1 /* $OpenBSD: kern_clock.c,v 1.13 1996/09/09 04:50:33 tholo Exp $ */ 2 /* $NetBSD: kern_clock.c,v 1.34 1996/06/09 04:51:03 briggs Exp $ */ 3 4 /*- 5 * Copyright (c) 1982, 1986, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 42 */ 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/dkstat.h> 47 #include <sys/callout.h> 48 #include <sys/kernel.h> 49 #include <sys/proc.h> 50 #include <sys/resourcevar.h> 51 #include <sys/signalvar.h> 52 #include <vm/vm.h> 53 #include <sys/sysctl.h> 54 #include <sys/timex.h> 55 56 #include <machine/cpu.h> 57 58 #ifdef GPROF 59 #include <sys/gmon.h> 60 #endif 61 62 /* 63 * Clock handling routines. 64 * 65 * This code is written to operate with two timers that run independently of 66 * each other. The main clock, running hz times per second, is used to keep 67 * track of real time. The second timer handles kernel and user profiling, 68 * and does resource use estimation. If the second timer is programmable, 69 * it is randomized to avoid aliasing between the two clocks. For example, 70 * the randomization prevents an adversary from always giving up the cpu 71 * just before its quantum expires. Otherwise, it would never accumulate 72 * cpu ticks. The mean frequency of the second timer is stathz. 73 * 74 * If no second timer exists, stathz will be zero; in this case we drive 75 * profiling and statistics off the main clock. This WILL NOT be accurate; 76 * do not do it unless absolutely necessary. 77 * 78 * The statistics clock may (or may not) be run at a higher rate while 79 * profiling. This profile clock runs at profhz. We require that profhz 80 * be an integral multiple of stathz. 81 * 82 * If the statistics clock is running fast, it must be divided by the ratio 83 * profhz/stathz for statistics. (For profiling, every tick counts.) 84 */ 85 86 /* 87 * TODO: 88 * allocate more timeout table slots when table overflows. 89 */ 90 91 92 #ifdef NTP /* NTP phase-locked loop in kernel */ 93 /* 94 * Phase/frequency-lock loop (PLL/FLL) definitions 95 * 96 * The following variables are read and set by the ntp_adjtime() system 97 * call. 98 * 99 * time_state shows the state of the system clock, with values defined 100 * in the timex.h header file. 101 * 102 * time_status shows the status of the system clock, with bits defined 103 * in the timex.h header file. 104 * 105 * time_offset is used by the PLL/FLL to adjust the system time in small 106 * increments. 107 * 108 * time_constant determines the bandwidth or "stiffness" of the PLL. 109 * 110 * time_tolerance determines maximum frequency error or tolerance of the 111 * CPU clock oscillator and is a property of the architecture; however, 112 * in principle it could change as result of the presence of external 113 * discipline signals, for instance. 114 * 115 * time_precision is usually equal to the kernel tick variable; however, 116 * in cases where a precision clock counter or external clock is 117 * available, the resolution can be much less than this and depend on 118 * whether the external clock is working or not. 119 * 120 * time_maxerror is initialized by a ntp_adjtime() call and increased by 121 * the kernel once each second to reflect the maximum error bound 122 * growth. 123 * 124 * time_esterror is set and read by the ntp_adjtime() call, but 125 * otherwise not used by the kernel. 126 */ 127 int time_state = TIME_OK; /* clock state */ 128 int time_status = STA_UNSYNC; /* clock status bits */ 129 long time_offset = 0; /* time offset (us) */ 130 long time_constant = 0; /* pll time constant */ 131 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 132 long time_precision; /* clock precision (us) */ 133 long time_maxerror = MAXPHASE; /* maximum error (us) */ 134 long time_esterror = MAXPHASE; /* estimated error (us) */ 135 136 /* 137 * The following variables establish the state of the PLL/FLL and the 138 * residual time and frequency offset of the local clock. The scale 139 * factors are defined in the timex.h header file. 140 * 141 * time_phase and time_freq are the phase increment and the frequency 142 * increment, respectively, of the kernel time variable. 143 * 144 * time_freq is set via ntp_adjtime() from a value stored in a file when 145 * the synchronization daemon is first started. Its value is retrieved 146 * via ntp_adjtime() and written to the file about once per hour by the 147 * daemon. 148 * 149 * time_adj is the adjustment added to the value of tick at each timer 150 * interrupt and is recomputed from time_phase and time_freq at each 151 * seconds rollover. 152 * 153 * time_reftime is the second's portion of the system time at the last 154 * call to ntp_adjtime(). It is used to adjust the time_freq variable 155 * and to increase the time_maxerror as the time since last update 156 * increases. 157 */ 158 long time_phase = 0; /* phase offset (scaled us) */ 159 long time_freq = 0; /* frequency offset (scaled ppm) */ 160 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 161 long time_reftime = 0; /* time at last adjustment (s) */ 162 163 #ifdef PPS_SYNC 164 /* 165 * The following variables are used only if the kernel PPS discipline 166 * code is configured (PPS_SYNC). The scale factors are defined in the 167 * timex.h header file. 168 * 169 * pps_time contains the time at each calibration interval, as read by 170 * microtime(). pps_count counts the seconds of the calibration 171 * interval, the duration of which is nominally pps_shift in powers of 172 * two. 173 * 174 * pps_offset is the time offset produced by the time median filter 175 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 176 * this filter. 177 * 178 * pps_freq is the frequency offset produced by the frequency median 179 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 180 * by this filter. 181 * 182 * pps_usec is latched from a high resolution counter or external clock 183 * at pps_time. Here we want the hardware counter contents only, not the 184 * contents plus the time_tv.usec as usual. 185 * 186 * pps_valid counts the number of seconds since the last PPS update. It 187 * is used as a watchdog timer to disable the PPS discipline should the 188 * PPS signal be lost. 189 * 190 * pps_glitch counts the number of seconds since the beginning of an 191 * offset burst more than tick/2 from current nominal offset. It is used 192 * mainly to suppress error bursts due to priority conflicts between the 193 * PPS interrupt and timer interrupt. 194 * 195 * pps_intcnt counts the calibration intervals for use in the interval- 196 * adaptation algorithm. It's just too complicated for words. 197 */ 198 struct timeval pps_time; /* kernel time at last interval */ 199 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 200 long pps_offset = 0; /* pps time offset (us) */ 201 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 202 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 203 long pps_freq = 0; /* frequency offset (scaled ppm) */ 204 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 205 long pps_usec = 0; /* microsec counter at last interval */ 206 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 207 int pps_glitch = 0; /* pps signal glitch counter */ 208 int pps_count = 0; /* calibration interval counter (s) */ 209 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 210 int pps_intcnt = 0; /* intervals at current duration */ 211 212 /* 213 * PPS signal quality monitors 214 * 215 * pps_jitcnt counts the seconds that have been discarded because the 216 * jitter measured by the time median filter exceeds the limit MAXTIME 217 * (100 us). 218 * 219 * pps_calcnt counts the frequency calibration intervals, which are 220 * variable from 4 s to 256 s. 221 * 222 * pps_errcnt counts the calibration intervals which have been discarded 223 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 224 * calibration interval jitter exceeds two ticks. 225 * 226 * pps_stbcnt counts the calibration intervals that have been discarded 227 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 228 */ 229 long pps_jitcnt = 0; /* jitter limit exceeded */ 230 long pps_calcnt = 0; /* calibration intervals */ 231 long pps_errcnt = 0; /* calibration errors */ 232 long pps_stbcnt = 0; /* stability limit exceeded */ 233 #endif /* PPS_SYNC */ 234 235 #ifdef EXT_CLOCK 236 /* 237 * External clock definitions 238 * 239 * The following definitions and declarations are used only if an 240 * external clock is configured on the system. 241 */ 242 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 243 244 /* 245 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 246 * interrupt and decremented once each second. 247 */ 248 int clock_count = 0; /* CPU clock counter */ 249 250 #ifdef HIGHBALL 251 /* 252 * The clock_offset and clock_cpu variables are used by the HIGHBALL 253 * interface. The clock_offset variable defines the offset between 254 * system time and the HIGBALL counters. The clock_cpu variable contains 255 * the offset between the system clock and the HIGHBALL clock for use in 256 * disciplining the kernel time variable. 257 */ 258 extern struct timeval clock_offset; /* Highball clock offset */ 259 long clock_cpu = 0; /* CPU clock adjust */ 260 #endif /* HIGHBALL */ 261 #endif /* EXT_CLOCK */ 262 #endif /* NTP */ 263 264 265 /* 266 * Bump a timeval by a small number of usec's. 267 */ 268 #define BUMPTIME(t, usec) { \ 269 register volatile struct timeval *tp = (t); \ 270 register long us; \ 271 \ 272 tp->tv_usec = us = tp->tv_usec + (usec); \ 273 if (us >= 1000000) { \ 274 tp->tv_usec = us - 1000000; \ 275 tp->tv_sec++; \ 276 } \ 277 } 278 279 int stathz; 280 int profhz; 281 int profprocs; 282 int ticks; 283 static int psdiv, pscnt; /* prof => stat divider */ 284 int psratio; /* ratio: prof / stat */ 285 int tickfix, tickfixinterval; /* used if tick not really integral */ 286 #ifndef NTP 287 static int tickfixcnt; /* number of ticks since last fix */ 288 #else 289 int fixtick; /* used by NTP for same */ 290 int shifthz; 291 #endif 292 293 volatile struct timeval time; 294 volatile struct timeval mono_time; 295 296 /* 297 * Initialize clock frequencies and start both clocks running. 298 */ 299 void 300 initclocks() 301 { 302 register int i; 303 304 /* 305 * Set divisors to 1 (normal case) and let the machine-specific 306 * code do its bit. 307 */ 308 psdiv = pscnt = 1; 309 cpu_initclocks(); 310 311 /* 312 * Compute profhz/stathz, and fix profhz if needed. 313 */ 314 i = stathz ? stathz : hz; 315 if (profhz == 0) 316 profhz = i; 317 psratio = profhz / i; 318 319 #ifdef NTP 320 if (time_precision == 0) 321 time_precision = tick; 322 323 switch (hz) { 324 case 60: 325 case 64: 326 shifthz = SHIFT_SCALE - 6; 327 break; 328 case 96: 329 case 100: 330 case 128: 331 shifthz = SHIFT_SCALE - 7; 332 break; 333 case 256: 334 shifthz = SHIFT_SCALE - 8; 335 break; 336 case 1024: 337 shifthz = SHIFT_SCALE - 10; 338 break; 339 default: 340 panic("weird hz"); 341 } 342 #endif 343 } 344 345 /* 346 * The real-time timer, interrupting hz times per second. 347 */ 348 void 349 hardclock(frame) 350 register struct clockframe *frame; 351 { 352 register struct callout *p1; 353 register struct proc *p; 354 register int delta, needsoft; 355 extern int tickdelta; 356 extern long timedelta; 357 #ifdef NTP 358 register int time_update; 359 struct timeval newtime; 360 register int ltemp; 361 #endif 362 363 /* 364 * Update real-time timeout queue. 365 * At front of queue are some number of events which are ``due''. 366 * The time to these is <= 0 and if negative represents the 367 * number of ticks which have passed since it was supposed to happen. 368 * The rest of the q elements (times > 0) are events yet to happen, 369 * where the time for each is given as a delta from the previous. 370 * Decrementing just the first of these serves to decrement the time 371 * to all events. 372 */ 373 needsoft = 0; 374 for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) { 375 if (--p1->c_time > 0) 376 break; 377 needsoft = 1; 378 if (p1->c_time == 0) 379 break; 380 } 381 382 p = curproc; 383 if (p) { 384 register struct pstats *pstats; 385 386 /* 387 * Run current process's virtual and profile time, as needed. 388 */ 389 pstats = p->p_stats; 390 if (CLKF_USERMODE(frame) && 391 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 392 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 393 psignal(p, SIGVTALRM); 394 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 395 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 396 psignal(p, SIGPROF); 397 } 398 399 /* 400 * If no separate statistics clock is available, run it from here. 401 */ 402 if (stathz == 0) 403 statclock(frame); 404 405 /* 406 * Increment the time-of-day. The increment is normally just 407 * ``tick''. If the machine is one which has a clock frequency 408 * such that ``hz'' would not divide the second evenly into 409 * milliseconds, a periodic adjustment must be applied. Finally, 410 * if we are still adjusting the time (see adjtime()), 411 * ``tickdelta'' may also be added in. 412 */ 413 ticks++; 414 delta = tick; 415 416 #ifndef NTP 417 if (tickfix) { 418 tickfixcnt++; 419 if (tickfixcnt >= tickfixinterval) { 420 delta += tickfix; 421 tickfixcnt = 0; 422 } 423 } 424 #else 425 newtime = time; 426 #endif /* !NTP */ 427 /* Imprecise 4bsd adjtime() handling */ 428 if (timedelta != 0) { 429 delta = tick + tickdelta; 430 timedelta -= tickdelta; 431 } 432 433 #ifdef notyet 434 microset(); 435 #endif 436 437 #ifndef NTP 438 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 439 #endif 440 BUMPTIME(&mono_time, delta); 441 442 #ifdef NTP 443 time_update = delta; 444 445 /* 446 * Compute the phase adjustment. If the low-order bits 447 * (time_phase) of the update overflow, bump the high-order bits 448 * (time_update). 449 */ 450 time_phase += time_adj; 451 if (time_phase <= -FINEUSEC) { 452 ltemp = -time_phase >> SHIFT_SCALE; 453 time_phase += ltemp << SHIFT_SCALE; 454 time_update -= ltemp; 455 } else if (time_phase >= FINEUSEC) { 456 ltemp = time_phase >> SHIFT_SCALE; 457 time_phase -= ltemp << SHIFT_SCALE; 458 time_update += ltemp; 459 } 460 461 #ifdef HIGHBALL 462 /* 463 * If the HIGHBALL board is installed, we need to adjust the 464 * external clock offset in order to close the hardware feedback 465 * loop. This will adjust the external clock phase and frequency 466 * in small amounts. The additional phase noise and frequency 467 * wander this causes should be minimal. We also need to 468 * discipline the kernel time variable, since the PLL is used to 469 * discipline the external clock. If the Highball board is not 470 * present, we discipline kernel time with the PLL as usual. We 471 * assume that the external clock phase adjustment (time_update) 472 * and kernel phase adjustment (clock_cpu) are less than the 473 * value of tick. 474 */ 475 clock_offset.tv_usec += time_update; 476 if (clock_offset.tv_usec >= 1000000) { 477 clock_offset.tv_sec++; 478 clock_offset.tv_usec -= 1000000; 479 } 480 if (clock_offset.tv_usec < 0) { 481 clock_offset.tv_sec--; 482 clock_offset.tv_usec += 1000000; 483 } 484 newtime.tv_usec += clock_cpu; 485 clock_cpu = 0; 486 #else 487 newtime.tv_usec += time_update; 488 #endif /* HIGHBALL */ 489 490 /* 491 * On rollover of the second the phase adjustment to be used for 492 * the next second is calculated. Also, the maximum error is 493 * increased by the tolerance. If the PPS frequency discipline 494 * code is present, the phase is increased to compensate for the 495 * CPU clock oscillator frequency error. 496 * 497 * On a 32-bit machine and given parameters in the timex.h 498 * header file, the maximum phase adjustment is +-512 ms and 499 * maximum frequency offset is a tad less than) +-512 ppm. On a 500 * 64-bit machine, you shouldn't need to ask. 501 */ 502 if (newtime.tv_usec >= 1000000) { 503 newtime.tv_usec -= 1000000; 504 newtime.tv_sec++; 505 time_maxerror += time_tolerance >> SHIFT_USEC; 506 507 /* 508 * Leap second processing. If in leap-insert state at 509 * the end of the day, the system clock is set back one 510 * second; if in leap-delete state, the system clock is 511 * set ahead one second. The microtime() routine or 512 * external clock driver will insure that reported time 513 * is always monotonic. The ugly divides should be 514 * replaced. 515 */ 516 switch (time_state) { 517 case TIME_OK: 518 if (time_status & STA_INS) 519 time_state = TIME_INS; 520 else if (time_status & STA_DEL) 521 time_state = TIME_DEL; 522 break; 523 524 case TIME_INS: 525 if (newtime.tv_sec % 86400 == 0) { 526 newtime.tv_sec--; 527 time_state = TIME_OOP; 528 } 529 break; 530 531 case TIME_DEL: 532 if ((newtime.tv_sec + 1) % 86400 == 0) { 533 newtime.tv_sec++; 534 time_state = TIME_WAIT; 535 } 536 break; 537 538 case TIME_OOP: 539 time_state = TIME_WAIT; 540 break; 541 542 case TIME_WAIT: 543 if (!(time_status & (STA_INS | STA_DEL))) 544 time_state = TIME_OK; 545 break; 546 } 547 548 /* 549 * Compute the phase adjustment for the next second. In 550 * PLL mode, the offset is reduced by a fixed factor 551 * times the time constant. In FLL mode the offset is 552 * used directly. In either mode, the maximum phase 553 * adjustment for each second is clamped so as to spread 554 * the adjustment over not more than the number of 555 * seconds between updates. 556 */ 557 if (time_offset < 0) { 558 ltemp = -time_offset; 559 if (!(time_status & STA_FLL)) 560 ltemp >>= SHIFT_KG + time_constant; 561 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 562 ltemp = (MAXPHASE / MINSEC) << 563 SHIFT_UPDATE; 564 time_offset += ltemp; 565 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 566 } else if (time_offset > 0) { 567 ltemp = time_offset; 568 if (!(time_status & STA_FLL)) 569 ltemp >>= SHIFT_KG + time_constant; 570 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 571 ltemp = (MAXPHASE / MINSEC) << 572 SHIFT_UPDATE; 573 time_offset -= ltemp; 574 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 575 } else 576 time_adj = 0; 577 578 /* 579 * Compute the frequency estimate and additional phase 580 * adjustment due to frequency error for the next 581 * second. When the PPS signal is engaged, gnaw on the 582 * watchdog counter and update the frequency computed by 583 * the pll and the PPS signal. 584 */ 585 #ifdef PPS_SYNC 586 pps_valid++; 587 if (pps_valid == PPS_VALID) { 588 pps_jitter = MAXTIME; 589 pps_stabil = MAXFREQ; 590 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 591 STA_PPSWANDER | STA_PPSERROR); 592 } 593 ltemp = time_freq + pps_freq; 594 #else 595 ltemp = time_freq; 596 #endif /* PPS_SYNC */ 597 598 if (ltemp < 0) 599 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 600 else 601 time_adj += ltemp >> (SHIFT_USEC - shifthz); 602 time_adj += (long)fixtick << shifthz; 603 604 /* 605 * When the CPU clock oscillator frequency is not a 606 * power of 2 in Hz, shifthz is only an approximate 607 * scale factor. 608 */ 609 switch (hz) { 610 case 96: 611 case 100: 612 /* 613 * In the following code the overall gain is increased 614 * by a factor of 1.25, which results in a residual 615 * error less than 3 percent. 616 */ 617 if (time_adj < 0) 618 time_adj -= -time_adj >> 2; 619 else 620 time_adj += time_adj >> 2; 621 break; 622 case 60: 623 /* 624 * 60 Hz m68k and vaxes have a PLL gain factor of of 625 * 60/64 (15/16) of what it should be. In the following code 626 * the overall gain is increased by a factor of 1.0625, 627 * (17/16) which results in a residual error of just less 628 * than 0.4 percent. 629 */ 630 if (time_adj < 0) 631 time_adj -= -time_adj >> 4; 632 else 633 time_adj += time_adj >> 4; 634 break; 635 } 636 637 #ifdef EXT_CLOCK 638 /* 639 * If an external clock is present, it is necessary to 640 * discipline the kernel time variable anyway, since not 641 * all system components use the microtime() interface. 642 * Here, the time offset between the external clock and 643 * kernel time variable is computed every so often. 644 */ 645 clock_count++; 646 if (clock_count > CLOCK_INTERVAL) { 647 clock_count = 0; 648 microtime(&clock_ext); 649 delta.tv_sec = clock_ext.tv_sec - newtime.tv_sec; 650 delta.tv_usec = clock_ext.tv_usec - newtime.tv_usec; 651 if (delta.tv_usec < 0) 652 delta.tv_sec--; 653 if (delta.tv_usec >= 500000) { 654 delta.tv_usec -= 1000000; 655 delta.tv_sec++; 656 } 657 if (delta.tv_usec < -500000) { 658 delta.tv_usec += 1000000; 659 delta.tv_sec--; 660 } 661 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 662 delta.tv_usec > MAXPHASE) || 663 delta.tv_sec < -1 || (delta.tv_sec == -1 && 664 delta.tv_usec < -MAXPHASE)) { 665 newtime = clock_ext; 666 delta.tv_sec = 0; 667 delta.tv_usec = 0; 668 } 669 #ifdef HIGHBALL 670 clock_cpu = delta.tv_usec; 671 #else /* HIGHBALL */ 672 hardupdate(delta.tv_usec); 673 #endif /* HIGHBALL */ 674 } 675 #endif /* EXT_CLOCK */ 676 } 677 678 #ifdef CPU_CLOCKUPDATE 679 CPU_CLOCKUPDATE(&time, &newtime); 680 #else 681 time = newtime; 682 #endif 683 684 #endif /* NTP */ 685 686 /* 687 * Process callouts at a very low cpu priority, so we don't keep the 688 * relatively high clock interrupt priority any longer than necessary. 689 */ 690 if (needsoft) { 691 if (CLKF_BASEPRI(frame)) { 692 /* 693 * Save the overhead of a software interrupt; 694 * it will happen as soon as we return, so do it now. 695 */ 696 (void)splsoftclock(); 697 softclock(); 698 } else 699 setsoftclock(); 700 } 701 } 702 703 /* 704 * Software (low priority) clock interrupt. 705 * Run periodic events from timeout queue. 706 */ 707 /*ARGSUSED*/ 708 void 709 softclock() 710 { 711 register struct callout *c; 712 register void *arg; 713 register void (*func) __P((void *)); 714 register int s; 715 716 s = splhigh(); 717 while ((c = calltodo.c_next) != NULL && c->c_time <= 0) { 718 func = c->c_func; 719 arg = c->c_arg; 720 calltodo.c_next = c->c_next; 721 c->c_next = callfree; 722 callfree = c; 723 splx(s); 724 (*func)(arg); 725 (void) splhigh(); 726 } 727 splx(s); 728 } 729 730 /* 731 * timeout -- 732 * Execute a function after a specified length of time. 733 * 734 * untimeout -- 735 * Cancel previous timeout function call. 736 * 737 * See AT&T BCI Driver Reference Manual for specification. This 738 * implementation differs from that one in that no identification 739 * value is returned from timeout, rather, the original arguments 740 * to timeout are used to identify entries for untimeout. 741 */ 742 void 743 timeout(ftn, arg, ticks) 744 void (*ftn) __P((void *)); 745 void *arg; 746 register int ticks; 747 { 748 register struct callout *new, *p, *t; 749 register int s; 750 751 if (ticks <= 0) 752 ticks = 1; 753 754 /* Lock out the clock. */ 755 s = splhigh(); 756 757 /* Fill in the next free callout structure. */ 758 if (callfree == NULL) 759 panic("timeout table full"); 760 new = callfree; 761 callfree = new->c_next; 762 new->c_arg = arg; 763 new->c_func = ftn; 764 765 /* 766 * The time for each event is stored as a difference from the time 767 * of the previous event on the queue. Walk the queue, correcting 768 * the ticks argument for queue entries passed. Correct the ticks 769 * value for the queue entry immediately after the insertion point 770 * as well. Watch out for negative c_time values; these represent 771 * overdue events. 772 */ 773 for (p = &calltodo; 774 (t = p->c_next) != NULL && ticks > t->c_time; p = t) 775 if (t->c_time > 0) 776 ticks -= t->c_time; 777 new->c_time = ticks; 778 if (t != NULL) 779 t->c_time -= ticks; 780 781 /* Insert the new entry into the queue. */ 782 p->c_next = new; 783 new->c_next = t; 784 splx(s); 785 } 786 787 void 788 untimeout(ftn, arg) 789 void (*ftn) __P((void *)); 790 void *arg; 791 { 792 register struct callout *p, *t; 793 register int s; 794 795 s = splhigh(); 796 for (p = &calltodo; (t = p->c_next) != NULL; p = t) 797 if (t->c_func == ftn && t->c_arg == arg) { 798 /* Increment next entry's tick count. */ 799 if (t->c_next && t->c_time > 0) 800 t->c_next->c_time += t->c_time; 801 802 /* Move entry from callout queue to callfree queue. */ 803 p->c_next = t->c_next; 804 t->c_next = callfree; 805 callfree = t; 806 break; 807 } 808 splx(s); 809 } 810 811 /* 812 * Compute number of hz until specified time. Used to 813 * compute third argument to timeout() from an absolute time. 814 */ 815 int 816 hzto(tv) 817 struct timeval *tv; 818 { 819 register long ticks, sec; 820 int s; 821 822 /* 823 * If number of microseconds will fit in 32 bit arithmetic, 824 * then compute number of microseconds to time and scale to 825 * ticks. Otherwise just compute number of hz in time, rounding 826 * times greater than representible to maximum value. (We must 827 * compute in microseconds, because hz can be greater than 1000, 828 * and thus tick can be less than one millisecond). 829 * 830 * Delta times less than 14 hours can be computed ``exactly''. 831 * (Note that if hz would yeild a non-integral number of us per 832 * tick, i.e. tickfix is nonzero, timouts can be a tick longer 833 * than they should be.) Maximum value for any timeout in 10ms 834 * ticks is 250 days. 835 */ 836 s = splhigh(); 837 sec = tv->tv_sec - time.tv_sec; 838 if (sec <= 0x7fffffff / 1000000 - 1) 839 ticks = ((tv->tv_sec - time.tv_sec) * 1000000 + 840 (tv->tv_usec - time.tv_usec)) / tick; 841 else if (sec <= 0x7fffffff / hz) 842 ticks = sec * hz; 843 else 844 ticks = 0x7fffffff; 845 splx(s); 846 return (ticks); 847 } 848 849 /* 850 * Start profiling on a process. 851 * 852 * Kernel profiling passes proc0 which never exits and hence 853 * keeps the profile clock running constantly. 854 */ 855 void 856 startprofclock(p) 857 register struct proc *p; 858 { 859 int s; 860 861 if ((p->p_flag & P_PROFIL) == 0) { 862 p->p_flag |= P_PROFIL; 863 if (++profprocs == 1 && stathz != 0) { 864 s = splstatclock(); 865 psdiv = pscnt = psratio; 866 setstatclockrate(profhz); 867 splx(s); 868 } 869 } 870 } 871 872 /* 873 * Stop profiling on a process. 874 */ 875 void 876 stopprofclock(p) 877 register struct proc *p; 878 { 879 int s; 880 881 if (p->p_flag & P_PROFIL) { 882 p->p_flag &= ~P_PROFIL; 883 if (--profprocs == 0 && stathz != 0) { 884 s = splstatclock(); 885 psdiv = pscnt = 1; 886 setstatclockrate(stathz); 887 splx(s); 888 } 889 } 890 } 891 892 /* 893 * Statistics clock. Grab profile sample, and if divider reaches 0, 894 * do process and kernel statistics. 895 */ 896 void 897 statclock(frame) 898 register struct clockframe *frame; 899 { 900 #ifdef GPROF 901 register struct gmonparam *g; 902 #endif 903 register struct proc *p; 904 register int i; 905 906 if (CLKF_USERMODE(frame)) { 907 p = curproc; 908 if (p->p_flag & P_PROFIL) 909 addupc_intr(p, CLKF_PC(frame), 1); 910 if (--pscnt > 0) 911 return; 912 /* 913 * Came from user mode; CPU was in user state. 914 * If this process is being profiled record the tick. 915 */ 916 p->p_uticks++; 917 if (p->p_nice > NZERO) 918 cp_time[CP_NICE]++; 919 else 920 cp_time[CP_USER]++; 921 } else { 922 #ifdef GPROF 923 /* 924 * Kernel statistics are just like addupc_intr, only easier. 925 */ 926 g = &_gmonparam; 927 if (g->state == GMON_PROF_ON) { 928 i = CLKF_PC(frame) - g->lowpc; 929 if (i < g->textsize) { 930 i /= HISTFRACTION * sizeof(*g->kcount); 931 g->kcount[i]++; 932 } 933 } 934 #endif 935 if (--pscnt > 0) 936 return; 937 /* 938 * Came from kernel mode, so we were: 939 * - handling an interrupt, 940 * - doing syscall or trap work on behalf of the current 941 * user process, or 942 * - spinning in the idle loop. 943 * Whichever it is, charge the time as appropriate. 944 * Note that we charge interrupts to the current process, 945 * regardless of whether they are ``for'' that process, 946 * so that we know how much of its real time was spent 947 * in ``non-process'' (i.e., interrupt) work. 948 */ 949 p = curproc; 950 if (CLKF_INTR(frame)) { 951 if (p != NULL) 952 p->p_iticks++; 953 cp_time[CP_INTR]++; 954 } else if (p != NULL) { 955 p->p_sticks++; 956 cp_time[CP_SYS]++; 957 } else 958 cp_time[CP_IDLE]++; 959 } 960 pscnt = psdiv; 961 962 /* 963 * XXX Support old-style instrumentation for now. 964 * 965 * We maintain statistics shown by user-level statistics 966 * programs: the amount of time in each cpu state, and 967 * the amount of time each of DK_NDRIVE ``drives'' is busy. 968 * 969 * XXX should either run linked list of drives, or (better) 970 * grab timestamps in the start & done code. 971 */ 972 for (i = 0; i < DK_NDRIVE; i++) 973 if (dk_busy & (1 << i)) 974 dk_time[i]++; 975 976 /* 977 * We adjust the priority of the current process. The priority of 978 * a process gets worse as it accumulates CPU time. The cpu usage 979 * estimator (p_estcpu) is increased here. The formula for computing 980 * priorities (in kern_synch.c) will compute a different value each 981 * time p_estcpu increases by 4. The cpu usage estimator ramps up 982 * quite quickly when the process is running (linearly), and decays 983 * away exponentially, at a rate which is proportionally slower when 984 * the system is busy. The basic principal is that the system will 985 * 90% forget that the process used a lot of CPU time in 5 * loadav 986 * seconds. This causes the system to favor processes which haven't 987 * run much recently, and to round-robin among other processes. 988 */ 989 if (p != NULL) { 990 p->p_cpticks++; 991 if (++p->p_estcpu == 0) 992 p->p_estcpu--; 993 if ((p->p_estcpu & 3) == 0) { 994 resetpriority(p); 995 if (p->p_priority >= PUSER) 996 p->p_priority = p->p_usrpri; 997 } 998 } 999 } 1000 1001 1002 #ifdef NTP /* NTP phase-locked loop in kernel */ 1003 1004 /* 1005 * hardupdate() - local clock update 1006 * 1007 * This routine is called by ntp_adjtime() to update the local clock 1008 * phase and frequency. The implementation is of an adaptive-parameter, 1009 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 1010 * time and frequency offset estimates for each call. If the kernel PPS 1011 * discipline code is configured (PPS_SYNC), the PPS signal itself 1012 * determines the new time offset, instead of the calling argument. 1013 * Presumably, calls to ntp_adjtime() occur only when the caller 1014 * believes the local clock is valid within some bound (+-128 ms with 1015 * NTP). If the caller's time is far different than the PPS time, an 1016 * argument will ensue, and it's not clear who will lose. 1017 * 1018 * For uncompensated quartz crystal oscillatores and nominal update 1019 * intervals less than 1024 s, operation should be in phase-lock mode 1020 * (STA_FLL = 0), where the loop is disciplined to phase. For update 1021 * intervals greater than thiss, operation should be in frequency-lock 1022 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 1023 * 1024 * Note: splclock() is in effect. 1025 */ 1026 void 1027 hardupdate(offset) 1028 long offset; 1029 { 1030 long ltemp, mtemp; 1031 1032 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 1033 return; 1034 ltemp = offset; 1035 #ifdef PPS_SYNC 1036 if (time_status & STA_PPSTIME && time_status & STA_PPSSIGNAL) 1037 ltemp = pps_offset; 1038 #endif /* PPS_SYNC */ 1039 1040 /* 1041 * Scale the phase adjustment and clamp to the operating range. 1042 */ 1043 if (ltemp > MAXPHASE) 1044 time_offset = MAXPHASE << SHIFT_UPDATE; 1045 else if (ltemp < -MAXPHASE) 1046 time_offset = -(MAXPHASE << SHIFT_UPDATE); 1047 else 1048 time_offset = ltemp << SHIFT_UPDATE; 1049 1050 /* 1051 * Select whether the frequency is to be controlled and in which 1052 * mode (PLL or FLL). Clamp to the operating range. Ugly 1053 * multiply/divide should be replaced someday. 1054 */ 1055 if (time_status & STA_FREQHOLD || time_reftime == 0) 1056 time_reftime = time.tv_sec; 1057 mtemp = time.tv_sec - time_reftime; 1058 time_reftime = time.tv_sec; 1059 if (time_status & STA_FLL) { 1060 if (mtemp >= MINSEC) { 1061 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 1062 SHIFT_UPDATE)); 1063 if (ltemp < 0) 1064 time_freq -= -ltemp >> SHIFT_KH; 1065 else 1066 time_freq += ltemp >> SHIFT_KH; 1067 } 1068 } else { 1069 if (mtemp < MAXSEC) { 1070 ltemp *= mtemp; 1071 if (ltemp < 0) 1072 time_freq -= -ltemp >> (time_constant + 1073 time_constant + SHIFT_KF - 1074 SHIFT_USEC); 1075 else 1076 time_freq += ltemp >> (time_constant + 1077 time_constant + SHIFT_KF - 1078 SHIFT_USEC); 1079 } 1080 } 1081 if (time_freq > time_tolerance) 1082 time_freq = time_tolerance; 1083 else if (time_freq < -time_tolerance) 1084 time_freq = -time_tolerance; 1085 } 1086 1087 #ifdef PPS_SYNC 1088 /* 1089 * hardpps() - discipline CPU clock oscillator to external PPS signal 1090 * 1091 * This routine is called at each PPS interrupt in order to discipline 1092 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1093 * and leaves it in a handy spot for the hardclock() routine. It 1094 * integrates successive PPS phase differences and calculates the 1095 * frequency offset. This is used in hardclock() to discipline the CPU 1096 * clock oscillator so that intrinsic frequency error is cancelled out. 1097 * The code requires the caller to capture the time and hardware counter 1098 * value at the on-time PPS signal transition. 1099 * 1100 * Note that, on some Unix systems, this routine runs at an interrupt 1101 * priority level higher than the timer interrupt routine hardclock(). 1102 * Therefore, the variables used are distinct from the hardclock() 1103 * variables, except for certain exceptions: The PPS frequency pps_freq 1104 * and phase pps_offset variables are determined by this routine and 1105 * updated atomically. The time_tolerance variable can be considered a 1106 * constant, since it is infrequently changed, and then only when the 1107 * PPS signal is disabled. The watchdog counter pps_valid is updated 1108 * once per second by hardclock() and is atomically cleared in this 1109 * routine. 1110 */ 1111 void 1112 hardpps(tvp, usec) 1113 struct timeval *tvp; /* time at PPS */ 1114 long usec; /* hardware counter at PPS */ 1115 { 1116 long u_usec, v_usec, bigtick; 1117 long cal_sec, cal_usec; 1118 1119 /* 1120 * An occasional glitch can be produced when the PPS interrupt 1121 * occurs in the hardclock() routine before the time variable is 1122 * updated. Here the offset is discarded when the difference 1123 * between it and the last one is greater than tick/2, but not 1124 * if the interval since the first discard exceeds 30 s. 1125 */ 1126 time_status |= STA_PPSSIGNAL; 1127 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1128 pps_valid = 0; 1129 u_usec = -tvp->tv_usec; 1130 if (u_usec < -500000) 1131 u_usec += 1000000; 1132 v_usec = pps_offset - u_usec; 1133 if (v_usec < 0) 1134 v_usec = -v_usec; 1135 if (v_usec > (tick >> 1)) { 1136 if (pps_glitch > MAXGLITCH) { 1137 pps_glitch = 0; 1138 pps_tf[2] = u_usec; 1139 pps_tf[1] = u_usec; 1140 } else { 1141 pps_glitch++; 1142 u_usec = pps_offset; 1143 } 1144 } else 1145 pps_glitch = 0; 1146 1147 /* 1148 * A three-stage median filter is used to help deglitch the pps 1149 * time. The median sample becomes the time offset estimate; the 1150 * difference between the other two samples becomes the time 1151 * dispersion (jitter) estimate. 1152 */ 1153 pps_tf[2] = pps_tf[1]; 1154 pps_tf[1] = pps_tf[0]; 1155 pps_tf[0] = u_usec; 1156 if (pps_tf[0] > pps_tf[1]) { 1157 if (pps_tf[1] > pps_tf[2]) { 1158 pps_offset = pps_tf[1]; /* 0 1 2 */ 1159 v_usec = pps_tf[0] - pps_tf[2]; 1160 } else if (pps_tf[2] > pps_tf[0]) { 1161 pps_offset = pps_tf[0]; /* 2 0 1 */ 1162 v_usec = pps_tf[2] - pps_tf[1]; 1163 } else { 1164 pps_offset = pps_tf[2]; /* 0 2 1 */ 1165 v_usec = pps_tf[0] - pps_tf[1]; 1166 } 1167 } else { 1168 if (pps_tf[1] < pps_tf[2]) { 1169 pps_offset = pps_tf[1]; /* 2 1 0 */ 1170 v_usec = pps_tf[2] - pps_tf[0]; 1171 } else if (pps_tf[2] < pps_tf[0]) { 1172 pps_offset = pps_tf[0]; /* 1 0 2 */ 1173 v_usec = pps_tf[1] - pps_tf[2]; 1174 } else { 1175 pps_offset = pps_tf[2]; /* 1 2 0 */ 1176 v_usec = pps_tf[1] - pps_tf[0]; 1177 } 1178 } 1179 if (v_usec > MAXTIME) 1180 pps_jitcnt++; 1181 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1182 if (v_usec < 0) 1183 pps_jitter -= -v_usec >> PPS_AVG; 1184 else 1185 pps_jitter += v_usec >> PPS_AVG; 1186 if (pps_jitter > (MAXTIME >> 1)) 1187 time_status |= STA_PPSJITTER; 1188 1189 /* 1190 * During the calibration interval adjust the starting time when 1191 * the tick overflows. At the end of the interval compute the 1192 * duration of the interval and the difference of the hardware 1193 * counters at the beginning and end of the interval. This code 1194 * is deliciously complicated by the fact valid differences may 1195 * exceed the value of tick when using long calibration 1196 * intervals and small ticks. Note that the counter can be 1197 * greater than tick if caught at just the wrong instant, but 1198 * the values returned and used here are correct. 1199 */ 1200 bigtick = (long)tick << SHIFT_USEC; 1201 pps_usec -= pps_freq; 1202 if (pps_usec >= bigtick) 1203 pps_usec -= bigtick; 1204 if (pps_usec < 0) 1205 pps_usec += bigtick; 1206 pps_time.tv_sec++; 1207 pps_count++; 1208 if (pps_count < (1 << pps_shift)) 1209 return; 1210 pps_count = 0; 1211 pps_calcnt++; 1212 u_usec = usec << SHIFT_USEC; 1213 v_usec = pps_usec - u_usec; 1214 if (v_usec >= bigtick >> 1) 1215 v_usec -= bigtick; 1216 if (v_usec < -(bigtick >> 1)) 1217 v_usec += bigtick; 1218 if (v_usec < 0) 1219 v_usec = -(-v_usec >> pps_shift); 1220 else 1221 v_usec = v_usec >> pps_shift; 1222 pps_usec = u_usec; 1223 cal_sec = tvp->tv_sec; 1224 cal_usec = tvp->tv_usec; 1225 cal_sec -= pps_time.tv_sec; 1226 cal_usec -= pps_time.tv_usec; 1227 if (cal_usec < 0) { 1228 cal_usec += 1000000; 1229 cal_sec--; 1230 } 1231 pps_time = *tvp; 1232 1233 /* 1234 * Check for lost interrupts, noise, excessive jitter and 1235 * excessive frequency error. The number of timer ticks during 1236 * the interval may vary +-1 tick. Add to this a margin of one 1237 * tick for the PPS signal jitter and maximum frequency 1238 * deviation. If the limits are exceeded, the calibration 1239 * interval is reset to the minimum and we start over. 1240 */ 1241 u_usec = (long)tick << 1; 1242 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1243 || (cal_sec == 0 && cal_usec < u_usec)) 1244 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1245 pps_errcnt++; 1246 pps_shift = PPS_SHIFT; 1247 pps_intcnt = 0; 1248 time_status |= STA_PPSERROR; 1249 return; 1250 } 1251 1252 /* 1253 * A three-stage median filter is used to help deglitch the pps 1254 * frequency. The median sample becomes the frequency offset 1255 * estimate; the difference between the other two samples 1256 * becomes the frequency dispersion (stability) estimate. 1257 */ 1258 pps_ff[2] = pps_ff[1]; 1259 pps_ff[1] = pps_ff[0]; 1260 pps_ff[0] = v_usec; 1261 if (pps_ff[0] > pps_ff[1]) { 1262 if (pps_ff[1] > pps_ff[2]) { 1263 u_usec = pps_ff[1]; /* 0 1 2 */ 1264 v_usec = pps_ff[0] - pps_ff[2]; 1265 } else if (pps_ff[2] > pps_ff[0]) { 1266 u_usec = pps_ff[0]; /* 2 0 1 */ 1267 v_usec = pps_ff[2] - pps_ff[1]; 1268 } else { 1269 u_usec = pps_ff[2]; /* 0 2 1 */ 1270 v_usec = pps_ff[0] - pps_ff[1]; 1271 } 1272 } else { 1273 if (pps_ff[1] < pps_ff[2]) { 1274 u_usec = pps_ff[1]; /* 2 1 0 */ 1275 v_usec = pps_ff[2] - pps_ff[0]; 1276 } else if (pps_ff[2] < pps_ff[0]) { 1277 u_usec = pps_ff[0]; /* 1 0 2 */ 1278 v_usec = pps_ff[1] - pps_ff[2]; 1279 } else { 1280 u_usec = pps_ff[2]; /* 1 2 0 */ 1281 v_usec = pps_ff[1] - pps_ff[0]; 1282 } 1283 } 1284 1285 /* 1286 * Here the frequency dispersion (stability) is updated. If it 1287 * is less than one-fourth the maximum (MAXFREQ), the frequency 1288 * offset is updated as well, but clamped to the tolerance. It 1289 * will be processed later by the hardclock() routine. 1290 */ 1291 v_usec = (v_usec >> 1) - pps_stabil; 1292 if (v_usec < 0) 1293 pps_stabil -= -v_usec >> PPS_AVG; 1294 else 1295 pps_stabil += v_usec >> PPS_AVG; 1296 if (pps_stabil > MAXFREQ >> 2) { 1297 pps_stbcnt++; 1298 time_status |= STA_PPSWANDER; 1299 return; 1300 } 1301 if (time_status & STA_PPSFREQ) { 1302 if (u_usec < 0) { 1303 pps_freq -= -u_usec >> PPS_AVG; 1304 if (pps_freq < -time_tolerance) 1305 pps_freq = -time_tolerance; 1306 u_usec = -u_usec; 1307 } else { 1308 pps_freq += u_usec >> PPS_AVG; 1309 if (pps_freq > time_tolerance) 1310 pps_freq = time_tolerance; 1311 } 1312 } 1313 1314 /* 1315 * Here the calibration interval is adjusted. If the maximum 1316 * time difference is greater than tick / 4, reduce the interval 1317 * by half. If this is not the case for four consecutive 1318 * intervals, double the interval. 1319 */ 1320 if (u_usec << pps_shift > bigtick >> 2) { 1321 pps_intcnt = 0; 1322 if (pps_shift > PPS_SHIFT) 1323 pps_shift--; 1324 } else if (pps_intcnt >= 4) { 1325 pps_intcnt = 0; 1326 if (pps_shift < PPS_SHIFTMAX) 1327 pps_shift++; 1328 } else 1329 pps_intcnt++; 1330 } 1331 #endif /* PPS_SYNC */ 1332 #endif /* NTP */ 1333 1334 1335 /* 1336 * Return information about system clocks. 1337 */ 1338 int 1339 sysctl_clockrate(where, sizep) 1340 register char *where; 1341 size_t *sizep; 1342 { 1343 struct clockinfo clkinfo; 1344 1345 /* 1346 * Construct clockinfo structure. 1347 */ 1348 clkinfo.tick = tick; 1349 clkinfo.tickadj = tickadj; 1350 clkinfo.hz = hz; 1351 clkinfo.profhz = profhz; 1352 clkinfo.stathz = stathz ? stathz : hz; 1353 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1354 } 1355 1356 #ifdef DDB 1357 #include <machine/db_machdep.h> 1358 1359 #include <ddb/db_interface.h> 1360 #include <ddb/db_access.h> 1361 #include <ddb/db_sym.h> 1362 #include <ddb/db_output.h> 1363 1364 void db_show_callout(addr, haddr, count, modif) 1365 db_expr_t addr; 1366 int haddr; 1367 db_expr_t count; 1368 char *modif; 1369 { 1370 register struct callout *p1; 1371 register int cum; 1372 register int s; 1373 db_expr_t offset; 1374 char *name; 1375 1376 db_printf(" cum ticks arg func\n"); 1377 s = splhigh(); 1378 for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) { 1379 register int t = p1->c_time; 1380 1381 if (t > 0) 1382 cum += t; 1383 1384 db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset); 1385 if (name == NULL) 1386 name = "?"; 1387 1388 db_printf("%9d %9d %8x %s (%x)\n", 1389 cum, t, p1->c_arg, name, p1->c_func); 1390 } 1391 splx(s); 1392 } 1393 #endif 1394