xref: /openbsd-src/sys/kern/kern_event.c (revision 4b70baf6e17fc8b27fc1f7fa7929335753fa94c3)
1 /*	$OpenBSD: kern_event.c,v 1.102 2019/05/01 06:22:39 dlg Exp $	*/
2 
3 /*-
4  * Copyright (c) 1999,2000,2001 Jonathan Lemon <jlemon@FreeBSD.org>
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
17  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
20  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  * $FreeBSD: src/sys/kern/kern_event.c,v 1.22 2001/02/23 20:32:42 jlemon Exp $
29  */
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/proc.h>
35 #include <sys/pledge.h>
36 #include <sys/malloc.h>
37 #include <sys/unistd.h>
38 #include <sys/file.h>
39 #include <sys/filedesc.h>
40 #include <sys/fcntl.h>
41 #include <sys/selinfo.h>
42 #include <sys/queue.h>
43 #include <sys/event.h>
44 #include <sys/eventvar.h>
45 #include <sys/ktrace.h>
46 #include <sys/pool.h>
47 #include <sys/protosw.h>
48 #include <sys/socket.h>
49 #include <sys/socketvar.h>
50 #include <sys/stat.h>
51 #include <sys/uio.h>
52 #include <sys/mount.h>
53 #include <sys/poll.h>
54 #include <sys/syscallargs.h>
55 #include <sys/timeout.h>
56 
57 int	kqueue_scan(struct kqueue *kq, int maxevents,
58 		    struct kevent *ulistp, const struct timespec *timeout,
59 		    struct proc *p, int *retval);
60 
61 int	kqueue_read(struct file *, struct uio *, int);
62 int	kqueue_write(struct file *, struct uio *, int);
63 int	kqueue_ioctl(struct file *fp, u_long com, caddr_t data,
64 		    struct proc *p);
65 int	kqueue_poll(struct file *fp, int events, struct proc *p);
66 int	kqueue_kqfilter(struct file *fp, struct knote *kn);
67 int	kqueue_stat(struct file *fp, struct stat *st, struct proc *p);
68 int	kqueue_close(struct file *fp, struct proc *p);
69 void	kqueue_wakeup(struct kqueue *kq);
70 
71 struct fileops kqueueops = {
72 	.fo_read	= kqueue_read,
73 	.fo_write	= kqueue_write,
74 	.fo_ioctl	= kqueue_ioctl,
75 	.fo_poll	= kqueue_poll,
76 	.fo_kqfilter	= kqueue_kqfilter,
77 	.fo_stat	= kqueue_stat,
78 	.fo_close	= kqueue_close
79 };
80 
81 void	knote_attach(struct knote *kn);
82 void	knote_drop(struct knote *kn, struct proc *p);
83 void	knote_enqueue(struct knote *kn);
84 void	knote_dequeue(struct knote *kn);
85 #define knote_alloc() ((struct knote *)pool_get(&knote_pool, PR_WAITOK))
86 #define knote_free(kn) pool_put(&knote_pool, (kn))
87 
88 void	filt_kqdetach(struct knote *kn);
89 int	filt_kqueue(struct knote *kn, long hint);
90 int	filt_procattach(struct knote *kn);
91 void	filt_procdetach(struct knote *kn);
92 int	filt_proc(struct knote *kn, long hint);
93 int	filt_fileattach(struct knote *kn);
94 void	filt_timerexpire(void *knx);
95 int	filt_timerattach(struct knote *kn);
96 void	filt_timerdetach(struct knote *kn);
97 int	filt_timer(struct knote *kn, long hint);
98 void	filt_seltruedetach(struct knote *kn);
99 
100 struct filterops kqread_filtops =
101 	{ 1, NULL, filt_kqdetach, filt_kqueue };
102 struct filterops proc_filtops =
103 	{ 0, filt_procattach, filt_procdetach, filt_proc };
104 struct filterops file_filtops =
105 	{ 1, filt_fileattach, NULL, NULL };
106 struct filterops timer_filtops =
107         { 0, filt_timerattach, filt_timerdetach, filt_timer };
108 
109 struct	pool knote_pool;
110 struct	pool kqueue_pool;
111 int kq_ntimeouts = 0;
112 int kq_timeoutmax = (4 * 1024);
113 
114 #define KNOTE_ACTIVATE(kn) do {						\
115 	kn->kn_status |= KN_ACTIVE;					\
116 	if ((kn->kn_status & (KN_QUEUED | KN_DISABLED)) == 0)		\
117 		knote_enqueue(kn);					\
118 } while(0)
119 
120 #define KN_HASH(val, mask)	(((val) ^ (val >> 8)) & (mask))
121 
122 extern struct filterops sig_filtops;
123 #ifdef notyet
124 extern struct filterops aio_filtops;
125 #endif
126 
127 /*
128  * Table for for all system-defined filters.
129  */
130 struct filterops *sysfilt_ops[] = {
131 	&file_filtops,			/* EVFILT_READ */
132 	&file_filtops,			/* EVFILT_WRITE */
133 	NULL, /*&aio_filtops,*/		/* EVFILT_AIO */
134 	&file_filtops,			/* EVFILT_VNODE */
135 	&proc_filtops,			/* EVFILT_PROC */
136 	&sig_filtops,			/* EVFILT_SIGNAL */
137 	&timer_filtops,			/* EVFILT_TIMER */
138 	&file_filtops,			/* EVFILT_DEVICE */
139 };
140 
141 void KQREF(struct kqueue *);
142 void KQRELE(struct kqueue *);
143 
144 void
145 KQREF(struct kqueue *kq)
146 {
147 	++kq->kq_refs;
148 }
149 
150 void
151 KQRELE(struct kqueue *kq)
152 {
153 	if (--kq->kq_refs > 0)
154 		return;
155 
156 	LIST_REMOVE(kq, kq_next);
157 	free(kq->kq_knlist, M_TEMP, kq->kq_knlistsize * sizeof(struct klist));
158 	hashfree(kq->kq_knhash, KN_HASHSIZE, M_TEMP);
159 	pool_put(&kqueue_pool, kq);
160 }
161 
162 void kqueue_init(void);
163 
164 void
165 kqueue_init(void)
166 {
167 
168 	pool_init(&kqueue_pool, sizeof(struct kqueue), 0, IPL_NONE, PR_WAITOK,
169 	    "kqueuepl", NULL);
170 	pool_init(&knote_pool, sizeof(struct knote), 0, IPL_NONE, PR_WAITOK,
171 	    "knotepl", NULL);
172 }
173 
174 int
175 filt_fileattach(struct knote *kn)
176 {
177 	struct file *fp = kn->kn_fp;
178 
179 	return fp->f_ops->fo_kqfilter(fp, kn);
180 }
181 
182 int
183 kqueue_kqfilter(struct file *fp, struct knote *kn)
184 {
185 	struct kqueue *kq = kn->kn_fp->f_data;
186 
187 	if (kn->kn_filter != EVFILT_READ)
188 		return (EINVAL);
189 
190 	kn->kn_fop = &kqread_filtops;
191 	SLIST_INSERT_HEAD(&kq->kq_sel.si_note, kn, kn_selnext);
192 	return (0);
193 }
194 
195 void
196 filt_kqdetach(struct knote *kn)
197 {
198 	struct kqueue *kq = kn->kn_fp->f_data;
199 
200 	SLIST_REMOVE(&kq->kq_sel.si_note, kn, knote, kn_selnext);
201 }
202 
203 int
204 filt_kqueue(struct knote *kn, long hint)
205 {
206 	struct kqueue *kq = kn->kn_fp->f_data;
207 
208 	kn->kn_data = kq->kq_count;
209 	return (kn->kn_data > 0);
210 }
211 
212 int
213 filt_procattach(struct knote *kn)
214 {
215 	struct process *pr;
216 
217 	if ((curproc->p_p->ps_flags & PS_PLEDGE) &&
218 	    (curproc->p_p->ps_pledge & PLEDGE_PROC) == 0)
219 		return pledge_fail(curproc, EPERM, PLEDGE_PROC);
220 
221 	if (kn->kn_id > PID_MAX)
222 		return ESRCH;
223 
224 	pr = prfind(kn->kn_id);
225 	if (pr == NULL)
226 		return (ESRCH);
227 
228 	/* exiting processes can't be specified */
229 	if (pr->ps_flags & PS_EXITING)
230 		return (ESRCH);
231 
232 	kn->kn_ptr.p_process = pr;
233 	kn->kn_flags |= EV_CLEAR;		/* automatically set */
234 
235 	/*
236 	 * internal flag indicating registration done by kernel
237 	 */
238 	if (kn->kn_flags & EV_FLAG1) {
239 		kn->kn_data = kn->kn_sdata;		/* ppid */
240 		kn->kn_fflags = NOTE_CHILD;
241 		kn->kn_flags &= ~EV_FLAG1;
242 	}
243 
244 	/* XXX lock the proc here while adding to the list? */
245 	SLIST_INSERT_HEAD(&pr->ps_klist, kn, kn_selnext);
246 
247 	return (0);
248 }
249 
250 /*
251  * The knote may be attached to a different process, which may exit,
252  * leaving nothing for the knote to be attached to.  So when the process
253  * exits, the knote is marked as DETACHED and also flagged as ONESHOT so
254  * it will be deleted when read out.  However, as part of the knote deletion,
255  * this routine is called, so a check is needed to avoid actually performing
256  * a detach, because the original process does not exist any more.
257  */
258 void
259 filt_procdetach(struct knote *kn)
260 {
261 	struct process *pr = kn->kn_ptr.p_process;
262 
263 	if (kn->kn_status & KN_DETACHED)
264 		return;
265 
266 	/* XXX locking?  this might modify another process. */
267 	SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
268 }
269 
270 int
271 filt_proc(struct knote *kn, long hint)
272 {
273 	u_int event;
274 
275 	/*
276 	 * mask off extra data
277 	 */
278 	event = (u_int)hint & NOTE_PCTRLMASK;
279 
280 	/*
281 	 * if the user is interested in this event, record it.
282 	 */
283 	if (kn->kn_sfflags & event)
284 		kn->kn_fflags |= event;
285 
286 	/*
287 	 * process is gone, so flag the event as finished and remove it
288 	 * from the process's klist
289 	 */
290 	if (event == NOTE_EXIT) {
291 		struct process *pr = kn->kn_ptr.p_process;
292 
293 		kn->kn_status |= KN_DETACHED;
294 		kn->kn_flags |= (EV_EOF | EV_ONESHOT);
295 		kn->kn_data = pr->ps_mainproc->p_xstat;
296 		SLIST_REMOVE(&pr->ps_klist, kn, knote, kn_selnext);
297 		return (1);
298 	}
299 
300 	/*
301 	 * process forked, and user wants to track the new process,
302 	 * so attach a new knote to it, and immediately report an
303 	 * event with the parent's pid.
304 	 */
305 	if ((event == NOTE_FORK) && (kn->kn_sfflags & NOTE_TRACK)) {
306 		struct kevent kev;
307 		int error;
308 
309 		/*
310 		 * register knote with new process.
311 		 */
312 		memset(&kev, 0, sizeof(kev));
313 		kev.ident = hint & NOTE_PDATAMASK;	/* pid */
314 		kev.filter = kn->kn_filter;
315 		kev.flags = kn->kn_flags | EV_ADD | EV_ENABLE | EV_FLAG1;
316 		kev.fflags = kn->kn_sfflags;
317 		kev.data = kn->kn_id;			/* parent */
318 		kev.udata = kn->kn_kevent.udata;	/* preserve udata */
319 		error = kqueue_register(kn->kn_kq, &kev, NULL);
320 		if (error)
321 			kn->kn_fflags |= NOTE_TRACKERR;
322 	}
323 
324 	return (kn->kn_fflags != 0);
325 }
326 
327 static void
328 filt_timer_timeout_add(struct knote *kn)
329 {
330 	struct timeval tv;
331 	struct timeout *to = kn->kn_hook;
332 	int tticks;
333 
334 	tv.tv_sec = kn->kn_sdata / 1000;
335 	tv.tv_usec = (kn->kn_sdata % 1000) * 1000;
336 	tticks = tvtohz(&tv);
337 	/* Remove extra tick from tvtohz() if timeout has fired before. */
338 	if (timeout_triggered(to))
339 		tticks--;
340 	timeout_add(to, (tticks > 0) ? tticks : 1);
341 }
342 
343 void
344 filt_timerexpire(void *knx)
345 {
346 	struct knote *kn = knx;
347 
348 	kn->kn_data++;
349 	KNOTE_ACTIVATE(kn);
350 
351 	if ((kn->kn_flags & EV_ONESHOT) == 0)
352 		filt_timer_timeout_add(kn);
353 }
354 
355 
356 /*
357  * data contains amount of time to sleep, in milliseconds
358  */
359 int
360 filt_timerattach(struct knote *kn)
361 {
362 	struct timeout *to;
363 
364 	if (kq_ntimeouts > kq_timeoutmax)
365 		return (ENOMEM);
366 	kq_ntimeouts++;
367 
368 	kn->kn_flags |= EV_CLEAR;	/* automatically set */
369 	to = malloc(sizeof(*to), M_KEVENT, M_WAITOK);
370 	timeout_set(to, filt_timerexpire, kn);
371 	kn->kn_hook = to;
372 	filt_timer_timeout_add(kn);
373 
374 	return (0);
375 }
376 
377 void
378 filt_timerdetach(struct knote *kn)
379 {
380 	struct timeout *to;
381 
382 	to = (struct timeout *)kn->kn_hook;
383 	timeout_del(to);
384 	free(to, M_KEVENT, sizeof(*to));
385 	kq_ntimeouts--;
386 }
387 
388 int
389 filt_timer(struct knote *kn, long hint)
390 {
391 	return (kn->kn_data != 0);
392 }
393 
394 
395 /*
396  * filt_seltrue:
397  *
398  *	This filter "event" routine simulates seltrue().
399  */
400 int
401 filt_seltrue(struct knote *kn, long hint)
402 {
403 
404 	/*
405 	 * We don't know how much data can be read/written,
406 	 * but we know that it *can* be.  This is about as
407 	 * good as select/poll does as well.
408 	 */
409 	kn->kn_data = 0;
410 	return (1);
411 }
412 
413 /*
414  * This provides full kqfilter entry for device switch tables, which
415  * has same effect as filter using filt_seltrue() as filter method.
416  */
417 void
418 filt_seltruedetach(struct knote *kn)
419 {
420 	/* Nothing to do */
421 }
422 
423 const struct filterops seltrue_filtops =
424 	{ 1, NULL, filt_seltruedetach, filt_seltrue };
425 
426 int
427 seltrue_kqfilter(dev_t dev, struct knote *kn)
428 {
429 	switch (kn->kn_filter) {
430 	case EVFILT_READ:
431 	case EVFILT_WRITE:
432 		kn->kn_fop = &seltrue_filtops;
433 		break;
434 	default:
435 		return (EINVAL);
436 	}
437 
438 	/* Nothing more to do */
439 	return (0);
440 }
441 
442 int
443 sys_kqueue(struct proc *p, void *v, register_t *retval)
444 {
445 	struct filedesc *fdp = p->p_fd;
446 	struct kqueue *kq;
447 	struct file *fp;
448 	int fd, error;
449 
450 	fdplock(fdp);
451 	error = falloc(p, &fp, &fd);
452 	if (error)
453 		goto out;
454 	fp->f_flag = FREAD | FWRITE;
455 	fp->f_type = DTYPE_KQUEUE;
456 	fp->f_ops = &kqueueops;
457 	kq = pool_get(&kqueue_pool, PR_WAITOK|PR_ZERO);
458 	TAILQ_INIT(&kq->kq_head);
459 	fp->f_data = kq;
460 	KQREF(kq);
461 	*retval = fd;
462 	kq->kq_fdp = fdp;
463 	LIST_INSERT_HEAD(&p->p_p->ps_kqlist, kq, kq_next);
464 	fdinsert(fdp, fd, 0, fp);
465 	FRELE(fp, p);
466 out:
467 	fdpunlock(fdp);
468 	return (error);
469 }
470 
471 int
472 sys_kevent(struct proc *p, void *v, register_t *retval)
473 {
474 	struct filedesc* fdp = p->p_fd;
475 	struct sys_kevent_args /* {
476 		syscallarg(int)	fd;
477 		syscallarg(const struct kevent *) changelist;
478 		syscallarg(int)	nchanges;
479 		syscallarg(struct kevent *) eventlist;
480 		syscallarg(int)	nevents;
481 		syscallarg(const struct timespec *) timeout;
482 	} */ *uap = v;
483 	struct kevent *kevp;
484 	struct kqueue *kq;
485 	struct file *fp;
486 	struct timespec ts;
487 	int i, n, nerrors, error;
488 	struct kevent kev[KQ_NEVENTS];
489 
490 	if ((fp = fd_getfile(fdp, SCARG(uap, fd))) == NULL)
491 		return (EBADF);
492 
493 	if (fp->f_type != DTYPE_KQUEUE) {
494 		error = EBADF;
495 		goto done;
496 	}
497 
498 	if (SCARG(uap, timeout) != NULL) {
499 		error = copyin(SCARG(uap, timeout), &ts, sizeof(ts));
500 		if (error)
501 			goto done;
502 #ifdef KTRACE
503 		if (KTRPOINT(p, KTR_STRUCT))
504 			ktrreltimespec(p, &ts);
505 #endif
506 		SCARG(uap, timeout) = &ts;
507 	}
508 
509 	kq = fp->f_data;
510 	nerrors = 0;
511 
512 	while (SCARG(uap, nchanges) > 0) {
513 		n = SCARG(uap, nchanges) > KQ_NEVENTS ?
514 		    KQ_NEVENTS : SCARG(uap, nchanges);
515 		error = copyin(SCARG(uap, changelist), kev,
516 		    n * sizeof(struct kevent));
517 		if (error)
518 			goto done;
519 #ifdef KTRACE
520 		if (KTRPOINT(p, KTR_STRUCT))
521 			ktrevent(p, kev, n);
522 #endif
523 		for (i = 0; i < n; i++) {
524 			kevp = &kev[i];
525 			kevp->flags &= ~EV_SYSFLAGS;
526 			error = kqueue_register(kq, kevp, p);
527 			if (error || (kevp->flags & EV_RECEIPT)) {
528 				if (SCARG(uap, nevents) != 0) {
529 					kevp->flags = EV_ERROR;
530 					kevp->data = error;
531 					copyout(kevp, SCARG(uap, eventlist),
532 					    sizeof(*kevp));
533 					SCARG(uap, eventlist)++;
534 					SCARG(uap, nevents)--;
535 					nerrors++;
536 				} else {
537 					goto done;
538 				}
539 			}
540 		}
541 		SCARG(uap, nchanges) -= n;
542 		SCARG(uap, changelist) += n;
543 	}
544 	if (nerrors) {
545 		*retval = nerrors;
546 		error = 0;
547 		goto done;
548 	}
549 
550 	KQREF(kq);
551 	FRELE(fp, p);
552 	error = kqueue_scan(kq, SCARG(uap, nevents), SCARG(uap, eventlist),
553 	    SCARG(uap, timeout), p, &n);
554 	KQRELE(kq);
555 	*retval = n;
556 	return (error);
557 
558  done:
559 	FRELE(fp, p);
560 	return (error);
561 }
562 
563 int
564 kqueue_register(struct kqueue *kq, struct kevent *kev, struct proc *p)
565 {
566 	struct filedesc *fdp = kq->kq_fdp;
567 	struct filterops *fops = NULL;
568 	struct file *fp = NULL;
569 	struct knote *kn = NULL;
570 	int s, error = 0;
571 
572 	if (kev->filter < 0) {
573 		if (kev->filter + EVFILT_SYSCOUNT < 0)
574 			return (EINVAL);
575 		fops = sysfilt_ops[~kev->filter];	/* to 0-base index */
576 	}
577 
578 	if (fops == NULL) {
579 		/*
580 		 * XXX
581 		 * filter attach routine is responsible for ensuring that
582 		 * the identifier can be attached to it.
583 		 */
584 		return (EINVAL);
585 	}
586 
587 	if (fops->f_isfd) {
588 		/* validate descriptor */
589 		if (kev->ident > INT_MAX)
590 			return (EBADF);
591 		if ((fp = fd_getfile(fdp, kev->ident)) == NULL)
592 			return (EBADF);
593 
594 		if (kev->ident < kq->kq_knlistsize) {
595 			SLIST_FOREACH(kn, &kq->kq_knlist[kev->ident], kn_link) {
596 				if (kev->filter == kn->kn_filter)
597 					break;
598 			}
599 		}
600 	} else {
601 		if (kq->kq_knhashmask != 0) {
602 			struct klist *list;
603 
604 			list = &kq->kq_knhash[
605 			    KN_HASH((u_long)kev->ident, kq->kq_knhashmask)];
606 			SLIST_FOREACH(kn, list, kn_link) {
607 				if (kev->ident == kn->kn_id &&
608 				    kev->filter == kn->kn_filter)
609 					break;
610 			}
611 		}
612 	}
613 
614 	if (kn == NULL && ((kev->flags & EV_ADD) == 0)) {
615 		error = ENOENT;
616 		goto done;
617 	}
618 
619 	/*
620 	 * kn now contains the matching knote, or NULL if no match
621 	 */
622 	if (kev->flags & EV_ADD) {
623 
624 		if (kn == NULL) {
625 			kn = knote_alloc();
626 			if (kn == NULL) {
627 				error = ENOMEM;
628 				goto done;
629 			}
630 			kn->kn_fp = fp;
631 			kn->kn_kq = kq;
632 			kn->kn_fop = fops;
633 
634 			/*
635 			 * apply reference count to knote structure, and
636 			 * do not release it at the end of this routine.
637 			 */
638 			fp = NULL;
639 
640 			kn->kn_sfflags = kev->fflags;
641 			kn->kn_sdata = kev->data;
642 			kev->fflags = 0;
643 			kev->data = 0;
644 			kn->kn_kevent = *kev;
645 
646 			knote_attach(kn);
647 			if ((error = fops->f_attach(kn)) != 0) {
648 				knote_drop(kn, p);
649 				goto done;
650 			}
651 		} else {
652 			/*
653 			 * The user may change some filter values after the
654 			 * initial EV_ADD, but doing so will not reset any
655 			 * filters which have already been triggered.
656 			 */
657 			kn->kn_sfflags = kev->fflags;
658 			kn->kn_sdata = kev->data;
659 			kn->kn_kevent.udata = kev->udata;
660 		}
661 
662 		s = splhigh();
663 		if (kn->kn_fop->f_event(kn, 0))
664 			KNOTE_ACTIVATE(kn);
665 		splx(s);
666 
667 	} else if (kev->flags & EV_DELETE) {
668 		kn->kn_fop->f_detach(kn);
669 		knote_drop(kn, p);
670 		goto done;
671 	}
672 
673 	if ((kev->flags & EV_DISABLE) &&
674 	    ((kn->kn_status & KN_DISABLED) == 0)) {
675 		s = splhigh();
676 		kn->kn_status |= KN_DISABLED;
677 		splx(s);
678 	}
679 
680 	if ((kev->flags & EV_ENABLE) && (kn->kn_status & KN_DISABLED)) {
681 		s = splhigh();
682 		kn->kn_status &= ~KN_DISABLED;
683 		if (kn->kn_fop->f_event(kn, 0))
684 			kn->kn_status |= KN_ACTIVE;
685 		if ((kn->kn_status & KN_ACTIVE) &&
686 		    ((kn->kn_status & KN_QUEUED) == 0))
687 			knote_enqueue(kn);
688 		splx(s);
689 	}
690 
691 done:
692 	if (fp != NULL)
693 		FRELE(fp, p);
694 	return (error);
695 }
696 
697 int
698 kqueue_scan(struct kqueue *kq, int maxevents, struct kevent *ulistp,
699 	const struct timespec *tsp, struct proc *p, int *retval)
700 {
701 	struct kevent *kevp;
702 	struct timespec ats, rts, tts;
703 	struct knote *kn, marker;
704 	int s, count, timeout, nkev = 0, error = 0;
705 	struct kevent kev[KQ_NEVENTS];
706 
707 	count = maxevents;
708 	if (count == 0)
709 		goto done;
710 
711 	if (tsp != NULL) {
712 		ats = *tsp;
713 		if (!timespecisset(&ats)) {
714 			/* No timeout, just poll */
715 			timeout = -1;
716 			goto start;
717 		}
718 		if (timespecfix(&ats)) {
719 			error = EINVAL;
720 			goto done;
721 		}
722 
723 		timeout = ats.tv_sec > 24 * 60 * 60 ?
724 		    24 * 60 * 60 * hz : tstohz(&ats);
725 
726 		getnanouptime(&rts);
727 		timespecadd(&ats, &rts, &ats);
728 	} else {
729 		timespecclear(&ats);
730 		timeout = 0;
731 	}
732 	goto start;
733 
734 retry:
735 	if (timespecisset(&ats)) {
736 		getnanouptime(&rts);
737 		if (timespeccmp(&rts, &ats, >=))
738 			goto done;
739 		tts = ats;
740 		timespecsub(&tts, &rts, &tts);
741 		timeout = tts.tv_sec > 24 * 60 * 60 ?
742 		    24 * 60 * 60 * hz : tstohz(&tts);
743 	}
744 
745 start:
746 	if (kq->kq_state & KQ_DYING) {
747 		error = EBADF;
748 		goto done;
749 	}
750 
751 	kevp = &kev[0];
752 	s = splhigh();
753 	if (kq->kq_count == 0) {
754 		if (timeout < 0) {
755 			error = EWOULDBLOCK;
756 		} else {
757 			kq->kq_state |= KQ_SLEEP;
758 			error = tsleep(kq, PSOCK | PCATCH, "kqread", timeout);
759 		}
760 		splx(s);
761 		if (error == 0)
762 			goto retry;
763 		/* don't restart after signals... */
764 		if (error == ERESTART)
765 			error = EINTR;
766 		else if (error == EWOULDBLOCK)
767 			error = 0;
768 		goto done;
769 	}
770 
771 	TAILQ_INSERT_TAIL(&kq->kq_head, &marker, kn_tqe);
772 	while (count) {
773 		kn = TAILQ_FIRST(&kq->kq_head);
774 		if (kn == &marker) {
775 			TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
776 			splx(s);
777 			if (count == maxevents)
778 				goto retry;
779 			goto done;
780 		}
781 
782 		TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
783 		kq->kq_count--;
784 
785 		if (kn->kn_status & KN_DISABLED) {
786 			kn->kn_status &= ~KN_QUEUED;
787 			continue;
788 		}
789 		if ((kn->kn_flags & EV_ONESHOT) == 0 &&
790 		    kn->kn_fop->f_event(kn, 0) == 0) {
791 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
792 			continue;
793 		}
794 		*kevp = kn->kn_kevent;
795 		kevp++;
796 		nkev++;
797 		if (kn->kn_flags & EV_ONESHOT) {
798 			kn->kn_status &= ~KN_QUEUED;
799 			splx(s);
800 			kn->kn_fop->f_detach(kn);
801 			knote_drop(kn, p);
802 			s = splhigh();
803 		} else if (kn->kn_flags & (EV_CLEAR | EV_DISPATCH)) {
804 			if (kn->kn_flags & EV_CLEAR) {
805 				kn->kn_data = 0;
806 				kn->kn_fflags = 0;
807 			}
808 			if (kn->kn_flags & EV_DISPATCH)
809 				kn->kn_status |= KN_DISABLED;
810 			kn->kn_status &= ~(KN_QUEUED | KN_ACTIVE);
811 		} else {
812 			TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
813 			kq->kq_count++;
814 		}
815 		count--;
816 		if (nkev == KQ_NEVENTS) {
817 			splx(s);
818 #ifdef KTRACE
819 			if (KTRPOINT(p, KTR_STRUCT))
820 				ktrevent(p, kev, nkev);
821 #endif
822 			error = copyout(kev, ulistp,
823 			    sizeof(struct kevent) * nkev);
824 			ulistp += nkev;
825 			nkev = 0;
826 			kevp = &kev[0];
827 			s = splhigh();
828 			if (error)
829 				break;
830 		}
831 	}
832 	TAILQ_REMOVE(&kq->kq_head, &marker, kn_tqe);
833 	splx(s);
834 done:
835 	if (nkev != 0) {
836 #ifdef KTRACE
837 		if (KTRPOINT(p, KTR_STRUCT))
838 			ktrevent(p, kev, nkev);
839 #endif
840 		error = copyout(kev, ulistp,
841 		    sizeof(struct kevent) * nkev);
842 	}
843 	*retval = maxevents - count;
844 	return (error);
845 }
846 
847 /*
848  * XXX
849  * This could be expanded to call kqueue_scan, if desired.
850  */
851 int
852 kqueue_read(struct file *fp, struct uio *uio, int fflags)
853 {
854 	return (ENXIO);
855 }
856 
857 int
858 kqueue_write(struct file *fp, struct uio *uio, int fflags)
859 {
860 	return (ENXIO);
861 }
862 
863 int
864 kqueue_ioctl(struct file *fp, u_long com, caddr_t data, struct proc *p)
865 {
866 	return (ENOTTY);
867 }
868 
869 int
870 kqueue_poll(struct file *fp, int events, struct proc *p)
871 {
872 	struct kqueue *kq = (struct kqueue *)fp->f_data;
873 	int revents = 0;
874 	int s = splhigh();
875 
876 	if (events & (POLLIN | POLLRDNORM)) {
877 		if (kq->kq_count) {
878 			revents |= events & (POLLIN | POLLRDNORM);
879 		} else {
880 			selrecord(p, &kq->kq_sel);
881 			kq->kq_state |= KQ_SEL;
882 		}
883 	}
884 	splx(s);
885 	return (revents);
886 }
887 
888 int
889 kqueue_stat(struct file *fp, struct stat *st, struct proc *p)
890 {
891 	struct kqueue *kq = fp->f_data;
892 
893 	memset(st, 0, sizeof(*st));
894 	st->st_size = kq->kq_count;
895 	st->st_blksize = sizeof(struct kevent);
896 	st->st_mode = S_IFIFO;
897 	return (0);
898 }
899 
900 int
901 kqueue_close(struct file *fp, struct proc *p)
902 {
903 	struct kqueue *kq = fp->f_data;
904 	int i;
905 
906 	KERNEL_LOCK();
907 
908 	for (i = 0; i < kq->kq_knlistsize; i++)
909 		knote_remove(p, &kq->kq_knlist[i]);
910 	if (kq->kq_knhashmask != 0) {
911 		for (i = 0; i < kq->kq_knhashmask + 1; i++)
912 			knote_remove(p, &kq->kq_knhash[i]);
913 	}
914 	fp->f_data = NULL;
915 
916 	kq->kq_state |= KQ_DYING;
917 	kqueue_wakeup(kq);
918 	KQRELE(kq);
919 
920 	KERNEL_UNLOCK();
921 
922 	return (0);
923 }
924 
925 void
926 kqueue_wakeup(struct kqueue *kq)
927 {
928 
929 	if (kq->kq_state & KQ_SLEEP) {
930 		kq->kq_state &= ~KQ_SLEEP;
931 		wakeup(kq);
932 	}
933 	if (kq->kq_state & KQ_SEL) {
934 		kq->kq_state &= ~KQ_SEL;
935 		selwakeup(&kq->kq_sel);
936 	} else
937 		KNOTE(&kq->kq_sel.si_note, 0);
938 }
939 
940 /*
941  * activate one knote.
942  */
943 void
944 knote_activate(struct knote *kn)
945 {
946 	KNOTE_ACTIVATE(kn);
947 }
948 
949 /*
950  * walk down a list of knotes, activating them if their event has triggered.
951  */
952 void
953 knote(struct klist *list, long hint)
954 {
955 	struct knote *kn, *kn0;
956 
957 	SLIST_FOREACH_SAFE(kn, list, kn_selnext, kn0)
958 		if (kn->kn_fop->f_event(kn, hint))
959 			KNOTE_ACTIVATE(kn);
960 }
961 
962 /*
963  * remove all knotes from a specified klist
964  */
965 void
966 knote_remove(struct proc *p, struct klist *list)
967 {
968 	struct knote *kn;
969 
970 	while ((kn = SLIST_FIRST(list)) != NULL) {
971 		kn->kn_fop->f_detach(kn);
972 		knote_drop(kn, p);
973 	}
974 }
975 
976 /*
977  * remove all knotes referencing a specified fd
978  */
979 void
980 knote_fdclose(struct proc *p, int fd)
981 {
982 	struct kqueue *kq;
983 	struct klist *list;
984 
985 	LIST_FOREACH(kq, &p->p_p->ps_kqlist, kq_next) {
986 		if (fd >= kq->kq_knlistsize)
987 			continue;
988 
989 		list = &kq->kq_knlist[fd];
990 		knote_remove(p, list);
991 	}
992 }
993 
994 /*
995  * handle a process exiting, including the triggering of NOTE_EXIT notes
996  * XXX this could be more efficient, doing a single pass down the klist
997  */
998 void
999 knote_processexit(struct proc *p)
1000 {
1001 	struct process *pr = p->p_p;
1002 
1003 	KNOTE(&pr->ps_klist, NOTE_EXIT);
1004 
1005 	/* remove other knotes hanging off the process */
1006 	knote_remove(p, &pr->ps_klist);
1007 }
1008 
1009 void
1010 knote_attach(struct knote *kn)
1011 {
1012 	struct kqueue *kq = kn->kn_kq;
1013 	struct klist *list;
1014 	int size;
1015 
1016 	if (!kn->kn_fop->f_isfd) {
1017 		if (kq->kq_knhashmask == 0)
1018 			kq->kq_knhash = hashinit(KN_HASHSIZE, M_TEMP,
1019 			    M_WAITOK, &kq->kq_knhashmask);
1020 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1021 		goto done;
1022 	}
1023 
1024 	if (kq->kq_knlistsize <= kn->kn_id) {
1025 		size = kq->kq_knlistsize;
1026 		while (size <= kn->kn_id)
1027 			size += KQEXTENT;
1028 		list = mallocarray(size, sizeof(struct klist), M_TEMP,
1029 		    M_WAITOK);
1030 		memcpy(list, kq->kq_knlist,
1031 		    kq->kq_knlistsize * sizeof(struct klist));
1032 		memset(&list[kq->kq_knlistsize], 0,
1033 		    (size - kq->kq_knlistsize) * sizeof(struct klist));
1034 		free(kq->kq_knlist, M_TEMP,
1035 		    kq->kq_knlistsize * sizeof(struct klist));
1036 		kq->kq_knlistsize = size;
1037 		kq->kq_knlist = list;
1038 	}
1039 	list = &kq->kq_knlist[kn->kn_id];
1040 done:
1041 	SLIST_INSERT_HEAD(list, kn, kn_link);
1042 	kn->kn_status = 0;
1043 }
1044 
1045 /*
1046  * should be called at spl == 0, since we don't want to hold spl
1047  * while calling FRELE and knote_free.
1048  */
1049 void
1050 knote_drop(struct knote *kn, struct proc *p)
1051 {
1052 	struct kqueue *kq = kn->kn_kq;
1053 	struct klist *list;
1054 
1055 	if (kn->kn_fop->f_isfd)
1056 		list = &kq->kq_knlist[kn->kn_id];
1057 	else
1058 		list = &kq->kq_knhash[KN_HASH(kn->kn_id, kq->kq_knhashmask)];
1059 
1060 	SLIST_REMOVE(list, kn, knote, kn_link);
1061 	if (kn->kn_status & KN_QUEUED)
1062 		knote_dequeue(kn);
1063 	if (kn->kn_fop->f_isfd)
1064 		FRELE(kn->kn_fp, p);
1065 	knote_free(kn);
1066 }
1067 
1068 
1069 void
1070 knote_enqueue(struct knote *kn)
1071 {
1072 	struct kqueue *kq = kn->kn_kq;
1073 	int s = splhigh();
1074 
1075 	KASSERT((kn->kn_status & KN_QUEUED) == 0);
1076 	KERNEL_ASSERT_LOCKED();
1077 
1078 	TAILQ_INSERT_TAIL(&kq->kq_head, kn, kn_tqe);
1079 	kn->kn_status |= KN_QUEUED;
1080 	kq->kq_count++;
1081 	splx(s);
1082 	kqueue_wakeup(kq);
1083 }
1084 
1085 void
1086 knote_dequeue(struct knote *kn)
1087 {
1088 	struct kqueue *kq = kn->kn_kq;
1089 	int s = splhigh();
1090 
1091 	KASSERT(kn->kn_status & KN_QUEUED);
1092 	KERNEL_ASSERT_LOCKED();
1093 
1094 	TAILQ_REMOVE(&kq->kq_head, kn, kn_tqe);
1095 	kn->kn_status &= ~KN_QUEUED;
1096 	kq->kq_count--;
1097 	splx(s);
1098 }
1099 
1100 void
1101 klist_invalidate(struct klist *list)
1102 {
1103 	struct knote *kn;
1104 
1105 	SLIST_FOREACH(kn, list, kn_selnext) {
1106 		kn->kn_status |= KN_DETACHED;
1107 		kn->kn_flags |= EV_EOF | EV_ONESHOT;
1108 	}
1109 }
1110