1 /* $OpenBSD: kern_clock.c,v 1.113 2023/08/12 13:19:28 miod Exp $ */ 2 /* $NetBSD: kern_clock.c,v 1.34 1996/06/09 04:51:03 briggs Exp $ */ 3 4 /*- 5 * Copyright (c) 1982, 1986, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. Neither the name of the University nor the names of its contributors 22 * may be used to endorse or promote products derived from this software 23 * without specific prior written permission. 24 * 25 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 26 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 27 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 28 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 30 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 31 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 32 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 33 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 34 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 35 * SUCH DAMAGE. 36 * 37 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 38 */ 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/timeout.h> 43 #include <sys/kernel.h> 44 #include <sys/limits.h> 45 #include <sys/proc.h> 46 #include <sys/user.h> 47 #include <sys/resourcevar.h> 48 #include <sys/sysctl.h> 49 #include <sys/sched.h> 50 #include <sys/timetc.h> 51 52 #include "dt.h" 53 #if NDT > 0 54 #include <dev/dt/dtvar.h> 55 #endif 56 57 /* 58 * Clock handling routines. 59 * 60 * This code is written to operate with two timers that run independently of 61 * each other. The main clock, running hz times per second, is used to keep 62 * track of real time. The second timer handles kernel and user profiling, 63 * and does resource use estimation. If the second timer is programmable, 64 * it is randomized to avoid aliasing between the two clocks. For example, 65 * the randomization prevents an adversary from always giving up the cpu 66 * just before its quantum expires. Otherwise, it would never accumulate 67 * cpu ticks. The mean frequency of the second timer is stathz. 68 * 69 * If no second timer exists, stathz will be zero; in this case we drive 70 * profiling and statistics off the main clock. This WILL NOT be accurate; 71 * do not do it unless absolutely necessary. 72 * 73 * The statistics clock may (or may not) be run at a higher rate while 74 * profiling. This profile clock runs at profhz. We require that profhz 75 * be an integral multiple of stathz. 76 * 77 * If the statistics clock is running fast, it must be divided by the ratio 78 * profhz/stathz for statistics. (For profiling, every tick counts.) 79 */ 80 81 int stathz; 82 int schedhz; 83 int profhz; 84 int profprocs; 85 int ticks = INT_MAX - (15 * 60 * HZ); 86 87 /* Don't force early wrap around, triggers bug in inteldrm */ 88 volatile unsigned long jiffies; 89 90 /* 91 * Initialize clock frequencies and start both clocks running. 92 */ 93 void 94 initclocks(void) 95 { 96 /* 97 * Let the machine-specific code do its bit. 98 */ 99 cpu_initclocks(); 100 101 KASSERT(profhz >= stathz && profhz <= 1000000000); 102 KASSERT(profhz % stathz == 0); 103 profclock_period = 1000000000 / profhz; 104 105 inittimecounter(); 106 } 107 108 /* 109 * The real-time timer, interrupting hz times per second. 110 */ 111 void 112 hardclock(struct clockframe *frame) 113 { 114 #if defined(MULTIPROCESSOR) || defined(__hppa__) /* XXX */ 115 struct cpu_info *ci = curcpu(); 116 #endif 117 118 #if NDT > 0 119 DT_ENTER(profile, NULL); 120 if (CPU_IS_PRIMARY(ci)) 121 DT_ENTER(interval, NULL); 122 #endif 123 124 /* 125 * If we are not the primary CPU, we're not allowed to do 126 * any more work. 127 */ 128 if (CPU_IS_PRIMARY(ci) == 0) 129 return; 130 131 tc_ticktock(); 132 ticks++; 133 jiffies++; 134 135 /* 136 * Update the timeout wheel. 137 */ 138 timeout_hardclock_update(); 139 } 140 141 /* 142 * Compute number of hz in the specified amount of time. 143 */ 144 int 145 tvtohz(const struct timeval *tv) 146 { 147 unsigned long nticks; 148 time_t sec; 149 long usec; 150 151 /* 152 * If the number of usecs in the whole seconds part of the time 153 * fits in a long, then the total number of usecs will 154 * fit in an unsigned long. Compute the total and convert it to 155 * ticks, rounding up and adding 1 to allow for the current tick 156 * to expire. Rounding also depends on unsigned long arithmetic 157 * to avoid overflow. 158 * 159 * Otherwise, if the number of ticks in the whole seconds part of 160 * the time fits in a long, then convert the parts to 161 * ticks separately and add, using similar rounding methods and 162 * overflow avoidance. This method would work in the previous 163 * case but it is slightly slower and assumes that hz is integral. 164 * 165 * Otherwise, round the time down to the maximum 166 * representable value. 167 * 168 * If ints have 32 bits, then the maximum value for any timeout in 169 * 10ms ticks is 248 days. 170 */ 171 sec = tv->tv_sec; 172 usec = tv->tv_usec; 173 if (sec < 0 || (sec == 0 && usec <= 0)) 174 nticks = 0; 175 else if (sec <= LONG_MAX / 1000000) 176 nticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 177 / tick + 1; 178 else if (sec <= LONG_MAX / hz) 179 nticks = sec * hz 180 + ((unsigned long)usec + (tick - 1)) / tick + 1; 181 else 182 nticks = LONG_MAX; 183 if (nticks > INT_MAX) 184 nticks = INT_MAX; 185 return ((int)nticks); 186 } 187 188 int 189 tstohz(const struct timespec *ts) 190 { 191 struct timeval tv; 192 TIMESPEC_TO_TIMEVAL(&tv, ts); 193 194 /* Round up. */ 195 if ((ts->tv_nsec % 1000) != 0) { 196 tv.tv_usec += 1; 197 if (tv.tv_usec >= 1000000) { 198 tv.tv_usec -= 1000000; 199 tv.tv_sec += 1; 200 } 201 } 202 203 return (tvtohz(&tv)); 204 } 205 206 /* 207 * Start profiling on a process. 208 * 209 * Kernel profiling passes proc0 which never exits and hence 210 * keeps the profile clock running constantly. 211 */ 212 void 213 startprofclock(struct process *pr) 214 { 215 int s; 216 217 if ((pr->ps_flags & PS_PROFIL) == 0) { 218 atomic_setbits_int(&pr->ps_flags, PS_PROFIL); 219 if (++profprocs == 1) { 220 s = splstatclock(); 221 setstatclockrate(profhz); 222 splx(s); 223 } 224 } 225 } 226 227 /* 228 * Stop profiling on a process. 229 */ 230 void 231 stopprofclock(struct process *pr) 232 { 233 int s; 234 235 if (pr->ps_flags & PS_PROFIL) { 236 atomic_clearbits_int(&pr->ps_flags, PS_PROFIL); 237 if (--profprocs == 0) { 238 s = splstatclock(); 239 setstatclockrate(stathz); 240 splx(s); 241 } 242 } 243 } 244 245 /* 246 * Statistics clock. Grab profile sample, and if divider reaches 0, 247 * do process and kernel statistics. 248 */ 249 void 250 statclock(struct clockframe *frame) 251 { 252 struct cpu_info *ci = curcpu(); 253 struct schedstate_percpu *spc = &ci->ci_schedstate; 254 struct proc *p = curproc; 255 struct process *pr; 256 257 if (CLKF_USERMODE(frame)) { 258 pr = p->p_p; 259 /* 260 * Came from user mode; CPU was in user state. 261 * If this process is being profiled record the tick. 262 */ 263 p->p_uticks++; 264 if (pr->ps_nice > NZERO) 265 spc->spc_cp_time[CP_NICE]++; 266 else 267 spc->spc_cp_time[CP_USER]++; 268 } else { 269 /* 270 * Came from kernel mode, so we were: 271 * - spinning on a lock 272 * - handling an interrupt, 273 * - doing syscall or trap work on behalf of the current 274 * user process, or 275 * - spinning in the idle loop. 276 * Whichever it is, charge the time as appropriate. 277 * Note that we charge interrupts to the current process, 278 * regardless of whether they are ``for'' that process, 279 * so that we know how much of its real time was spent 280 * in ``non-process'' (i.e., interrupt) work. 281 */ 282 if (CLKF_INTR(frame)) { 283 if (p != NULL) 284 p->p_iticks++; 285 spc->spc_cp_time[spc->spc_spinning ? 286 CP_SPIN : CP_INTR]++; 287 } else if (p != NULL && p != spc->spc_idleproc) { 288 p->p_sticks++; 289 spc->spc_cp_time[spc->spc_spinning ? 290 CP_SPIN : CP_SYS]++; 291 } else 292 spc->spc_cp_time[spc->spc_spinning ? 293 CP_SPIN : CP_IDLE]++; 294 } 295 296 if (p != NULL) { 297 p->p_cpticks++; 298 /* 299 * If no schedclock is provided, call it here at ~~12-25 Hz; 300 * ~~16 Hz is best 301 */ 302 if (schedhz == 0) { 303 if ((++spc->spc_schedticks & 3) == 0) 304 schedclock(p); 305 } 306 } 307 } 308 309 /* 310 * Return information about system clocks. 311 */ 312 int 313 sysctl_clockrate(char *where, size_t *sizep, void *newp) 314 { 315 struct clockinfo clkinfo; 316 317 /* 318 * Construct clockinfo structure. 319 */ 320 memset(&clkinfo, 0, sizeof clkinfo); 321 clkinfo.tick = tick; 322 clkinfo.hz = hz; 323 clkinfo.profhz = profhz; 324 clkinfo.stathz = stathz; 325 return (sysctl_rdstruct(where, sizep, newp, &clkinfo, sizeof(clkinfo))); 326 } 327