xref: /openbsd-src/sys/kern/kern_event.c (revision 4c1e55dc91edd6e69ccc60ce855900fbc12cf34f)
1 /*	$OpenBSD: kern_event.c,v 1.48 2012/07/08 17:21:08 guenther Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/kern/kern_event.c,v 1.22 2001/02/23 20:32:42 jlemon Exp $
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/proc.h>
35 #include <sys/malloc.h>
36 #include <sys/unistd.h>
37 #include <sys/file.h>
38 #include <sys/filedesc.h>
39 #include <sys/fcntl.h>
40 #include <sys/selinfo.h>
41 #include <sys/queue.h>
42 #include <sys/event.h>
43 #include <sys/eventvar.h>
44 #include <sys/ktrace.h>
45 #include <sys/pool.h>
46 #include <sys/protosw.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/stat.h>
50 #include <sys/uio.h>
51 #include <sys/mount.h>
52 #include <sys/poll.h>
53 #include <sys/syscallargs.h>
54 #include <sys/timeout.h>
55 
56 int	kqueue_scan(struct kqueue *kq, int maxevents,
57 		    struct kevent *ulistp, const struct timespec *timeout,
58 		    struct proc *p, int *retval);
59 
60 int	kqueue_read(struct file *fp, off_t *poff, struct uio *uio,
61 		    struct ucred *cred);
62 int	kqueue_write(struct file *fp, off_t *poff, struct uio *uio,
63 		    struct ucred *cred);
64 int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
65 		    struct proc *p);
66 int	kqueue_poll(struct file *fp, int events, struct proc *p);
67 int	kqueue_kqfilter(struct file *fp, struct knote *kn);
68 int	kqueue_stat(struct file *fp, struct stat *st, struct proc *p);
69 int	kqueue_close(struct file *fp, struct proc *p);
70 void	kqueue_wakeup(struct kqueue *kq);
71 
72 struct fileops kqueueops = {
73 	kqueue_read,
74 	kqueue_write,
75 	kqueue_ioctl,
76 	kqueue_poll,
77 	kqueue_kqfilter,
78 	kqueue_stat,
79 	kqueue_close
80 };
81 
82 void	knote_attach(struct knote *kn, struct filedesc *fdp);
83 void	knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp);
84 void	knote_enqueue(struct knote *kn);
85 void	knote_dequeue(struct knote *kn);
86 #define knote_alloc() ((struct knote *)pool_get(&knote_pool, PR_WAITOK))
87 #define knote_free(kn) pool_put(&knote_pool, (kn))
88 
89 void	filt_kqdetach(struct knote *kn);
90 int	filt_kqueue(struct knote *kn, long hint);
91 int	filt_procattach(struct knote *kn);
92 void	filt_procdetach(struct knote *kn);
93 int	filt_proc(struct knote *kn, long hint);
94 int	filt_fileattach(struct knote *kn);
95 void	filt_timerexpire(void *knx);
96 int	filt_timerattach(struct knote *kn);
97 void	filt_timerdetach(struct knote *kn);
98 int	filt_timer(struct knote *kn, long hint);
99 void	filt_seltruedetach(struct knote *kn);
100 
101 struct filterops kqread_filtops =
102 	{ 1, NULL, filt_kqdetach, filt_kqueue };
103 struct filterops proc_filtops =
104 	{ 0, filt_procattach, filt_procdetach, filt_proc };
105 struct filterops file_filtops =
106 	{ 1, filt_fileattach, NULL, NULL };
107 struct filterops timer_filtops =
108         { 0, filt_timerattach, filt_timerdetach, filt_timer };
109 
110 struct	pool knote_pool;
111 struct	pool kqueue_pool;
112 int kq_ntimeouts = 0;
113 int kq_timeoutmax = (4 * 1024);
114 
115 #define KNOTE_ACTIVATE(kn) do {						\
116 	kn->kn_status |= KN_ACTIVE;					\
117 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
118 		knote_enqueue(kn);					\
119 } while(0)
120 
121 #define	KN_HASHSIZE		64		/* XXX should be tunable */
122 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
123 
124 extern struct filterops sig_filtops;
125 #ifdef notyet
126 extern struct filterops aio_filtops;
127 #endif
128 
129 /*
130  * Table for for all system-defined filters.
131  */
132 struct filterops *sysfilt_ops[] = {
133 	&file_filtops,			/* EVFILT_READ */
134 	&file_filtops,			/* EVFILT_WRITE */
135 	NULL, /*&aio_filtops,*/		/* EVFILT_AIO */
136 	&file_filtops,			/* EVFILT_VNODE */
137 	&proc_filtops,			/* EVFILT_PROC */
138 	&sig_filtops,			/* EVFILT_SIGNAL */
139 	&timer_filtops,			/* EVFILT_TIMER */
140 };
141 
142 void KQREF(struct kqueue *);
143 void KQRELE(struct kqueue *);
144 
145 void
146 KQREF(struct kqueue *kq)
147 {
148 	++kq->kq_refs;
149 }
150 
151 void
152 KQRELE(struct kqueue *kq)
153 {
154 	if (--kq->kq_refs == 0) {
155 		pool_put(&kqueue_pool, kq);
156 	}
157 }
158 
159 void kqueue_init(void);
160 
161 void
162 kqueue_init(void)
163 {
164 
165 	pool_init(&kqueue_pool, sizeof(struct kqueue), 0, 0, 0, "kqueuepl",
166 	    &pool_allocator_nointr);
167 	pool_init(&knote_pool, sizeof(struct knote), 0, 0, 0, "knotepl",
168 	    &pool_allocator_nointr);
169 }
170 
171 int
172 filt_fileattach(struct knote *kn)
173 {
174 	struct file *fp = kn->kn_fp;
175 
176 	return ((*fp->f_ops->fo_kqfilter)(fp, kn));
177 }
178 
179 int
180 kqueue_kqfilter(struct file *fp, struct knote *kn)
181 {
182 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
183 
184 	if (kn->kn_filter != EVFILT_READ)
185 		return (EINVAL);
186 
187 	kn->kn_fop = &kqread_filtops;
188 	SLIST_INSERT_HEAD(&kq->kq_sel.si_note, kn, kn_selnext);
189 	return (0);
190 }
191 
192 void
193 filt_kqdetach(struct knote *kn)
194 {
195 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
196 
197 	SLIST_REMOVE(&kq->kq_sel.si_note, kn, knote, kn_selnext);
198 }
199 
200 /*ARGSUSED*/
201 int
202 filt_kqueue(struct knote *kn, long hint)
203 {
204 	struct kqueue *kq = (struct kqueue *)kn->kn_fp->f_data;
205 
206 	kn->kn_data = kq->kq_count;
207 	return (kn->kn_data > 0);
208 }
209 
210 int
211 filt_procattach(struct knote *kn)
212 {
213 	struct process *pr;
214 
215 	pr = prfind(kn->kn_id);
216 	if (pr == NULL)
217 		return (ESRCH);
218 
219 	/* exiting processes can't be specified */
220 	if (pr->ps_flags & PS_EXITING)
221 		return (ESRCH);
222 
223 	/*
224 	 * Fail if it's not owned by you, or the last exec gave us
225 	 * setuid/setgid privs (unless you're root).
226 	 */
227 	if (pr != curproc->p_p &&
228 	    (pr->ps_cred->p_ruid != curproc->p_cred->p_ruid ||
229 	    (pr->ps_flags & PS_SUGID)) && suser(curproc, 0) != 0)
230 		return (EACCES);
231 
232 	kn->kn_ptr.p_process = pr;
233 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
234 
235 	/*
236 	 * internal flag indicating registration done by kernel
237 	 */
238 	if (kn->kn_flags & EV_FLAG1) {
239 		kn->kn_data = kn->kn_sdata;		/* ppid */
240 		kn->kn_fflags = NOTE_CHILD;
241 		kn->kn_flags &= ~EV_FLAG1;
242 	}
243 
244 	/* XXX lock the proc here while adding to the list? */
245 	SLIST_INSERT_HEAD(&pr->ps_klist, kn, kn_selnext);
246 
247 	return (0);
248 }
249 
250 /*
251  * The knote may be attached to a different process, which may exit,
252  * leaving nothing for the knote to be attached to.  So when the process
253  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
254  * it will be deleted when read out.  However, as part of the knote deletion,
255  * this routine is called, so a check is needed to avoid actually performing
256  * a detach, because the original process does not exist any more.
257  */
258 void
259 filt_procdetach(struct knote *kn)
260 {
261 	struct process *pr = kn->kn_ptr.p_process;
262 
263 	if (kn->kn_status & KN_DETACHED)
264 		return;
265 
266 	/* XXX locking?  this might modify another process. */
267 	SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
268 }
269 
270 int
271 filt_proc(struct knote *kn, long hint)
272 {
273 	u_int event;
274 
275 	/*
276 	 * mask off extra data
277 	 */
278 	event = (u_int)hint & NOTE_PCTRLMASK;
279 
280 	/*
281 	 * if the user is interested in this event, record it.
282 	 */
283 	if (kn->kn_sfflags & event)
284 		kn->kn_fflags |= event;
285 
286 	/*
287 	 * process is gone, so flag the event as finished and remove it
288 	 * from the process's klist
289 	 */
290 	if (event == NOTE_EXIT) {
291 		struct process *pr = kn->kn_ptr.p_process;
292 
293 		kn->kn_status |= KN_DETACHED;
294 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
295 		SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
296 		return (1);
297 	}
298 
299 	/*
300 	 * process forked, and user wants to track the new process,
301 	 * so attach a new knote to it, and immediately report an
302 	 * event with the parent's pid.
303 	 */
304 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
305 		struct kevent kev;
306 		int error;
307 
308 		/*
309 		 * register knote with new process.
310 		 */
311 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
312 		kev.filter = kn->kn_filter;
313 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
314 		kev.fflags = kn->kn_sfflags;
315 		kev.data = kn->kn_id;			/* parent */
316 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
317 		error = kqueue_register(kn->kn_kq, &kev, NULL);
318 		if (error)
319 			kn->kn_fflags |= NOTE_TRACKERR;
320 	}
321 
322 	return (kn->kn_fflags != 0);
323 }
324 
325 void
326 filt_timerexpire(void *knx)
327 {
328 	struct knote *kn = knx;
329 	struct timeval tv;
330 	int tticks;
331 
332 	kn->kn_data++;
333 	KNOTE_ACTIVATE(kn);
334 
335 	if ((kn->kn_flags & EV_ONESHOT) == 0) {
336 		tv.tv_sec = kn->kn_sdata / 1000;
337 		tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
338 		tticks = tvtohz(&tv);
339 		timeout_add((struct timeout *)kn->kn_hook, tticks);
340 	}
341 }
342 
343 
344 /*
345  * data contains amount of time to sleep, in milliseconds
346  */
347 int
348 filt_timerattach(struct knote *kn)
349 {
350 	struct timeout *to;
351 	struct timeval tv;
352 	int tticks;
353 
354 	if (kq_ntimeouts > kq_timeoutmax)
355 		return (ENOMEM);
356 	kq_ntimeouts++;
357 
358 	tv.tv_sec = kn->kn_sdata / 1000;
359 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
360 	tticks = tvtohz(&tv);
361 
362 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
363 	to = malloc(sizeof(*to), M_KEVENT, M_WAITOK);
364 	timeout_set(to, filt_timerexpire, kn);
365 	timeout_add(to, tticks);
366 	kn->kn_hook = to;
367 
368 	return (0);
369 }
370 
371 void
372 filt_timerdetach(struct knote *kn)
373 {
374 	struct timeout *to;
375 
376 	to = (struct timeout *)kn->kn_hook;
377 	timeout_del(to);
378 	free(to, M_KEVENT);
379 	kq_ntimeouts--;
380 }
381 
382 int
383 filt_timer(struct knote *kn, long hint)
384 {
385 	return (kn->kn_data != 0);
386 }
387 
388 
389 /*
390  * filt_seltrue:
391  *
392  *	This filter "event" routine simulates seltrue().
393  */
394 int
395 filt_seltrue(struct knote *kn, long hint)
396 {
397 
398 	/*
399 	 * We don't know how much data can be read/written,
400 	 * but we know that it *can* be.  This is about as
401 	 * good as select/poll does as well.
402 	 */
403 	kn->kn_data = 0;
404 	return (1);
405 }
406 
407 /*
408  * This provides full kqfilter entry for device switch tables, which
409  * has same effect as filter using filt_seltrue() as filter method.
410  */
411 void
412 filt_seltruedetach(struct knote *kn)
413 {
414 	/* Nothing to do */
415 }
416 
417 const struct filterops seltrue_filtops =
418 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
419 
420 int
421 seltrue_kqfilter(dev_t dev, struct knote *kn)
422 {
423 	switch (kn->kn_filter) {
424 	case EVFILT_READ:
425 	case EVFILT_WRITE:
426 		kn->kn_fop = &seltrue_filtops;
427 		break;
428 	default:
429 		return (EINVAL);
430 	}
431 
432 	/* Nothing more to do */
433 	return (0);
434 }
435 
436 int
437 sys_kqueue(struct proc *p, void *v, register_t *retval)
438 {
439 	struct filedesc *fdp = p->p_fd;
440 	struct kqueue *kq;
441 	struct file *fp;
442 	int fd, error;
443 
444 	fdplock(fdp);
445 	error = falloc(p, &fp, &fd);
446 	fdpunlock(fdp);
447 	if (error)
448 		return (error);
449 	fp->f_flag = FREAD | FWRITE;
450 	fp->f_type = DTYPE_KQUEUE;
451 	fp->f_ops = &kqueueops;
452 	kq = pool_get(&kqueue_pool, PR_WAITOK|PR_ZERO);
453 	TAILQ_INIT(&kq->kq_head);
454 	fp->f_data = (caddr_t)kq;
455 	KQREF(kq);
456 	*retval = fd;
457 	if (fdp->fd_knlistsize < 0)
458 		fdp->fd_knlistsize = 0;		/* this process has a kq */
459 	kq->kq_fdp = fdp;
460 	FILE_SET_MATURE(fp, p);
461 	return (0);
462 }
463 
464 int
465 sys_kevent(struct proc *p, void *v, register_t *retval)
466 {
467 	struct filedesc* fdp = p->p_fd;
468 	struct sys_kevent_args /* {
469 		syscallarg(int)	fd;
470 		syscallarg(const struct kevent *) changelist;
471 		syscallarg(int)	nchanges;
472 		syscallarg(struct kevent *) eventlist;
473 		syscallarg(int)	nevents;
474 		syscallarg(const struct timespec *) timeout;
475 	} */ *uap = v;
476 	struct kevent *kevp;
477 	struct kqueue *kq;
478 	struct file *fp;
479 	struct timespec ts;
480 	int i, n, nerrors, error;
481 
482 	if ((fp = fd_getfile(fdp, SCARG(uap, fd))) == NULL ||
483 	    (fp->f_type != DTYPE_KQUEUE))
484 		return (EBADF);
485 
486 	FREF(fp);
487 
488 	if (SCARG(uap, timeout) != NULL) {
489 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
490 		if (error)
491 			goto done;
492 #ifdef KTRACE
493 		if (KTRPOINT(p, KTR_STRUCT))
494 			ktrreltimespec(p, &ts);
495 #endif
496 		SCARG(uap, timeout) = &ts;
497 	}
498 
499 	kq = (struct kqueue *)fp->f_data;
500 	nerrors = 0;
501 
502 	while (SCARG(uap, nchanges) > 0) {
503 		n = SCARG(uap, nchanges) > KQ_NEVENTS
504 			? KQ_NEVENTS : SCARG(uap, nchanges);
505 		error = copyin(SCARG(uap, changelist), kq->kq_kev,
506 		    n * sizeof(struct kevent));
507 		if (error)
508 			goto done;
509 		for (i = 0; i < n; i++) {
510 			kevp = &kq->kq_kev[i];
511 			kevp->flags &= ~EV_SYSFLAGS;
512 			error = kqueue_register(kq, kevp, p);
513 			if (error) {
514 				if (SCARG(uap, nevents) != 0) {
515 					kevp->flags = EV_ERROR;
516 					kevp->data = error;
517 					(void) copyout((caddr_t)kevp,
518 					    (caddr_t)SCARG(uap, eventlist),
519 					    sizeof(*kevp));
520 					SCARG(uap, eventlist)++;
521 					SCARG(uap, nevents)--;
522 					nerrors++;
523 				} else {
524 					goto done;
525 				}
526 			}
527 		}
528 		SCARG(uap, nchanges) -= n;
529 		SCARG(uap, changelist) += n;
530 	}
531 	if (nerrors) {
532 		*retval = nerrors;
533 		error = 0;
534 		goto done;
535 	}
536 
537 	KQREF(kq);
538 	FRELE(fp, p);
539 	error = kqueue_scan(kq, SCARG(uap, nevents), SCARG(uap, eventlist),
540 			    SCARG(uap, timeout), p, &n);
541 	KQRELE(kq);
542 	*retval = n;
543 	return (error);
544 
545  done:
546 	FRELE(fp, p);
547 	return (error);
548 }
549 
550 int
551 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
552 {
553 	struct filedesc *fdp = kq->kq_fdp;
554 	struct filterops *fops = NULL;
555 	struct file *fp = NULL;
556 	struct knote *kn = NULL;
557 	int s, error = 0;
558 
559 	if (kev->filter < 0) {
560 		if (kev->filter + EVFILT_SYSCOUNT < 0)
561 			return (EINVAL);
562 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
563 	}
564 
565 	if (fops == NULL) {
566 		/*
567 		 * XXX
568 		 * filter attach routine is responsible for ensuring that
569 		 * the identifier can be attached to it.
570 		 */
571 		return (EINVAL);
572 	}
573 
574 	if (fops->f_isfd) {
575 		/* validate descriptor */
576 		if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
577 			return (EBADF);
578 		FREF(fp);
579 
580 		if (kev->ident < fdp->fd_knlistsize) {
581 			SLIST_FOREACH(kn, &fdp->fd_knlist[kev->ident], kn_link)
582 				if (kq == kn->kn_kq &&
583 				    kev->filter == kn->kn_filter)
584 					break;
585 		}
586 	} else {
587 		if (fdp->fd_knhashmask != 0) {
588 			struct klist *list;
589 
590 			list = &fdp->fd_knhash[
591 			    KN_HASH((u_long)kev->ident, fdp->fd_knhashmask)];
592 			SLIST_FOREACH(kn, list, kn_link)
593 				if (kev->ident == kn->kn_id &&
594 				    kq == kn->kn_kq &&
595 				    kev->filter == kn->kn_filter)
596 					break;
597 		}
598 	}
599 
600 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
601 		error = ENOENT;
602 		goto done;
603 	}
604 
605 	/*
606 	 * kn now contains the matching knote, or NULL if no match
607 	 */
608 	if (kev->flags & EV_ADD) {
609 
610 		if (kn == NULL) {
611 			kn = knote_alloc();
612 			if (kn == NULL) {
613 				error = ENOMEM;
614 				goto done;
615 			}
616 			kn->kn_fp = fp;
617 			kn->kn_kq = kq;
618 			kn->kn_fop = fops;
619 
620 			/*
621 			 * apply reference count to knote structure, and
622 			 * do not release it at the end of this routine.
623 			 */
624 			fp = NULL;
625 
626 			kn->kn_sfflags = kev->fflags;
627 			kn->kn_sdata = kev->data;
628 			kev->fflags = 0;
629 			kev->data = 0;
630 			kn->kn_kevent = *kev;
631 
632 			knote_attach(kn, fdp);
633 			if ((error = fops->f_attach(kn)) != 0) {
634 				knote_drop(kn, p, fdp);
635 				goto done;
636 			}
637 		} else {
638 			/*
639 			 * The user may change some filter values after the
640 			 * initial EV_ADD, but doing so will not reset any
641 			 * filters which have already been triggered.
642 			 */
643 			kn->kn_sfflags = kev->fflags;
644 			kn->kn_sdata = kev->data;
645 			kn->kn_kevent.udata = kev->udata;
646 		}
647 
648 		s = splhigh();
649 		if (kn->kn_fop->f_event(kn, 0))
650 			KNOTE_ACTIVATE(kn);
651 		splx(s);
652 
653 	} else if (kev->flags & EV_DELETE) {
654 		kn->kn_fop->f_detach(kn);
655 		knote_drop(kn, p, p->p_fd);
656 		goto done;
657 	}
658 
659 	if ((kev->flags & EV_DISABLE) &&
660 	    ((kn->kn_status & KN_DISABLED) == 0)) {
661 		s = splhigh();
662 		kn->kn_status |= KN_DISABLED;
663 		splx(s);
664 	}
665 
666 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
667 		s = splhigh();
668 		kn->kn_status &= ~KN_DISABLED;
669 		if ((kn->kn_status & KN_ACTIVE) &&
670 		    ((kn->kn_status & KN_QUEUED) == 0))
671 			knote_enqueue(kn);
672 		splx(s);
673 	}
674 
675 done:
676 	if (fp != NULL)
677 		FRELE(fp, p);
678 	return (error);
679 }
680 
681 int
682 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent *ulistp,
683 	const struct timespec *tsp, struct proc *p, int *retval)
684 {
685 	struct kevent *kevp;
686 	struct timeval atv, rtv, ttv;
687 	struct knote *kn, marker;
688 	int s, count, timeout, nkev = 0, error = 0;
689 
690 	count = maxevents;
691 	if (count == 0)
692 		goto done;
693 
694 	if (tsp != NULL) {
695 		TIMESPEC_TO_TIMEVAL(&atv, tsp);
696 		if (tsp->tv_sec == 0 && tsp->tv_nsec == 0) {
697 			/* No timeout, just poll */
698 			timeout = -1;
699 			goto start;
700 		}
701 		if (itimerfix(&atv)) {
702 			error = EINVAL;
703 			goto done;
704 		}
705 
706 		timeout = atv.tv_sec > 24 * 60 * 60 ?
707 			24 * 60 * 60 * hz : tvtohz(&atv);
708 
709 		getmicrouptime(&rtv);
710 		timeradd(&atv, &rtv, &atv);
711 	} else {
712 		atv.tv_sec = 0;
713 		atv.tv_usec = 0;
714 		timeout = 0;
715 	}
716 	goto start;
717 
718 retry:
719 	if (atv.tv_sec || atv.tv_usec) {
720 		getmicrouptime(&rtv);
721 		if (timercmp(&rtv, &atv, >=))
722 			goto done;
723 		ttv = atv;
724 		timersub(&ttv, &rtv, &ttv);
725 		timeout = ttv.tv_sec > 24 * 60 * 60 ?
726 			24 * 60 * 60 * hz : tvtohz(&ttv);
727 	}
728 
729 start:
730 	if (kq->kq_state & KQ_DYING) {
731 		error = EBADF;
732 		goto done;
733 	}
734 
735 	kevp = kq->kq_kev;
736 	s = splhigh();
737 	if (kq->kq_count == 0) {
738 		if (timeout < 0) {
739 			error = EWOULDBLOCK;
740 		} else {
741 			kq->kq_state |= KQ_SLEEP;
742 			error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
743 		}
744 		splx(s);
745 		if (error == 0)
746 			goto retry;
747 		/* don't restart after signals... */
748 		if (error == ERESTART)
749 			error = EINTR;
750 		else if (error == EWOULDBLOCK)
751 			error = 0;
752 		goto done;
753 	}
754 
755 	TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
756 	while (count) {
757 		kn = TAILQ_FIRST(&kq->kq_head);
758 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
759 		if (kn == &marker) {
760 			splx(s);
761 			if (count == maxevents)
762 				goto retry;
763 			goto done;
764 		}
765 		if (kn->kn_status & KN_DISABLED) {
766 			kn->kn_status &= ~KN_QUEUED;
767 			kq->kq_count--;
768 			continue;
769 		}
770 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
771 		    kn->kn_fop->f_event(kn, 0) == 0) {
772 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
773 			kq->kq_count--;
774 			continue;
775 		}
776 		*kevp = kn->kn_kevent;
777 		kevp++;
778 		nkev++;
779 		if (kn->kn_flags & EV_ONESHOT) {
780 			kn->kn_status &= ~KN_QUEUED;
781 			kq->kq_count--;
782 			splx(s);
783 			kn->kn_fop->f_detach(kn);
784 			knote_drop(kn, p, p->p_fd);
785 			s = splhigh();
786 		} else if (kn->kn_flags & EV_CLEAR) {
787 			kn->kn_data = 0;
788 			kn->kn_fflags = 0;
789 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
790 			kq->kq_count--;
791 		} else {
792 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
793 		}
794 		count--;
795 		if (nkev == KQ_NEVENTS) {
796 			splx(s);
797 			error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
798 			    sizeof(struct kevent) * nkev);
799 			ulistp += nkev;
800 			nkev = 0;
801 			kevp = kq->kq_kev;
802 			s = splhigh();
803 			if (error)
804 				break;
805 		}
806 	}
807 	TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
808 	splx(s);
809 done:
810 	if (nkev != 0)
811 		error = copyout((caddr_t)&kq->kq_kev, (caddr_t)ulistp,
812 		    sizeof(struct kevent) * nkev);
813 	*retval = maxevents - count;
814 	return (error);
815 }
816 
817 /*
818  * XXX
819  * This could be expanded to call kqueue_scan, if desired.
820  */
821 /*ARGSUSED*/
822 int
823 kqueue_read(struct file *fp, off_t *poff, struct uio *uio, struct ucred *cred)
824 {
825 	return (ENXIO);
826 }
827 
828 /*ARGSUSED*/
829 int
830 kqueue_write(struct file *fp, off_t *poff, struct uio *uio, struct ucred *cred)
831 
832 {
833 	return (ENXIO);
834 }
835 
836 /*ARGSUSED*/
837 int
838 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
839 {
840 	return (ENOTTY);
841 }
842 
843 /*ARGSUSED*/
844 int
845 kqueue_poll(struct file *fp, int events, struct proc *p)
846 {
847 	struct kqueue *kq = (struct kqueue *)fp->f_data;
848 	int revents = 0;
849 	int s = splhigh();
850 
851 	if (events & (POLLIN | POLLRDNORM)) {
852 		if (kq->kq_count) {
853 			revents |= events & (POLLIN | POLLRDNORM);
854 		} else {
855 			selrecord(p, &kq->kq_sel);
856 			kq->kq_state |= KQ_SEL;
857 		}
858 	}
859 	splx(s);
860 	return (revents);
861 }
862 
863 /*ARGSUSED*/
864 int
865 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
866 {
867 	struct kqueue *kq = (struct kqueue *)fp->f_data;
868 
869 	bzero((void *)st, sizeof(*st));
870 	st->st_size = kq->kq_count;
871 	st->st_blksize = sizeof(struct kevent);
872 	st->st_mode = S_IFIFO;
873 	return (0);
874 }
875 
876 /*ARGSUSED*/
877 int
878 kqueue_close(struct file *fp, struct proc *p)
879 {
880 	struct kqueue *kq = (struct kqueue *)fp->f_data;
881 	struct filedesc *fdp = p->p_fd;
882 	struct knote **knp, *kn, *kn0;
883 	int i;
884 
885 	for (i = 0; i < fdp->fd_knlistsize; i++) {
886 		knp = &SLIST_FIRST(&fdp->fd_knlist[i]);
887 		kn = *knp;
888 		while (kn != NULL) {
889 			kn0 = SLIST_NEXT(kn, kn_link);
890 			if (kq == kn->kn_kq) {
891 				kn->kn_fop->f_detach(kn);
892 				FRELE(kn->kn_fp, p);
893 				knote_free(kn);
894 				*knp = kn0;
895 			} else {
896 				knp = &SLIST_NEXT(kn, kn_link);
897 			}
898 			kn = kn0;
899 		}
900 	}
901 	if (fdp->fd_knhashmask != 0) {
902 		for (i = 0; i < fdp->fd_knhashmask + 1; i++) {
903 			knp = &SLIST_FIRST(&fdp->fd_knhash[i]);
904 			kn = *knp;
905 			while (kn != NULL) {
906 				kn0 = SLIST_NEXT(kn, kn_link);
907 				if (kq == kn->kn_kq) {
908 					kn->kn_fop->f_detach(kn);
909 		/* XXX non-fd release of kn->kn_ptr */
910 					knote_free(kn);
911 					*knp = kn0;
912 				} else {
913 					knp = &SLIST_NEXT(kn, kn_link);
914 				}
915 				kn = kn0;
916 			}
917 		}
918 	}
919 	fp->f_data = NULL;
920 
921 	kq->kq_state |= KQ_DYING;
922 	kqueue_wakeup(kq);
923 	KQRELE(kq);
924 
925 	return (0);
926 }
927 
928 void
929 kqueue_wakeup(struct kqueue *kq)
930 {
931 
932 	if (kq->kq_state & KQ_SLEEP) {
933 		kq->kq_state &= ~KQ_SLEEP;
934 		wakeup(kq);
935 	}
936 	if (kq->kq_state & KQ_SEL) {
937 		kq->kq_state &= ~KQ_SEL;
938 		selwakeup(&kq->kq_sel);
939 	} else
940 		KNOTE(&kq->kq_sel.si_note, 0);
941 }
942 
943 /*
944  * walk down a list of knotes, activating them if their event has triggered.
945  */
946 void
947 knote(struct klist *list, long hint)
948 {
949 	struct knote *kn;
950 
951 	SLIST_FOREACH(kn, list, kn_selnext)
952 		if (kn->kn_fop->f_event(kn, hint))
953 			KNOTE_ACTIVATE(kn);
954 }
955 
956 /*
957  * remove all knotes from a specified klist
958  */
959 void
960 knote_remove(struct proc *p, struct klist *list)
961 {
962 	struct knote *kn;
963 
964 	while ((kn = SLIST_FIRST(list)) != NULL) {
965 		kn->kn_fop->f_detach(kn);
966 		knote_drop(kn, p, p->p_fd);
967 	}
968 }
969 
970 /*
971  * remove all knotes referencing a specified fd
972  */
973 void
974 knote_fdclose(struct proc *p, int fd)
975 {
976 	struct filedesc *fdp = p->p_fd;
977 	struct klist *list = &fdp->fd_knlist[fd];
978 
979 	knote_remove(p, list);
980 }
981 
982 /*
983  * handle a process exiting, including the triggering of NOTE_EXIT notes
984  * XXX this could be more efficient, doing a single pass down the klist
985  */
986 void
987 knote_processexit(struct process *pr)
988 {
989 	KNOTE(&pr->ps_klist, NOTE_EXIT);
990 
991 	/* remove other knotes hanging off the process */
992 	knote_remove(pr->ps_mainproc, &pr->ps_klist);
993 }
994 
995 void
996 knote_attach(struct knote *kn, struct filedesc *fdp)
997 {
998 	struct klist *list;
999 	int size;
1000 
1001 	if (! kn->kn_fop->f_isfd) {
1002 		if (fdp->fd_knhashmask == 0)
1003 			fdp->fd_knhash = hashinit(KN_HASHSIZE, M_TEMP,
1004 			    M_WAITOK, &fdp->fd_knhashmask);
1005 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1006 		goto done;
1007 	}
1008 
1009 	if (fdp->fd_knlistsize <= kn->kn_id) {
1010 		size = fdp->fd_knlistsize;
1011 		while (size <= kn->kn_id)
1012 			size += KQEXTENT;
1013 		list = malloc(size * sizeof(struct klist *), M_TEMP, M_WAITOK);
1014 		bcopy((caddr_t)fdp->fd_knlist, (caddr_t)list,
1015 		    fdp->fd_knlistsize * sizeof(struct klist *));
1016 		bzero((caddr_t)list +
1017 		    fdp->fd_knlistsize * sizeof(struct klist *),
1018 		    (size - fdp->fd_knlistsize) * sizeof(struct klist *));
1019 		if (fdp->fd_knlist != NULL)
1020 			free(fdp->fd_knlist, M_TEMP);
1021 		fdp->fd_knlistsize = size;
1022 		fdp->fd_knlist = list;
1023 	}
1024 	list = &fdp->fd_knlist[kn->kn_id];
1025 done:
1026 	SLIST_INSERT_HEAD(list, kn, kn_link);
1027 	kn->kn_status = 0;
1028 }
1029 
1030 /*
1031  * should be called at spl == 0, since we don't want to hold spl
1032  * while calling FRELE and knote_free.
1033  */
1034 void
1035 knote_drop(struct knote *kn, struct proc *p, struct filedesc *fdp)
1036 {
1037 	struct klist *list;
1038 
1039 	if (kn->kn_fop->f_isfd)
1040 		list = &fdp->fd_knlist[kn->kn_id];
1041 	else
1042 		list = &fdp->fd_knhash[KN_HASH(kn->kn_id, fdp->fd_knhashmask)];
1043 
1044 	SLIST_REMOVE(list, kn, knote, kn_link);
1045 	if (kn->kn_status & KN_QUEUED)
1046 		knote_dequeue(kn);
1047 	if (kn->kn_fop->f_isfd) {
1048 		FRELE(kn->kn_fp, p);
1049 	}
1050 	knote_free(kn);
1051 }
1052 
1053 
1054 void
1055 knote_enqueue(struct knote *kn)
1056 {
1057 	struct kqueue *kq = kn->kn_kq;
1058 	int s = splhigh();
1059 
1060 	KASSERT((kn->kn_status & KN_QUEUED) == 0);
1061 
1062 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1063 	kn->kn_status |= KN_QUEUED;
1064 	kq->kq_count++;
1065 	splx(s);
1066 	kqueue_wakeup(kq);
1067 }
1068 
1069 void
1070 knote_dequeue(struct knote *kn)
1071 {
1072 	struct kqueue *kq = kn->kn_kq;
1073 	int s = splhigh();
1074 
1075 	KASSERT(kn->kn_status & KN_QUEUED);
1076 
1077 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1078 	kn->kn_status &= ~KN_QUEUED;
1079 	kq->kq_count--;
1080 	splx(s);
1081 }
1082 
1083 void
1084 klist_invalidate(struct klist *list)
1085 {
1086 	struct knote *kn;
1087 
1088 	SLIST_FOREACH(kn, list, kn_selnext) {
1089 		kn->kn_status |= KN_DETACHED;
1090 		kn->kn_flags |= EV_EOF | EV_ONESHOT;
1091 	}
1092 }
1093