xref: /openbsd-src/sys/kern/kern_event.c (revision 6c6408334dbede3a2c0dcd9ff9c489157df0c856)
1 /*	$OpenBSD: kern_event.c,v 1.84 2018/01/13 12:58:40 robert Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/kern/kern_event.c,v 1.22 2001/02/23 20:32:42 jlemon Exp $
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/proc.h>
35 #include <sys/pledge.h>
36 #include <sys/malloc.h>
37 #include <sys/unistd.h>
38 #include <sys/file.h>
39 #include <sys/filedesc.h>
40 #include <sys/fcntl.h>
41 #include <sys/selinfo.h>
42 #include <sys/queue.h>
43 #include <sys/event.h>
44 #include <sys/eventvar.h>
45 #include <sys/ktrace.h>
46 #include <sys/pool.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/stat.h>
51 #include <sys/uio.h>
52 #include <sys/mount.h>
53 #include <sys/poll.h>
54 #include <sys/syscallargs.h>
55 #include <sys/timeout.h>
56 
57 int	kqueue_scan(struct kqueue *kq, int maxevents,
58 		    struct kevent *ulistp, const struct timespec *timeout,
59 		    struct proc *p, int *retval);
60 
61 int	kqueue_read(struct file *fp, off_t *poff, struct uio *uio,
62 		    struct ucred *cred);
63 int	kqueue_write(struct file *fp, off_t *poff, struct uio *uio,
64 		    struct ucred *cred);
65 int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
66 		    struct proc *p);
67 int	kqueue_poll(struct file *fp, int events, struct proc *p);
68 int	kqueue_kqfilter(struct file *fp, struct knote *kn);
69 int	kqueue_stat(struct file *fp, struct stat *st, struct proc *p);
70 int	kqueue_close(struct file *fp, struct proc *p);
71 void	kqueue_wakeup(struct kqueue *kq);
72 
73 struct fileops kqueueops = {
74 	kqueue_read,
75 	kqueue_write,
76 	kqueue_ioctl,
77 	kqueue_poll,
78 	kqueue_kqfilter,
79 	kqueue_stat,
80 	kqueue_close
81 };
82 
83 void	knote_attach(struct knote *kn, struct filedesc *fdp);
84 void	knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp);
85 void	knote_enqueue(struct knote *kn);
86 void	knote_dequeue(struct knote *kn);
87 #define knote_alloc() ((struct knote *)pool_get(&knote_pool, PR_WAITOK))
88 #define knote_free(kn) pool_put(&knote_pool, (kn))
89 
90 void	filt_kqdetach(struct knote *kn);
91 int	filt_kqueue(struct knote *kn, long hint);
92 int	filt_procattach(struct knote *kn);
93 void	filt_procdetach(struct knote *kn);
94 int	filt_proc(struct knote *kn, long hint);
95 int	filt_fileattach(struct knote *kn);
96 void	filt_timerexpire(void *knx);
97 int	filt_timerattach(struct knote *kn);
98 void	filt_timerdetach(struct knote *kn);
99 int	filt_timer(struct knote *kn, long hint);
100 void	filt_seltruedetach(struct knote *kn);
101 
102 struct filterops kqread_filtops =
103 	{ 1, NULL, filt_kqdetach, filt_kqueue };
104 struct filterops proc_filtops =
105 	{ 0, filt_procattach, filt_procdetach, filt_proc };
106 struct filterops file_filtops =
107 	{ 1, filt_fileattach, NULL, NULL };
108 struct filterops timer_filtops =
109         { 0, filt_timerattach, filt_timerdetach, filt_timer };
110 
111 struct	pool knote_pool;
112 struct	pool kqueue_pool;
113 int kq_ntimeouts = 0;
114 int kq_timeoutmax = (4 * 1024);
115 
116 #define KNOTE_ACTIVATE(kn) do {						\
117 	kn->kn_status |= KN_ACTIVE;					\
118 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
119 		knote_enqueue(kn);					\
120 } while(0)
121 
122 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
123 
124 extern struct filterops sig_filtops;
125 #ifdef notyet
126 extern struct filterops aio_filtops;
127 #endif
128 
129 /*
130  * Table for for all system-defined filters.
131  */
132 struct filterops *sysfilt_ops[] = {
133 	&file_filtops,			/* EVFILT_READ */
134 	&file_filtops,			/* EVFILT_WRITE */
135 	NULL, /*&aio_filtops,*/		/* EVFILT_AIO */
136 	&file_filtops,			/* EVFILT_VNODE */
137 	&proc_filtops,			/* EVFILT_PROC */
138 	&sig_filtops,			/* EVFILT_SIGNAL */
139 	&timer_filtops,			/* EVFILT_TIMER */
140 	&file_filtops,			/* EVFILT_DEVICE */
141 };
142 
143 void KQREF(struct kqueue *);
144 void KQRELE(struct kqueue *);
145 
146 void
147 KQREF(struct kqueue *kq)
148 {
149 	++kq->kq_refs;
150 }
151 
152 void
153 KQRELE(struct kqueue *kq)
154 {
155 	if (--kq->kq_refs == 0) {
156 		pool_put(&kqueue_pool, kq);
157 	}
158 }
159 
160 void kqueue_init(void);
161 
162 void
163 kqueue_init(void)
164 {
165 
166 	pool_init(&kqueue_pool, sizeof(struct kqueue), 0, IPL_NONE, PR_WAITOK,
167 	    "kqueuepl", NULL);
168 	pool_init(&knote_pool, sizeof(struct knote), 0, IPL_NONE, PR_WAITOK,
169 	    "knotepl", NULL);
170 }
171 
172 int
173 filt_fileattach(struct knote *kn)
174 {
175 	struct file *fp = kn->kn_fp;
176 
177 	return fp->f_ops->fo_kqfilter(fp, kn);
178 }
179 
180 int
181 kqueue_kqfilter(struct file *fp, struct knote *kn)
182 {
183 	struct kqueue *kq = kn->kn_fp->f_data;
184 
185 	if (kn->kn_filter != EVFILT_READ)
186 		return (EINVAL);
187 
188 	kn->kn_fop = &kqread_filtops;
189 	SLIST_INSERT_HEAD(&kq->kq_sel.si_note, kn, kn_selnext);
190 	return (0);
191 }
192 
193 void
194 filt_kqdetach(struct knote *kn)
195 {
196 	struct kqueue *kq = kn->kn_fp->f_data;
197 
198 	SLIST_REMOVE(&kq->kq_sel.si_note, kn, knote, kn_selnext);
199 }
200 
201 int
202 filt_kqueue(struct knote *kn, long hint)
203 {
204 	struct kqueue *kq = kn->kn_fp->f_data;
205 
206 	kn->kn_data = kq->kq_count;
207 	return (kn->kn_data > 0);
208 }
209 
210 int
211 filt_procattach(struct knote *kn)
212 {
213 	struct process *pr;
214 
215 	if ((curproc->p_p->ps_flags & PS_PLEDGE) &&
216 	    (curproc->p_p->ps_pledge & PLEDGE_PROC) == 0)
217 		return pledge_fail(curproc, EPERM, PLEDGE_PROC);
218 
219 	if (kn->kn_id > PID_MAX)
220 		return ESRCH;
221 
222 	pr = prfind(kn->kn_id);
223 	if (pr == NULL)
224 		return (ESRCH);
225 
226 	/* exiting processes can't be specified */
227 	if (pr->ps_flags & PS_EXITING)
228 		return (ESRCH);
229 
230 	kn->kn_ptr.p_process = pr;
231 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
232 
233 	/*
234 	 * internal flag indicating registration done by kernel
235 	 */
236 	if (kn->kn_flags & EV_FLAG1) {
237 		kn->kn_data = kn->kn_sdata;		/* ppid */
238 		kn->kn_fflags = NOTE_CHILD;
239 		kn->kn_flags &= ~EV_FLAG1;
240 	}
241 
242 	/* XXX lock the proc here while adding to the list? */
243 	SLIST_INSERT_HEAD(&pr->ps_klist, kn, kn_selnext);
244 
245 	return (0);
246 }
247 
248 /*
249  * The knote may be attached to a different process, which may exit,
250  * leaving nothing for the knote to be attached to.  So when the process
251  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
252  * it will be deleted when read out.  However, as part of the knote deletion,
253  * this routine is called, so a check is needed to avoid actually performing
254  * a detach, because the original process does not exist any more.
255  */
256 void
257 filt_procdetach(struct knote *kn)
258 {
259 	struct process *pr = kn->kn_ptr.p_process;
260 
261 	if (kn->kn_status & KN_DETACHED)
262 		return;
263 
264 	/* XXX locking?  this might modify another process. */
265 	SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
266 }
267 
268 int
269 filt_proc(struct knote *kn, long hint)
270 {
271 	u_int event;
272 
273 	/*
274 	 * mask off extra data
275 	 */
276 	event = (u_int)hint & NOTE_PCTRLMASK;
277 
278 	/*
279 	 * if the user is interested in this event, record it.
280 	 */
281 	if (kn->kn_sfflags & event)
282 		kn->kn_fflags |= event;
283 
284 	/*
285 	 * process is gone, so flag the event as finished and remove it
286 	 * from the process's klist
287 	 */
288 	if (event == NOTE_EXIT) {
289 		struct process *pr = kn->kn_ptr.p_process;
290 
291 		kn->kn_status |= KN_DETACHED;
292 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
293 		kn->kn_data = pr->ps_mainproc->p_xstat;
294 		SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
295 		return (1);
296 	}
297 
298 	/*
299 	 * process forked, and user wants to track the new process,
300 	 * so attach a new knote to it, and immediately report an
301 	 * event with the parent's pid.
302 	 */
303 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
304 		struct kevent kev;
305 		int error;
306 
307 		/*
308 		 * register knote with new process.
309 		 */
310 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
311 		kev.filter = kn->kn_filter;
312 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
313 		kev.fflags = kn->kn_sfflags;
314 		kev.data = kn->kn_id;			/* parent */
315 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
316 		error = kqueue_register(kn->kn_kq, &kev, NULL);
317 		if (error)
318 			kn->kn_fflags |= NOTE_TRACKERR;
319 	}
320 
321 	return (kn->kn_fflags != 0);
322 }
323 
324 static void
325 filt_timer_timeout_add(struct knote *kn)
326 {
327 	struct timeval tv;
328 	int tticks;
329 
330 	tv.tv_sec = kn->kn_sdata / 1000;
331 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
332 	tticks = tvtohz(&tv);
333 	timeout_add(kn->kn_hook, tticks ? tticks : 1);
334 }
335 
336 void
337 filt_timerexpire(void *knx)
338 {
339 	struct knote *kn = knx;
340 
341 	kn->kn_data++;
342 	KNOTE_ACTIVATE(kn);
343 
344 	if ((kn->kn_flags & EV_ONESHOT) == 0)
345 		filt_timer_timeout_add(kn);
346 }
347 
348 
349 /*
350  * data contains amount of time to sleep, in milliseconds
351  */
352 int
353 filt_timerattach(struct knote *kn)
354 {
355 	struct timeout *to;
356 
357 	if (kq_ntimeouts > kq_timeoutmax)
358 		return (ENOMEM);
359 	kq_ntimeouts++;
360 
361 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
362 	to = malloc(sizeof(*to), M_KEVENT, M_WAITOK);
363 	timeout_set(to, filt_timerexpire, kn);
364 	kn->kn_hook = to;
365 	filt_timer_timeout_add(kn);
366 
367 	return (0);
368 }
369 
370 void
371 filt_timerdetach(struct knote *kn)
372 {
373 	struct timeout *to;
374 
375 	to = (struct timeout *)kn->kn_hook;
376 	timeout_del(to);
377 	free(to, M_KEVENT, sizeof(*to));
378 	kq_ntimeouts--;
379 }
380 
381 int
382 filt_timer(struct knote *kn, long hint)
383 {
384 	return (kn->kn_data != 0);
385 }
386 
387 
388 /*
389  * filt_seltrue:
390  *
391  *	This filter "event" routine simulates seltrue().
392  */
393 int
394 filt_seltrue(struct knote *kn, long hint)
395 {
396 
397 	/*
398 	 * We don't know how much data can be read/written,
399 	 * but we know that it *can* be.  This is about as
400 	 * good as select/poll does as well.
401 	 */
402 	kn->kn_data = 0;
403 	return (1);
404 }
405 
406 /*
407  * This provides full kqfilter entry for device switch tables, which
408  * has same effect as filter using filt_seltrue() as filter method.
409  */
410 void
411 filt_seltruedetach(struct knote *kn)
412 {
413 	/* Nothing to do */
414 }
415 
416 const struct filterops seltrue_filtops =
417 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
418 
419 int
420 seltrue_kqfilter(dev_t dev, struct knote *kn)
421 {
422 	switch (kn->kn_filter) {
423 	case EVFILT_READ:
424 	case EVFILT_WRITE:
425 		kn->kn_fop = &seltrue_filtops;
426 		break;
427 	default:
428 		return (EINVAL);
429 	}
430 
431 	/* Nothing more to do */
432 	return (0);
433 }
434 
435 int
436 sys_kqueue(struct proc *p, void *v, register_t *retval)
437 {
438 	struct filedesc *fdp = p->p_fd;
439 	struct kqueue *kq;
440 	struct file *fp;
441 	int fd, error;
442 
443 	fdplock(fdp);
444 	error = falloc(p, 0, &fp, &fd);
445 	fdpunlock(fdp);
446 	if (error)
447 		return (error);
448 	fp->f_flag = FREAD | FWRITE;
449 	fp->f_type = DTYPE_KQUEUE;
450 	fp->f_ops = &kqueueops;
451 	kq = pool_get(&kqueue_pool, PR_WAITOK|PR_ZERO);
452 	TAILQ_INIT(&kq->kq_head);
453 	fp->f_data = kq;
454 	KQREF(kq);
455 	*retval = fd;
456 	if (fdp->fd_knlistsize < 0)
457 		fdp->fd_knlistsize = 0;		/* this process has a kq */
458 	kq->kq_fdp = fdp;
459 	FILE_SET_MATURE(fp, p);
460 	return (0);
461 }
462 
463 int
464 sys_kevent(struct proc *p, void *v, register_t *retval)
465 {
466 	struct filedesc* fdp = p->p_fd;
467 	struct sys_kevent_args /* {
468 		syscallarg(int)	fd;
469 		syscallarg(const struct kevent *) changelist;
470 		syscallarg(int)	nchanges;
471 		syscallarg(struct kevent *) eventlist;
472 		syscallarg(int)	nevents;
473 		syscallarg(const struct timespec *) timeout;
474 	} */ *uap = v;
475 	struct kevent *kevp;
476 	struct kqueue *kq;
477 	struct file *fp;
478 	struct timespec ts;
479 	int i, n, nerrors, error;
480 	struct kevent kev[KQ_NEVENTS];
481 
482 	if ((fp = fd_getfile(fdp, SCARG(uap, fd))) == NULL ||
483 	    (fp->f_type != DTYPE_KQUEUE))
484 		return (EBADF);
485 
486 	FREF(fp);
487 
488 	if (SCARG(uap, timeout) != NULL) {
489 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
490 		if (error)
491 			goto done;
492 #ifdef KTRACE
493 		if (KTRPOINT(p, KTR_STRUCT))
494 			ktrreltimespec(p, &ts);
495 #endif
496 		SCARG(uap, timeout) = &ts;
497 	}
498 
499 	kq = fp->f_data;
500 	nerrors = 0;
501 
502 	while (SCARG(uap, nchanges) > 0) {
503 		n = SCARG(uap, nchanges) > KQ_NEVENTS ?
504 		    KQ_NEVENTS : SCARG(uap, nchanges);
505 		error = copyin(SCARG(uap, changelist), kev,
506 		    n * sizeof(struct kevent));
507 		if (error)
508 			goto done;
509 #ifdef KTRACE
510 		if (KTRPOINT(p, KTR_STRUCT))
511 			ktrevent(p, kev, n);
512 #endif
513 		for (i = 0; i < n; i++) {
514 			kevp = &kev[i];
515 			kevp->flags &= ~EV_SYSFLAGS;
516 			error = kqueue_register(kq, kevp, p);
517 			if (error || (kevp->flags & EV_RECEIPT)) {
518 				if (SCARG(uap, nevents) != 0) {
519 					kevp->flags = EV_ERROR;
520 					kevp->data = error;
521 					copyout(kevp, SCARG(uap, eventlist),
522 					    sizeof(*kevp));
523 					SCARG(uap, eventlist)++;
524 					SCARG(uap, nevents)--;
525 					nerrors++;
526 				} else {
527 					goto done;
528 				}
529 			}
530 		}
531 		SCARG(uap, nchanges) -= n;
532 		SCARG(uap, changelist) += n;
533 	}
534 	if (nerrors) {
535 		*retval = nerrors;
536 		error = 0;
537 		goto done;
538 	}
539 
540 	KQREF(kq);
541 	FRELE(fp, p);
542 	error = kqueue_scan(kq, SCARG(uap, nevents), SCARG(uap, eventlist),
543 	    SCARG(uap, timeout), p, &n);
544 	KQRELE(kq);
545 	*retval = n;
546 	return (error);
547 
548  done:
549 	FRELE(fp, p);
550 	return (error);
551 }
552 
553 int
554 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
555 {
556 	struct filedesc *fdp = kq->kq_fdp;
557 	struct filterops *fops = NULL;
558 	struct file *fp = NULL;
559 	struct knote *kn = NULL;
560 	int s, error = 0;
561 
562 	if (kev->filter < 0) {
563 		if (kev->filter + EVFILT_SYSCOUNT < 0)
564 			return (EINVAL);
565 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
566 	}
567 
568 	if (fops == NULL) {
569 		/*
570 		 * XXX
571 		 * filter attach routine is responsible for ensuring that
572 		 * the identifier can be attached to it.
573 		 */
574 		return (EINVAL);
575 	}
576 
577 	if (fops->f_isfd) {
578 		/* validate descriptor */
579 		if (kev->ident > INT_MAX)
580 			return (EBADF);
581 		if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
582 			return (EBADF);
583 		FREF(fp);
584 
585 		if (kev->ident < fdp->fd_knlistsize) {
586 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link) {
587 				if (kq == kn->kn_kq &&
588 				    kev->filter == kn->kn_filter)
589 					break;
590 			}
591 		}
592 	} else {
593 		if (fdp->fd_knhashmask != 0) {
594 			struct klist *list;
595 
596 			list = &fdp->fd_knhash[
597 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
598 			SLIST_FOREACH(kn, list, kn_link) {
599 				if (kev->ident == kn->kn_id &&
600 				    kq == kn->kn_kq &&
601 				    kev->filter == kn->kn_filter)
602 					break;
603 			}
604 		}
605 	}
606 
607 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
608 		error = ENOENT;
609 		goto done;
610 	}
611 
612 	/*
613 	 * kn now contains the matching knote, or NULL if no match
614 	 */
615 	if (kev->flags & EV_ADD) {
616 
617 		if (kn == NULL) {
618 			kn = knote_alloc();
619 			if (kn == NULL) {
620 				error = ENOMEM;
621 				goto done;
622 			}
623 			kn->kn_fp = fp;
624 			kn->kn_kq = kq;
625 			kn->kn_fop = fops;
626 
627 			/*
628 			 * apply reference count to knote structure, and
629 			 * do not release it at the end of this routine.
630 			 */
631 			fp = NULL;
632 
633 			kn->kn_sfflags = kev->fflags;
634 			kn->kn_sdata = kev->data;
635 			kev->fflags = 0;
636 			kev->data = 0;
637 			kn->kn_kevent = *kev;
638 
639 			knote_attach(kn, fdp);
640 			if ((error = fops->f_attach(kn)) != 0) {
641 				knote_drop(kn, p, fdp);
642 				goto done;
643 			}
644 		} else {
645 			/*
646 			 * The user may change some filter values after the
647 			 * initial EV_ADD, but doing so will not reset any
648 			 * filters which have already been triggered.
649 			 */
650 			kn->kn_sfflags = kev->fflags;
651 			kn->kn_sdata = kev->data;
652 			kn->kn_kevent.udata = kev->udata;
653 		}
654 
655 		s = splhigh();
656 		if (kn->kn_fop->f_event(kn, 0))
657 			KNOTE_ACTIVATE(kn);
658 		splx(s);
659 
660 	} else if (kev->flags & EV_DELETE) {
661 		kn->kn_fop->f_detach(kn);
662 		knote_drop(kn, p, p->p_fd);
663 		goto done;
664 	}
665 
666 	if ((kev->flags & EV_DISABLE) &&
667 	    ((kn->kn_status & KN_DISABLED) == 0)) {
668 		s = splhigh();
669 		kn->kn_status |= KN_DISABLED;
670 		splx(s);
671 	}
672 
673 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
674 		s = splhigh();
675 		kn->kn_status &= ~KN_DISABLED;
676 		if ((kn->kn_status & KN_ACTIVE) &&
677 		    ((kn->kn_status & KN_QUEUED) == 0))
678 			knote_enqueue(kn);
679 		splx(s);
680 	}
681 
682 done:
683 	if (fp != NULL)
684 		FRELE(fp, p);
685 	return (error);
686 }
687 
688 int
689 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent *ulistp,
690 	const struct timespec *tsp, struct proc *p, int *retval)
691 {
692 	struct kevent *kevp;
693 	struct timeval atv, rtv, ttv;
694 	struct knote *kn, marker;
695 	int s, count, timeout, nkev = 0, error = 0;
696 	struct kevent kev[KQ_NEVENTS];
697 
698 	count = maxevents;
699 	if (count == 0)
700 		goto done;
701 
702 	if (tsp != NULL) {
703 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
704 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
705 			/* No timeout, just poll */
706 			timeout = -1;
707 			goto start;
708 		}
709 		if (itimerfix(&atv)) {
710 			error = EINVAL;
711 			goto done;
712 		}
713 
714 		timeout = atv.tv_sec > 24 * 60 * 60 ?
715 		    24 * 60 * 60 * hz : tvtohz(&atv);
716 
717 		getmicrouptime(&rtv);
718 		timeradd(&atv, &rtv, &atv);
719 	} else {
720 		atv.tv_sec = 0;
721 		atv.tv_usec = 0;
722 		timeout = 0;
723 	}
724 	goto start;
725 
726 retry:
727 	if (atv.tv_sec || atv.tv_usec) {
728 		getmicrouptime(&rtv);
729 		if (timercmp(&rtv, &atv, >=))
730 			goto done;
731 		ttv = atv;
732 		timersub(&ttv, &rtv, &ttv);
733 		timeout = ttv.tv_sec > 24 * 60 * 60 ?
734 		    24 * 60 * 60 * hz : tvtohz(&ttv);
735 	}
736 
737 start:
738 	if (kq->kq_state & KQ_DYING) {
739 		error = EBADF;
740 		goto done;
741 	}
742 
743 	kevp = &kev[0];
744 	s = splhigh();
745 	if (kq->kq_count == 0) {
746 		if (timeout < 0) {
747 			error = EWOULDBLOCK;
748 		} else {
749 			kq->kq_state |= KQ_SLEEP;
750 			error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
751 		}
752 		splx(s);
753 		if (error == 0)
754 			goto retry;
755 		/* don't restart after signals... */
756 		if (error == ERESTART)
757 			error = EINTR;
758 		else if (error == EWOULDBLOCK)
759 			error = 0;
760 		goto done;
761 	}
762 
763 	TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
764 	while (count) {
765 		kn = TAILQ_FIRST(&kq->kq_head);
766 		if (kn == &marker) {
767 			TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
768 			splx(s);
769 			if (count == maxevents)
770 				goto retry;
771 			goto done;
772 		}
773 
774 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
775 		kq->kq_count--;
776 
777 		if (kn->kn_status & KN_DISABLED) {
778 			kn->kn_status &= ~KN_QUEUED;
779 			continue;
780 		}
781 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
782 		    kn->kn_fop->f_event(kn, 0) == 0) {
783 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
784 			continue;
785 		}
786 		*kevp = kn->kn_kevent;
787 		kevp++;
788 		nkev++;
789 		if (kn->kn_flags & EV_ONESHOT) {
790 			kn->kn_status &= ~KN_QUEUED;
791 			splx(s);
792 			kn->kn_fop->f_detach(kn);
793 			knote_drop(kn, p, p->p_fd);
794 			s = splhigh();
795 		} else if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
796 			if (kn->kn_flags & EV_CLEAR) {
797 				kn->kn_data = 0;
798 				kn->kn_fflags = 0;
799 			}
800 			if (kn->kn_flags & EV_DISPATCH)
801 				kn->kn_status |= KN_DISABLED;
802 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
803 		} else {
804 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
805 			kq->kq_count++;
806 		}
807 		count--;
808 		if (nkev == KQ_NEVENTS) {
809 			splx(s);
810 #ifdef KTRACE
811 			if (KTRPOINT(p, KTR_STRUCT))
812 				ktrevent(p, kev, nkev);
813 #endif
814 			error = copyout(kev, ulistp,
815 			    sizeof(struct kevent) * nkev);
816 			ulistp += nkev;
817 			nkev = 0;
818 			kevp = &kev[0];
819 			s = splhigh();
820 			if (error)
821 				break;
822 		}
823 	}
824 	TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
825 	splx(s);
826 done:
827 	if (nkev != 0) {
828 #ifdef KTRACE
829 		if (KTRPOINT(p, KTR_STRUCT))
830 			ktrevent(p, kev, nkev);
831 #endif
832 		error = copyout(kev, ulistp,
833 		    sizeof(struct kevent) * nkev);
834 	}
835 	*retval = maxevents - count;
836 	return (error);
837 }
838 
839 /*
840  * XXX
841  * This could be expanded to call kqueue_scan, if desired.
842  */
843 int
844 kqueue_read(struct file *fp, off_t *poff, struct uio *uio, struct ucred *cred)
845 {
846 	return (ENXIO);
847 }
848 
849 int
850 kqueue_write(struct file *fp, off_t *poff, struct uio *uio, struct ucred *cred)
851 
852 {
853 	return (ENXIO);
854 }
855 
856 int
857 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
858 {
859 	return (ENOTTY);
860 }
861 
862 int
863 kqueue_poll(struct file *fp, int events, struct proc *p)
864 {
865 	struct kqueue *kq = (struct kqueue *)fp->f_data;
866 	int revents = 0;
867 	int s = splhigh();
868 
869 	if (events & (POLLIN | POLLRDNORM)) {
870 		if (kq->kq_count) {
871 			revents |= events & (POLLIN | POLLRDNORM);
872 		} else {
873 			selrecord(p, &kq->kq_sel);
874 			kq->kq_state |= KQ_SEL;
875 		}
876 	}
877 	splx(s);
878 	return (revents);
879 }
880 
881 int
882 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
883 {
884 	struct kqueue *kq = fp->f_data;
885 
886 	memset(st, 0, sizeof(*st));
887 	st->st_size = kq->kq_count;
888 	st->st_blksize = sizeof(struct kevent);
889 	st->st_mode = S_IFIFO;
890 	return (0);
891 }
892 
893 int
894 kqueue_close(struct file *fp, struct proc *p)
895 {
896 	struct kqueue *kq = fp->f_data;
897 	struct filedesc *fdp = p->p_fd;
898 	struct knote **knp, *kn, *kn0;
899 	int i;
900 
901 	for (i = 0; i < fdp->fd_knlistsize; i++) {
902 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
903 		kn = *knp;
904 		while (kn != NULL) {
905 			kn0 = SLIST_NEXT(kn, kn_link);
906 			if (kq == kn->kn_kq) {
907 				kn->kn_fop->f_detach(kn);
908 				FRELE(kn->kn_fp, p);
909 				knote_free(kn);
910 				*knp = kn0;
911 			} else {
912 				knp = &SLIST_NEXT(kn, kn_link);
913 			}
914 			kn = kn0;
915 		}
916 	}
917 	if (fdp->fd_knhashmask != 0) {
918 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
919 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
920 			kn = *knp;
921 			while (kn != NULL) {
922 				kn0 = SLIST_NEXT(kn, kn_link);
923 				if (kq == kn->kn_kq) {
924 					kn->kn_fop->f_detach(kn);
925 		/* XXX non-fd release of kn->kn_ptr */
926 					knote_free(kn);
927 					*knp = kn0;
928 				} else {
929 					knp = &SLIST_NEXT(kn, kn_link);
930 				}
931 				kn = kn0;
932 			}
933 		}
934 	}
935 	fp->f_data = NULL;
936 
937 	kq->kq_state |= KQ_DYING;
938 	kqueue_wakeup(kq);
939 	KQRELE(kq);
940 
941 	return (0);
942 }
943 
944 void
945 kqueue_wakeup(struct kqueue *kq)
946 {
947 
948 	if (kq->kq_state & KQ_SLEEP) {
949 		kq->kq_state &= ~KQ_SLEEP;
950 		wakeup(kq);
951 	}
952 	if (kq->kq_state & KQ_SEL) {
953 		kq->kq_state &= ~KQ_SEL;
954 		selwakeup(&kq->kq_sel);
955 	} else
956 		KNOTE(&kq->kq_sel.si_note, 0);
957 }
958 
959 /*
960  * activate one knote.
961  */
962 void
963 knote_activate(struct knote *kn)
964 {
965 	KNOTE_ACTIVATE(kn);
966 }
967 
968 /*
969  * walk down a list of knotes, activating them if their event has triggered.
970  */
971 void
972 knote(struct klist *list, long hint)
973 {
974 	struct knote *kn, *kn0;
975 
976 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, kn0)
977 		if (kn->kn_fop->f_event(kn, hint))
978 			KNOTE_ACTIVATE(kn);
979 }
980 
981 /*
982  * remove all knotes from a specified klist
983  */
984 void
985 knote_remove(struct proc *p, struct klist *list)
986 {
987 	struct knote *kn;
988 
989 	while ((kn = SLIST_FIRST(list)) != NULL) {
990 		kn->kn_fop->f_detach(kn);
991 		knote_drop(kn, p, p->p_fd);
992 	}
993 }
994 
995 /*
996  * remove all knotes referencing a specified fd
997  */
998 void
999 knote_fdclose(struct proc *p, int fd)
1000 {
1001 	struct filedesc *fdp = p->p_fd;
1002 	struct klist *list = &fdp->fd_knlist[fd];
1003 
1004 	knote_remove(p, list);
1005 }
1006 
1007 /*
1008  * handle a process exiting, including the triggering of NOTE_EXIT notes
1009  * XXX this could be more efficient, doing a single pass down the klist
1010  */
1011 void
1012 knote_processexit(struct proc *p)
1013 {
1014 	struct process *pr = p->p_p;
1015 
1016 	KNOTE(&pr->ps_klist, NOTE_EXIT);
1017 
1018 	/* remove other knotes hanging off the process */
1019 	knote_remove(p, &pr->ps_klist);
1020 }
1021 
1022 void
1023 knote_attach(struct knote *kn, struct filedesc *fdp)
1024 {
1025 	struct klist *list;
1026 	int size;
1027 
1028 	if (!kn->kn_fop->f_isfd) {
1029 		if (fdp->fd_knhashmask == 0)
1030 			fdp->fd_knhash = hashinit(KN_HASHSIZE, M_TEMP,
1031 			    M_WAITOK, &fdp->fd_knhashmask);
1032 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1033 		goto done;
1034 	}
1035 
1036 	if (fdp->fd_knlistsize <= kn->kn_id) {
1037 		size = fdp->fd_knlistsize;
1038 		while (size <= kn->kn_id)
1039 			size += KQEXTENT;
1040 		list = mallocarray(size, sizeof(struct klist), M_TEMP,
1041 		    M_WAITOK);
1042 		memcpy(list, fdp->fd_knlist,
1043 		    fdp->fd_knlistsize * sizeof(struct klist));
1044 		memset(&list[fdp->fd_knlistsize], 0,
1045 		    (size - fdp->fd_knlistsize) * sizeof(struct klist));
1046 		free(fdp->fd_knlist, M_TEMP,
1047 		    fdp->fd_knlistsize * sizeof(struct klist));
1048 		fdp->fd_knlistsize = size;
1049 		fdp->fd_knlist = list;
1050 	}
1051 	list = &fdp->fd_knlist[kn->kn_id];
1052 done:
1053 	SLIST_INSERT_HEAD(list, kn, kn_link);
1054 	kn->kn_status = 0;
1055 }
1056 
1057 /*
1058  * should be called at spl == 0, since we don't want to hold spl
1059  * while calling FRELE and knote_free.
1060  */
1061 void
1062 knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp)
1063 {
1064 	struct klist *list;
1065 
1066 	if (kn->kn_fop->f_isfd)
1067 		list = &fdp->fd_knlist[kn->kn_id];
1068 	else
1069 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1070 
1071 	SLIST_REMOVE(list, kn, knote, kn_link);
1072 	if (kn->kn_status & KN_QUEUED)
1073 		knote_dequeue(kn);
1074 	if (kn->kn_fop->f_isfd)
1075 		FRELE(kn->kn_fp, p);
1076 	knote_free(kn);
1077 }
1078 
1079 
1080 void
1081 knote_enqueue(struct knote *kn)
1082 {
1083 	struct kqueue *kq = kn->kn_kq;
1084 	int s = splhigh();
1085 
1086 	KASSERT((kn->kn_status & KN_QUEUED) == 0);
1087 
1088 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1089 	kn->kn_status |= KN_QUEUED;
1090 	kq->kq_count++;
1091 	splx(s);
1092 	kqueue_wakeup(kq);
1093 }
1094 
1095 void
1096 knote_dequeue(struct knote *kn)
1097 {
1098 	struct kqueue *kq = kn->kn_kq;
1099 	int s = splhigh();
1100 
1101 	KASSERT(kn->kn_status & KN_QUEUED);
1102 
1103 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1104 	kn->kn_status &= ~KN_QUEUED;
1105 	kq->kq_count--;
1106 	splx(s);
1107 }
1108 
1109 void
1110 klist_invalidate(struct klist *list)
1111 {
1112 	struct knote *kn;
1113 
1114 	SLIST_FOREACH(kn, list, kn_selnext) {
1115 		kn->kn_status |= KN_DETACHED;
1116 		kn->kn_flags |= EV_EOF | EV_ONESHOT;
1117 	}
1118 }
1119