->kn_sfflags = kev->fflags;
637 			kn->kn_sdata = kev->data;
638 			kev->fflags = 0;
639 			kev->data = 0;
640 			kn->kn_kevent = *kev;
641 
642 			knote_attach(kn, fdp);
643 			if ((error = fops->f_attach(kn)) != 0) {
644 				knote_drop(kn, p, fdp);
645 				goto done;
646 			}
647 		} else {
648 			/*
649 			 * The user may change some filter values after the
650 			 * initial EV_ADD, but doing so will not reset any
651 			 * filters which have already been triggered.
652 			 */
653 			kn->kn_sfflags = kev->fflags;
654 			kn->kn_sdata = kev->data;
655 			kn->kn_kevent.udata = kev->udata;
656 		}
657 
658 		s = splhigh();
659 		if (kn->kn_fop->f_event(kn, 0))
660 			KNOTE_ACTIVATE(kn);
661 		splx(s);
662 
663 	} else if (kev->flags & EV_DELETE) {
664 		kn->kn_fop->f_detach(kn);
665 		knote_drop(kn, p, p->p_fd);
666 		goto done;
667 	}
668 
669 	if ((kev->flags & EV_DISABLE) &&
670 	    ((kn->kn_status & KN_DISABLED) == 0)) {
671 		s = splhigh();
672 		kn->kn_status |= KN_DISABLED;
673 		splx(s);
674 	}
675 
676 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
677 		s = splhigh();
678 		kn->kn_status &= ~KN_DISABLED;
679 		if ((kn->kn_status & KN_ACTIVE) &&
680 		    ((kn->kn_status & KN_QUEUED) == 0))
681 			knote_enqueue(kn);
682 		splx(s);
683 	}
684 
685 done:
686 	if (fp != NULL)
687 		FRELE(fp, p);
688 	return (error);
689 }
690 
691 int
692 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent *ulistp,
693 	const struct timespec *tsp, struct proc *p, int *retval)
694 {
695 	struct kevent *kevp;
696 	struct timeval atv, rtv, ttv;
697 	struct knote *kn, marker;
698 	int s, count, timeout, nkev = 0, error = 0;
699 	struct kevent kev[KQ_NEVENTS];
700 
701 	count = maxevents;
702 	if (count == 0)
703 		goto done;
704 
705 	if (tsp != NULL) {
706 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
707 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
708 			/* No timeout, just poll */
709 			timeout = -1;
710 			goto start;
711 		}
712 		if (itimerfix(&atv)) {
713 			error = EINVAL;
714 			goto done;
715 		}
716 
717 		timeout = atv.tv_sec > 24 * 60 * 60 ?
718 		    24 * 60 * 60 * hz : tvtohz(&atv);
719 
720 		getmicrouptime(&rtv);
721 		timeradd(&atv, &rtv, &atv);
722 	} else {
723 		atv.tv_sec = 0;
724 		atv.tv_usec = 0;
725 		timeout = 0;
726 	}
727 	goto start;
728 
729 retry:
730 	if (atv.tv_sec || atv.tv_usec) {
731 		getmicrouptime(&rtv);
732 		if (timercmp(&rtv, &atv, >=))
733 			goto done;
734 		ttv = atv;
735 		timersub(&ttv, &rtv, &ttv);
736 		timeout = ttv.tv_sec > 24 * 60 * 60 ?
737 		    24 * 60 * 60 * hz : tvtohz(&ttv);
738 	}
739 
740 start:
741 	if (kq->kq_state & KQ_DYING) {
742 		error = EBADF;
743 		goto done;
744 	}
745 
746 	kevp = &kev[0];
747 	s = splhigh();
748 	if (kq->kq_count == 0) {
749 		if (timeout < 0) {
750 			error = EWOULDBLOCK;
751 		} else {
752 			kq->kq_state |= KQ_SLEEP;
753 			error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
754 		}
755 		splx(s);
756 		if (error == 0)
757 			goto retry;
758 		/* don't restart after signals... */
759 		if (error == ERESTART)
760 			error = EINTR;
761 		else if (error == EWOULDBLOCK)
762 			error = 0;
763 		goto done;
764 	}
765 
766 	TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
767 	while (count) {
768 		kn = TAILQ_FIRST(&kq->kq_head);
769 		if (kn == &marker) {
770 			TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
771 			splx(s);
772 			if (count == maxevents)
773 				goto retry;
774 			goto done;
775 		}
776 
777 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
778 		kq->kq_count--;
779 
780 		if (kn->kn_status & KN_DISABLED) {
781 			kn->kn_status &= ~KN_QUEUED;
782 			continue;
783 		}
784 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
785 		    kn->kn_fop->f_event(kn, 0) == 0) {
786 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
787 			continue;
788 		}
789 		*kevp = kn->kn_kevent;
790 		kevp++;
791 		nkev++;
792 		if (kn->kn_flags & EV_ONESHOT) {
793 			kn->kn_status &= ~KN_QUEUED;
794 			splx(s);
795 			kn->kn_fop->f_detach(kn);
796 			knote_drop(kn, p, p->p_fd);
797 			s = splhigh();
798 		} else if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
799 			if (kn->kn_flags & EV_CLEAR) {
800 				kn->kn_data = 0;
801 				kn->kn_fflags = 0;
802 			}
803 			if (kn->kn_flags & EV_DISPATCH)
804 				kn->kn_status |= KN_DISABLED;
805 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
806 		} else {
807 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
808 			kq->kq_count++;
809 		}
810 		count--;
811 		if (nkev == KQ_NEVENTS) {
812 			splx(s);
813 #ifdef KTRACE
814 			if (KTRPOINT(p, KTR_STRUCT))
815 				ktrevent(p, kev, nkev);
816 #endif
817 			error = copyout(kev, ulistp,
818 			    sizeof(struct kevent) * nkev);
819 			ulistp += nkev;
820 			nkev = 0;
821 			kevp = &kev[0];
822 			s = splhigh();
823 			if (error)
824 				break;
825 		}
826 	}
827 	TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
828 	splx(s);
829 done:
830 	if (nkev != 0) {
831 #ifdef KTRACE
832 		if (KTRPOINT(p, KTR_STRUCT))
833 			ktrevent(p, kev, nkev);
834 #endif
835 		error = copyout(kev, ulistp,
836 		    sizeof(struct kevent) * nkev);
837 	}
838 	*retval = maxevents - count;
839 	return (error);
840 }
841 
842 /*
843  * XXX
844  * This could be expanded to call kqueue_scan, if desired.
845  */
846 int
847 kqueue_read(struct file *fp, off_t *poff, struct uio *uio, struct ucred *cred)
848 {
849 	return (ENXIO);
850 }
851 
852 int
853 kqueue_write(struct file *fp, off_t *poff, struct uio *uio, struct ucred *cred)
854 
855 {
856 	return (ENXIO);
857 }
858 
859 int
860 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
861 {
862 	return (ENOTTY);
863 }
864 
865 int
866 kqueue_poll(struct file *fp, int events, struct proc *p)
867 {
868 	struct kqueue *kq = (struct kqueue *)fp->f_data;
869 	int revents = 0;
870 	int s = splhigh();
871 
872 	if (events & (POLLIN | POLLRDNORM)) {
873 		if (kq->kq_count) {
874 			revents |= events & (POLLIN | POLLRDNORM);
875 		} else {
876 			selrecord(p, &kq->kq_sel);
877 			kq->kq_state |= KQ_SEL;
878 		}
879 	}
880 	splx(s);
881 	return (revents);
882 }
883 
884 int
885 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
886 {
887 	struct kqueue *kq = fp->f_data;
888 
889 	memset(st, 0, sizeof(*st));
890 	st->st_size = kq->kq_count;
891 	st->st_blksize = sizeof(struct kevent);
892 	st->st_mode = S_IFIFO;
893 	return (0);
894 }
895 
896 int
897 kqueue_close(struct file *fp, struct proc *p)
898 {
899 	struct kqueue *kq = fp->f_data;
900 	struct filedesc *fdp = p->p_fd;
901 	struct knote **knp, *kn, *kn0;
902 	int i;
903 
904 	for (i = 0; i < fdp->fd_knlistsize; i++) {
905 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
906 		kn = *knp;
907 		while (kn != NULL) {
908 			kn0 = SLIST_NEXT(kn, kn_link);
909 			if (kq == kn->kn_kq) {
910 				kn->kn_fop->f_detach(kn);
911 				FRELE(kn->kn_fp, p);
912 				knote_free(kn);
913 				*knp = kn0;
914 			} else {
915 				knp = &SLIST_NEXT(kn, kn_link);
916 			}
917 			kn = kn0;
918 		}
919 	}
920 	if (fdp->fd_knhashmask != 0) {
921 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
922 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
923 			kn = *knp;
924 			while (kn != NULL) {
925 				kn0 = SLIST_NEXT(kn, kn_link);
926 				if (kq == kn->kn_kq) {
927 					kn->kn_fop->f_detach(kn);
928 		/* XXX non-fd release of kn->kn_ptr */
929 					knote_free(kn);
930 					*knp = kn0;
931 				} else {
932 					knp = &SLIST_NEXT(kn, kn_link);
933 				}
934 				kn = kn0;
935 			}
936 		}
937 	}
938 	fp->f_data = NULL;
939 
940 	kq->kq_state |= KQ_DYING;
941 	kqueue_wakeup(kq);
942 	KQRELE(kq);
943 
944 	return (0);
945 }
946 
947 void
948 kqueue_wakeup(struct kqueue *kq)
949 {
950 
951 	if (kq->kq_state & KQ_SLEEP) {
952 		kq->kq_state &= ~KQ_SLEEP;
953 		wakeup(kq);
954 	}
955 	if (kq->kq_state & KQ_SEL) {
956 		kq->kq_state &= ~KQ_SEL;
957 		selwakeup(&kq->kq_sel);
958 	} else
959 		KNOTE(&kq->kq_sel.si_note, 0);
960 }
961 
962 /*
963  * activate one knote.
964  */
965 void
966 knote_activate(struct knote *kn)
967 {
968 	KNOTE_ACTIVATE(kn);
969 }
970 
971 /*
972  * walk down a list of knotes, activating them if their event has triggered.
973  */
974 void
975 knote(struct klist *list, long hint)
976 {
977 	struct knote *kn, *kn0;
978 
979 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, kn0)
980 		if (kn->kn_fop->f_event(kn, hint))
981 			KNOTE_ACTIVATE(kn);
982 }
983 
984 /*
985  * remove all knotes from a specified klist
986  */
987 void
988 knote_remove(struct proc *p, struct klist *list)
989 {
990 	struct knote *kn;
991 
992 	while ((kn = SLIST_FIRST(list)) != NULL) {
993 		kn->kn_fop->f_detach(kn);
994 		knote_drop(kn, p, p->p_fd);
995 	}
996 }
997 
998 /*
999  * remove all knotes referencing a specified fd
1000  */
1001 void
1002 knote_fdclose(struct proc *p, int fd)
1003 {
1004 	struct filedesc *fdp = p->p_fd;
1005 	struct klist *list = &fdp->fd_knlist[fd];
1006 
1007 	knote_remove(p, list);
1008 }
1009 
1010 /*
1011  * handle a process exiting, including the triggering of NOTE_EXIT notes
1012  * XXX this could be more efficient, doing a single pass down the klist
1013  */
1014 void
1015 knote_processexit(struct proc *p)
1016 {
1017 	struct process *pr = p->p_p;
1018 
1019 	KNOTE(&pr->ps_klist, NOTE_EXIT);
1020 
1021 	/* remove other knotes hanging off the process */
1022 	knote_remove(p, &pr->ps_klist);
1023 }
1024 
1025 void
1026 knote_attach(struct knote *kn, struct filedesc *fdp)
1027 {
1028 	struct klist *list;
1029 	int size;
1030 
1031 	if (!kn->kn_fop->f_isfd) {
1032 		if (fdp->fd_knhashmask == 0)
1033 			fdp->fd_knhash = hashinit(KN_HASHSIZE, M_TEMP,
1034 			    M_WAITOK, &fdp->fd_knhashmask);
1035 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1036 		goto done;
1037 	}
1038 
1039 	if (fdp->fd_knlistsize <= kn->kn_id) {
1040 		size = fdp->fd_knlistsize;
1041 		while (size <= kn->kn_id)
1042 			size += KQEXTENT;
1043 		list = mallocarray(size, sizeof(struct klist), M_TEMP,
1044 		    M_WAITOK);
1045 		memcpy(list, fdp->fd_knlist,
1046 		    fdp->fd_knlistsize * sizeof(struct klist));
1047 		memset(&list[fdp->fd_knlistsize], 0,
1048 		    (size - fdp->fd_knlistsize) * sizeof(struct klist));
1049 		free(fdp->fd_knlist, M_TEMP,
1050 		    fdp->fd_knlistsize * sizeof(struct klist));
1051 		fdp->fd_knlistsize = size;
1052 		fdp->fd_knlist = list;
1053 	}
1054 	list = &fdp->fd_knlist[kn->kn_id];
1055 done:
1056 	SLIST_INSERT_HEAD(list, kn, kn_link);
1057 	kn->kn_status = 0;
1058 }
1059 
1060 /*
1061  * should be called at spl == 0, since we don't want to hold spl
1062  * while calling FRELE and knote_free.
1063  */
1064 void
1065 knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp)
1066 {
1067 	struct klist *list;
1068 
1069 	if (kn->kn_fop->f_isfd)
1070 		list = &fdp->fd_knlist[kn->kn_id];
1071 	else
1072 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1073 
1074 	SLIST_REMOVE(list, kn, knote, kn_link);
1075 	if (kn->kn_status & KN_QUEUED)
1076 		knote_dequeue(kn);
1077 	if (kn->kn_fop->f_isfd)
1078 		FRELE(kn->kn_fp, p);
1079 	knote_free(kn);
1080 }
1081 
1082 
1083 void
1084 knote_enqueue(struct knote *kn)
1085 {
1086 	struct kqueue *kq = kn->kn_kq;
1087 	int s = splhigh();
1088 
1089 	KASSERT((kn->kn_status & KN_QUEUED) == 0);
1090 
1091 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1092 	kn->kn_status |= KN_QUEUED;
1093 	kq->kq_count++;
1094 	splx(s);
1095 	kqueue_wakeup(kq);
1096 }
1097 
1098 void
1099 knote_dequeue(struct knote *kn)
1100 {
1101 	struct kqueue *kq = kn->kn_kq;
1102 	int s = splhigh();
1103 
1104 	KASSERT(kn->kn_status & KN_QUEUED);
1105 
1106 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1107 	kn->kn_status &= ~KN_QUEUED;
1108 	kq->kq_count--;
1109 	splx(s);
1110 }
1111 
1112 void
1113 klist_invalidate(struct klist *list)
1114 {
1115 	struct knote *kn;
1116 
1117 	SLIST_FOREACH(kn, list, kn_selnext) {
1118 		kn->kn_status |= KN_DETACHED;
1119 		kn->kn_flags |= EV_EOF | EV_ONESHOT;
1120 	}
1121 }
1122