xref: /openbsd-src/sys/kern/kern_clock.c (revision ff0e7be1ebbcc809ea8ad2b6dafe215824da9e46)
1 /*	$OpenBSD: kern_clock.c,v 1.108 2023/04/25 00:58:47 cheloha Exp $	*/
2 /*	$NetBSD: kern_clock.c,v 1.34 1996/06/09 04:51:03 briggs Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/timeout.h>
43 #include <sys/kernel.h>
44 #include <sys/limits.h>
45 #include <sys/proc.h>
46 #include <sys/user.h>
47 #include <sys/resourcevar.h>
48 #include <sys/sysctl.h>
49 #include <sys/sched.h>
50 #include <sys/timetc.h>
51 
52 #if defined(GPROF) || defined(DDBPROF)
53 #include <sys/gmon.h>
54 #endif
55 
56 #include "dt.h"
57 #if NDT > 0
58 #include <dev/dt/dtvar.h>
59 #endif
60 
61 /*
62  * Clock handling routines.
63  *
64  * This code is written to operate with two timers that run independently of
65  * each other.  The main clock, running hz times per second, is used to keep
66  * track of real time.  The second timer handles kernel and user profiling,
67  * and does resource use estimation.  If the second timer is programmable,
68  * it is randomized to avoid aliasing between the two clocks.  For example,
69  * the randomization prevents an adversary from always giving up the cpu
70  * just before its quantum expires.  Otherwise, it would never accumulate
71  * cpu ticks.  The mean frequency of the second timer is stathz.
72  *
73  * If no second timer exists, stathz will be zero; in this case we drive
74  * profiling and statistics off the main clock.  This WILL NOT be accurate;
75  * do not do it unless absolutely necessary.
76  *
77  * The statistics clock may (or may not) be run at a higher rate while
78  * profiling.  This profile clock runs at profhz.  We require that profhz
79  * be an integral multiple of stathz.
80  *
81  * If the statistics clock is running fast, it must be divided by the ratio
82  * profhz/stathz for statistics.  (For profiling, every tick counts.)
83  */
84 
85 int	stathz;
86 int	schedhz;
87 int	profhz;
88 int	profprocs;
89 int	ticks = INT_MAX - (15 * 60 * HZ);
90 static int psdiv, pscnt;		/* prof => stat divider */
91 int	psratio;			/* ratio: prof / stat */
92 
93 volatile unsigned long jiffies = ULONG_MAX - (10 * 60 * HZ);
94 
95 /*
96  * Initialize clock frequencies and start both clocks running.
97  */
98 void
99 initclocks(void)
100 {
101 	/*
102 	 * Set divisors to 1 (normal case) and let the machine-specific
103 	 * code do its bit.
104 	 */
105 	psdiv = pscnt = 1;
106 	cpu_initclocks();
107 
108 	/*
109 	 * Compute profhz/stathz.
110 	 */
111 	psratio = profhz / stathz;
112 
113 	inittimecounter();
114 }
115 
116 /*
117  * hardclock does the accounting needed for ITIMER_PROF and ITIMER_VIRTUAL.
118  * We don't want to send signals with psignal from hardclock because it makes
119  * MULTIPROCESSOR locking very complicated. Instead, to use an idea from
120  * FreeBSD, we set a flag on the thread and when it goes to return to
121  * userspace it signals itself.
122  */
123 
124 /*
125  * The real-time timer, interrupting hz times per second.
126  */
127 void
128 hardclock(struct clockframe *frame)
129 {
130 	struct proc *p;
131 	struct cpu_info *ci = curcpu();
132 
133 	p = curproc;
134 	if (p && ((p->p_flag & (P_SYSTEM | P_WEXIT)) == 0)) {
135 		struct process *pr = p->p_p;
136 
137 		/*
138 		 * Run current process's virtual and profile time, as needed.
139 		 */
140 		if (CLKF_USERMODE(frame) &&
141 		    timespecisset(&pr->ps_timer[ITIMER_VIRTUAL].it_value) &&
142 		    itimerdecr(&pr->ps_timer[ITIMER_VIRTUAL], tick_nsec) == 0) {
143 			atomic_setbits_int(&p->p_flag, P_ALRMPEND);
144 			need_proftick(p);
145 		}
146 		if (timespecisset(&pr->ps_timer[ITIMER_PROF].it_value) &&
147 		    itimerdecr(&pr->ps_timer[ITIMER_PROF], tick_nsec) == 0) {
148 			atomic_setbits_int(&p->p_flag, P_PROFPEND);
149 			need_proftick(p);
150 		}
151 	}
152 
153 	if (--ci->ci_schedstate.spc_rrticks <= 0)
154 		roundrobin(ci);
155 
156 #if NDT > 0
157 	DT_ENTER(profile, NULL);
158 	if (CPU_IS_PRIMARY(ci))
159 		DT_ENTER(interval, NULL);
160 #endif
161 
162 	/*
163 	 * If we are not the primary CPU, we're not allowed to do
164 	 * any more work.
165 	 */
166 	if (CPU_IS_PRIMARY(ci) == 0)
167 		return;
168 
169 	tc_ticktock();
170 	ticks++;
171 	jiffies++;
172 
173 	/*
174 	 * Update the timeout wheel.
175 	 */
176 	timeout_hardclock_update();
177 }
178 
179 /*
180  * Compute number of hz in the specified amount of time.
181  */
182 int
183 tvtohz(const struct timeval *tv)
184 {
185 	unsigned long nticks;
186 	time_t sec;
187 	long usec;
188 
189 	/*
190 	 * If the number of usecs in the whole seconds part of the time
191 	 * fits in a long, then the total number of usecs will
192 	 * fit in an unsigned long.  Compute the total and convert it to
193 	 * ticks, rounding up and adding 1 to allow for the current tick
194 	 * to expire.  Rounding also depends on unsigned long arithmetic
195 	 * to avoid overflow.
196 	 *
197 	 * Otherwise, if the number of ticks in the whole seconds part of
198 	 * the time fits in a long, then convert the parts to
199 	 * ticks separately and add, using similar rounding methods and
200 	 * overflow avoidance.  This method would work in the previous
201 	 * case but it is slightly slower and assumes that hz is integral.
202 	 *
203 	 * Otherwise, round the time down to the maximum
204 	 * representable value.
205 	 *
206 	 * If ints have 32 bits, then the maximum value for any timeout in
207 	 * 10ms ticks is 248 days.
208 	 */
209 	sec = tv->tv_sec;
210 	usec = tv->tv_usec;
211 	if (sec < 0 || (sec == 0 && usec <= 0))
212 		nticks = 0;
213 	else if (sec <= LONG_MAX / 1000000)
214 		nticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
215 		    / tick + 1;
216 	else if (sec <= LONG_MAX / hz)
217 		nticks = sec * hz
218 		    + ((unsigned long)usec + (tick - 1)) / tick + 1;
219 	else
220 		nticks = LONG_MAX;
221 	if (nticks > INT_MAX)
222 		nticks = INT_MAX;
223 	return ((int)nticks);
224 }
225 
226 int
227 tstohz(const struct timespec *ts)
228 {
229 	struct timeval tv;
230 	TIMESPEC_TO_TIMEVAL(&tv, ts);
231 
232 	/* Round up. */
233 	if ((ts->tv_nsec % 1000) != 0) {
234 		tv.tv_usec += 1;
235 		if (tv.tv_usec >= 1000000) {
236 			tv.tv_usec -= 1000000;
237 			tv.tv_sec += 1;
238 		}
239 	}
240 
241 	return (tvtohz(&tv));
242 }
243 
244 /*
245  * Start profiling on a process.
246  *
247  * Kernel profiling passes proc0 which never exits and hence
248  * keeps the profile clock running constantly.
249  */
250 void
251 startprofclock(struct process *pr)
252 {
253 	int s;
254 
255 	if ((pr->ps_flags & PS_PROFIL) == 0) {
256 		atomic_setbits_int(&pr->ps_flags, PS_PROFIL);
257 		if (++profprocs == 1) {
258 			s = splstatclock();
259 			psdiv = pscnt = psratio;
260 			setstatclockrate(profhz);
261 			splx(s);
262 		}
263 	}
264 }
265 
266 /*
267  * Stop profiling on a process.
268  */
269 void
270 stopprofclock(struct process *pr)
271 {
272 	int s;
273 
274 	if (pr->ps_flags & PS_PROFIL) {
275 		atomic_clearbits_int(&pr->ps_flags, PS_PROFIL);
276 		if (--profprocs == 0) {
277 			s = splstatclock();
278 			psdiv = pscnt = 1;
279 			setstatclockrate(stathz);
280 			splx(s);
281 		}
282 	}
283 }
284 
285 /*
286  * Statistics clock.  Grab profile sample, and if divider reaches 0,
287  * do process and kernel statistics.
288  */
289 void
290 statclock(struct clockframe *frame)
291 {
292 #if defined(GPROF) || defined(DDBPROF)
293 	struct gmonparam *g;
294 	u_long i;
295 #endif
296 	struct cpu_info *ci = curcpu();
297 	struct schedstate_percpu *spc = &ci->ci_schedstate;
298 	struct proc *p = curproc;
299 	struct process *pr;
300 
301 	/*
302 	 * Notice changes in divisor frequency, and adjust clock
303 	 * frequency accordingly.
304 	 */
305 	if (spc->spc_psdiv != psdiv) {
306 		spc->spc_psdiv = psdiv;
307 		spc->spc_pscnt = psdiv;
308 		if (psdiv == 1) {
309 			setstatclockrate(stathz);
310 		} else {
311 			setstatclockrate(profhz);
312 		}
313 	}
314 
315 	if (CLKF_USERMODE(frame)) {
316 		pr = p->p_p;
317 		if (pr->ps_flags & PS_PROFIL)
318 			addupc_intr(p, CLKF_PC(frame), 1);
319 		if (--spc->spc_pscnt > 0)
320 			return;
321 		/*
322 		 * Came from user mode; CPU was in user state.
323 		 * If this process is being profiled record the tick.
324 		 */
325 		p->p_uticks++;
326 		if (pr->ps_nice > NZERO)
327 			spc->spc_cp_time[CP_NICE]++;
328 		else
329 			spc->spc_cp_time[CP_USER]++;
330 	} else {
331 #if defined(GPROF) || defined(DDBPROF)
332 		/*
333 		 * Kernel statistics are just like addupc_intr, only easier.
334 		 */
335 		g = ci->ci_gmon;
336 		if (g != NULL && g->state == GMON_PROF_ON) {
337 			i = CLKF_PC(frame) - g->lowpc;
338 			if (i < g->textsize) {
339 				i /= HISTFRACTION * sizeof(*g->kcount);
340 				g->kcount[i]++;
341 			}
342 		}
343 #endif
344 		if (p != NULL && p->p_p->ps_flags & PS_PROFIL)
345 			addupc_intr(p, PROC_PC(p), 1);
346 		if (--spc->spc_pscnt > 0)
347 			return;
348 		/*
349 		 * Came from kernel mode, so we were:
350 		 * - spinning on a lock
351 		 * - handling an interrupt,
352 		 * - doing syscall or trap work on behalf of the current
353 		 *   user process, or
354 		 * - spinning in the idle loop.
355 		 * Whichever it is, charge the time as appropriate.
356 		 * Note that we charge interrupts to the current process,
357 		 * regardless of whether they are ``for'' that process,
358 		 * so that we know how much of its real time was spent
359 		 * in ``non-process'' (i.e., interrupt) work.
360 		 */
361 		if (CLKF_INTR(frame)) {
362 			if (p != NULL)
363 				p->p_iticks++;
364 			spc->spc_cp_time[spc->spc_spinning ?
365 			    CP_SPIN : CP_INTR]++;
366 		} else if (p != NULL && p != spc->spc_idleproc) {
367 			p->p_sticks++;
368 			spc->spc_cp_time[spc->spc_spinning ?
369 			    CP_SPIN : CP_SYS]++;
370 		} else
371 			spc->spc_cp_time[spc->spc_spinning ?
372 			    CP_SPIN : CP_IDLE]++;
373 	}
374 	spc->spc_pscnt = psdiv;
375 
376 	if (p != NULL) {
377 		p->p_cpticks++;
378 		/*
379 		 * If no schedclock is provided, call it here at ~~12-25 Hz;
380 		 * ~~16 Hz is best
381 		 */
382 		if (schedhz == 0) {
383 			if ((++spc->spc_schedticks & 3) == 0)
384 				schedclock(p);
385 		}
386 	}
387 }
388 
389 /*
390  * Return information about system clocks.
391  */
392 int
393 sysctl_clockrate(char *where, size_t *sizep, void *newp)
394 {
395 	struct clockinfo clkinfo;
396 
397 	/*
398 	 * Construct clockinfo structure.
399 	 */
400 	memset(&clkinfo, 0, sizeof clkinfo);
401 	clkinfo.tick = tick;
402 	clkinfo.hz = hz;
403 	clkinfo.profhz = profhz;
404 	clkinfo.stathz = stathz;
405 	return (sysctl_rdstruct(where, sizep, newp, &clkinfo, sizeof(clkinfo)));
406 }
407