xref: /openbsd-src/sys/kern/kern_clock.c (revision 799f675f6700f14e59124f9825c723e9f2ce19dc)
1 /*	$OpenBSD: kern_clock.c,v 1.60 2006/12/24 20:29:45 miod Exp $	*/
2 /*	$NetBSD: kern_clock.c,v 1.34 1996/06/09 04:51:03 briggs Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. Neither the name of the University nor the names of its contributors
22  *    may be used to endorse or promote products derived from this software
23  *    without specific prior written permission.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
26  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
27  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
28  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
30  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
31  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
32  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
33  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
34  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
35  * SUCH DAMAGE.
36  *
37  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
38  */
39 
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/dkstat.h>
43 #include <sys/timeout.h>
44 #include <sys/kernel.h>
45 #include <sys/limits.h>
46 #include <sys/proc.h>
47 #include <sys/user.h>
48 #include <sys/resourcevar.h>
49 #include <sys/signalvar.h>
50 #include <uvm/uvm_extern.h>
51 #include <sys/sysctl.h>
52 #include <sys/sched.h>
53 #ifdef __HAVE_TIMECOUNTER
54 #include <sys/timetc.h>
55 #endif
56 
57 #include <machine/cpu.h>
58 
59 #ifdef GPROF
60 #include <sys/gmon.h>
61 #endif
62 
63 /*
64  * Clock handling routines.
65  *
66  * This code is written to operate with two timers that run independently of
67  * each other.  The main clock, running hz times per second, is used to keep
68  * track of real time.  The second timer handles kernel and user profiling,
69  * and does resource use estimation.  If the second timer is programmable,
70  * it is randomized to avoid aliasing between the two clocks.  For example,
71  * the randomization prevents an adversary from always giving up the cpu
72  * just before its quantum expires.  Otherwise, it would never accumulate
73  * cpu ticks.  The mean frequency of the second timer is stathz.
74  *
75  * If no second timer exists, stathz will be zero; in this case we drive
76  * profiling and statistics off the main clock.  This WILL NOT be accurate;
77  * do not do it unless absolutely necessary.
78  *
79  * The statistics clock may (or may not) be run at a higher rate while
80  * profiling.  This profile clock runs at profhz.  We require that profhz
81  * be an integral multiple of stathz.
82  *
83  * If the statistics clock is running fast, it must be divided by the ratio
84  * profhz/stathz for statistics.  (For profiling, every tick counts.)
85  */
86 
87 /*
88  * Bump a timeval by a small number of usec's.
89  */
90 #define BUMPTIME(t, usec) { \
91 	volatile struct timeval *tp = (t); \
92 	long us; \
93  \
94 	tp->tv_usec = us = tp->tv_usec + (usec); \
95 	if (us >= 1000000) { \
96 		tp->tv_usec = us - 1000000; \
97 		tp->tv_sec++; \
98 	} \
99 }
100 
101 int	stathz;
102 int	schedhz;
103 int	profhz;
104 int	profprocs;
105 int	ticks;
106 static int psdiv, pscnt;		/* prof => stat divider */
107 int	psratio;			/* ratio: prof / stat */
108 
109 long cp_time[CPUSTATES];
110 
111 #ifndef __HAVE_TIMECOUNTER
112 int	tickfix, tickfixinterval;	/* used if tick not really integral */
113 static int tickfixcnt;			/* accumulated fractional error */
114 
115 volatile time_t time_second;
116 volatile time_t time_uptime;
117 
118 volatile struct	timeval time
119 	__attribute__((__aligned__(__alignof__(quad_t))));
120 volatile struct	timeval mono_time;
121 #endif
122 
123 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
124 void	*softclock_si;
125 void	generic_softclock(void *);
126 
127 void
128 generic_softclock(void *ignore)
129 {
130 	/*
131 	 * XXX - don't commit, just a dummy wrapper until we learn everyone
132 	 *       deal with a changed proto for softclock().
133 	 */
134 	softclock();
135 }
136 #endif
137 
138 /*
139  * Initialize clock frequencies and start both clocks running.
140  */
141 void
142 initclocks(void)
143 {
144 	int i;
145 #ifdef __HAVE_TIMECOUNTER
146 	extern void inittimecounter(void);
147 #endif
148 
149 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
150 	softclock_si = softintr_establish(IPL_SOFTCLOCK, generic_softclock, NULL);
151 	if (softclock_si == NULL)
152 		panic("initclocks: unable to register softclock intr");
153 #endif
154 
155 	/*
156 	 * Set divisors to 1 (normal case) and let the machine-specific
157 	 * code do its bit.
158 	 */
159 	psdiv = pscnt = 1;
160 	cpu_initclocks();
161 
162 	/*
163 	 * Compute profhz/stathz, and fix profhz if needed.
164 	 */
165 	i = stathz ? stathz : hz;
166 	if (profhz == 0)
167 		profhz = i;
168 	psratio = profhz / i;
169 #ifdef __HAVE_TIMECOUNTER
170 	inittimecounter();
171 #endif
172 }
173 
174 /*
175  * hardclock does the accounting needed for ITIMER_PROF and ITIMER_VIRTUAL.
176  * We don't want to send signals with psignal from hardclock because it makes
177  * MULTIPROCESSOR locking very complicated. Instead we use a small trick
178  * to send the signals safely and without blocking too many interrupts
179  * while doing that (signal handling can be heavy).
180  *
181  * hardclock detects that the itimer has expired, and schedules a timeout
182  * to deliver the signal. This works because of the following reasons:
183  *  - The timeout structures can be in struct pstats because the timers
184  *    can be only activated on curproc (never swapped). Swapout can
185  *    only happen from a kernel thread and softclock runs before threads
186  *    are scheduled.
187  *  - The timeout can be scheduled with a 1 tick time because we're
188  *    doing it before the timeout processing in hardclock. So it will
189  *    be scheduled to run as soon as possible.
190  *  - The timeout will be run in softclock which will run before we
191  *    return to userland and process pending signals.
192  *  - If the system is so busy that several VIRTUAL/PROF ticks are
193  *    sent before softclock processing, we'll send only one signal.
194  *    But if we'd send the signal from hardclock only one signal would
195  *    be delivered to the user process. So userland will only see one
196  *    signal anyway.
197  */
198 
199 void
200 virttimer_trampoline(void *v)
201 {
202 	struct proc *p = v;
203 
204 	psignal(p, SIGVTALRM);
205 }
206 
207 void
208 proftimer_trampoline(void *v)
209 {
210 	struct proc *p = v;
211 
212 	psignal(p, SIGPROF);
213 }
214 
215 /*
216  * The real-time timer, interrupting hz times per second.
217  */
218 void
219 hardclock(struct clockframe *frame)
220 {
221 	struct proc *p;
222 #ifndef __HAVE_TIMECOUNTER
223 	int delta;
224 	extern int tickdelta;
225 	extern long timedelta;
226 	extern int64_t ntp_tick_permanent;
227 	extern int64_t ntp_tick_acc;
228 #endif
229 #ifdef __HAVE_CPUINFO
230 	struct cpu_info *ci = curcpu();
231 #endif
232 
233 	p = curproc;
234 	if (p && ((p->p_flag & P_WEXIT) == 0)) {
235 		struct pstats *pstats;
236 
237 		/*
238 		 * Run current process's virtual and profile time, as needed.
239 		 */
240 		pstats = p->p_stats;
241 		if (CLKF_USERMODE(frame) &&
242 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
243 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
244 			timeout_add(&pstats->p_virt_to, 1);
245 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
246 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
247 			timeout_add(&pstats->p_prof_to, 1);
248 	}
249 
250 	/*
251 	 * If no separate statistics clock is available, run it from here.
252 	 */
253 	if (stathz == 0)
254 		statclock(frame);
255 
256 #if defined(__HAVE_CPUINFO)
257 	if (--ci->ci_schedstate.spc_rrticks <= 0)
258 		roundrobin(ci);
259 
260 	/*
261 	 * If we are not the primary CPU, we're not allowed to do
262 	 * any more work.
263 	 */
264 	if (CPU_IS_PRIMARY(ci) == 0)
265 		return;
266 #endif
267 
268 #ifndef __HAVE_TIMECOUNTER
269 	/*
270 	 * Increment the time-of-day.  The increment is normally just
271 	 * ``tick''.  If the machine is one which has a clock frequency
272 	 * such that ``hz'' would not divide the second evenly into
273 	 * milliseconds, a periodic adjustment must be applied.  Finally,
274 	 * if we are still adjusting the time (see adjtime()),
275 	 * ``tickdelta'' may also be added in.
276 	 */
277 
278 	delta = tick;
279 
280 	if (tickfix) {
281 		tickfixcnt += tickfix;
282 		if (tickfixcnt >= tickfixinterval) {
283 			delta++;
284 			tickfixcnt -= tickfixinterval;
285 		}
286 	}
287 	/* Imprecise 4bsd adjtime() handling */
288 	if (timedelta != 0) {
289 		delta += tickdelta;
290 		timedelta -= tickdelta;
291 	}
292 
293 	/*
294 	 * ntp_tick_permanent accumulates the clock correction each
295 	 * tick. The unit is ns per tick shifted left 32 bits. If we have
296 	 * accumulated more than 1us, we bump delta in the right
297 	 * direction. Use a loop to avoid long long div; typicallly
298 	 * the loops will be executed 0 or 1 iteration.
299 	 */
300 	if (ntp_tick_permanent != 0) {
301 		ntp_tick_acc += ntp_tick_permanent;
302 		while (ntp_tick_acc >= (1000LL << 32)) {
303 			delta++;
304 			ntp_tick_acc -= (1000LL << 32);
305 		}
306 		while (ntp_tick_acc <= -(1000LL << 32)) {
307 			delta--;
308 			ntp_tick_acc += (1000LL << 32);
309 		}
310 	}
311 
312 	BUMPTIME(&time, delta);
313 	BUMPTIME(&mono_time, delta);
314 	time_second = time.tv_sec;
315 	time_uptime = mono_time.tv_sec;
316 #else
317 	tc_ticktock();
318 #endif
319 
320 #ifdef CPU_CLOCKUPDATE
321 	CPU_CLOCKUPDATE();
322 #endif
323 
324 	/*
325 	 * Update real-time timeout queue.
326 	 * Process callouts at a very low cpu priority, so we don't keep the
327 	 * relatively high clock interrupt priority any longer than necessary.
328 	 */
329 	if (timeout_hardclock_update()) {
330 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
331 		softintr_schedule(softclock_si);
332 #else
333 		setsoftclock();
334 #endif
335 	}
336 }
337 
338 /*
339  * Compute number of hz until specified time.  Used to
340  * compute the second argument to timeout_add() from an absolute time.
341  */
342 int
343 hzto(struct timeval *tv)
344 {
345 	struct timeval now;
346 	unsigned long ticks;
347 	long sec, usec;
348 
349 	/*
350 	 * If the number of usecs in the whole seconds part of the time
351 	 * difference fits in a long, then the total number of usecs will
352 	 * fit in an unsigned long.  Compute the total and convert it to
353 	 * ticks, rounding up and adding 1 to allow for the current tick
354 	 * to expire.  Rounding also depends on unsigned long arithmetic
355 	 * to avoid overflow.
356 	 *
357 	 * Otherwise, if the number of ticks in the whole seconds part of
358 	 * the time difference fits in a long, then convert the parts to
359 	 * ticks separately and add, using similar rounding methods and
360 	 * overflow avoidance.  This method would work in the previous
361 	 * case but it is slightly slower and assumes that hz is integral.
362 	 *
363 	 * Otherwise, round the time difference down to the maximum
364 	 * representable value.
365 	 *
366 	 * If ints have 32 bits, then the maximum value for any timeout in
367 	 * 10ms ticks is 248 days.
368 	 */
369 	getmicrotime(&now);
370 	sec = tv->tv_sec - now.tv_sec;
371 	usec = tv->tv_usec - now.tv_usec;
372 	if (usec < 0) {
373 		sec--;
374 		usec += 1000000;
375 	}
376 	if (sec < 0 || (sec == 0 && usec <= 0)) {
377 		ticks = 0;
378 	} else if (sec <= LONG_MAX / 1000000)
379 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
380 		    / tick + 1;
381 	else if (sec <= LONG_MAX / hz)
382 		ticks = sec * hz
383 		    + ((unsigned long)usec + (tick - 1)) / tick + 1;
384 	else
385 		ticks = LONG_MAX;
386 	if (ticks > INT_MAX)
387 		ticks = INT_MAX;
388 	return ((int)ticks);
389 }
390 
391 /*
392  * Compute number of hz in the specified amount of time.
393  */
394 int
395 tvtohz(struct timeval *tv)
396 {
397 	unsigned long ticks;
398 	long sec, usec;
399 
400 	/*
401 	 * If the number of usecs in the whole seconds part of the time
402 	 * fits in a long, then the total number of usecs will
403 	 * fit in an unsigned long.  Compute the total and convert it to
404 	 * ticks, rounding up and adding 1 to allow for the current tick
405 	 * to expire.  Rounding also depends on unsigned long arithmetic
406 	 * to avoid overflow.
407 	 *
408 	 * Otherwise, if the number of ticks in the whole seconds part of
409 	 * the time fits in a long, then convert the parts to
410 	 * ticks separately and add, using similar rounding methods and
411 	 * overflow avoidance.  This method would work in the previous
412 	 * case but it is slightly slower and assumes that hz is integral.
413 	 *
414 	 * Otherwise, round the time down to the maximum
415 	 * representable value.
416 	 *
417 	 * If ints have 32 bits, then the maximum value for any timeout in
418 	 * 10ms ticks is 248 days.
419 	 */
420 	sec = tv->tv_sec;
421 	usec = tv->tv_usec;
422 	if (sec < 0 || (sec == 0 && usec <= 0))
423 		ticks = 0;
424 	else if (sec <= LONG_MAX / 1000000)
425 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
426 		    / tick + 1;
427 	else if (sec <= LONG_MAX / hz)
428 		ticks = sec * hz
429 		    + ((unsigned long)usec + (tick - 1)) / tick + 1;
430 	else
431 		ticks = LONG_MAX;
432 	if (ticks > INT_MAX)
433 		ticks = INT_MAX;
434 	return ((int)ticks);
435 }
436 
437 /*
438  * Start profiling on a process.
439  *
440  * Kernel profiling passes proc0 which never exits and hence
441  * keeps the profile clock running constantly.
442  */
443 void
444 startprofclock(struct proc *p)
445 {
446 	int s;
447 
448 	if ((p->p_flag & P_PROFIL) == 0) {
449 		p->p_flag |= P_PROFIL;
450 		if (++profprocs == 1 && stathz != 0) {
451 			s = splstatclock();
452 			psdiv = pscnt = psratio;
453 			setstatclockrate(profhz);
454 			splx(s);
455 		}
456 	}
457 }
458 
459 /*
460  * Stop profiling on a process.
461  */
462 void
463 stopprofclock(struct proc *p)
464 {
465 	int s;
466 
467 	if (p->p_flag & P_PROFIL) {
468 		p->p_flag &= ~P_PROFIL;
469 		if (--profprocs == 0 && stathz != 0) {
470 			s = splstatclock();
471 			psdiv = pscnt = 1;
472 			setstatclockrate(stathz);
473 			splx(s);
474 		}
475 	}
476 }
477 
478 /*
479  * Statistics clock.  Grab profile sample, and if divider reaches 0,
480  * do process and kernel statistics.
481  */
482 void
483 statclock(struct clockframe *frame)
484 {
485 #ifdef GPROF
486 	struct gmonparam *g;
487 	int i;
488 #endif
489 #ifdef __HAVE_CPUINFO
490 	struct cpu_info *ci = curcpu();
491 	struct schedstate_percpu *spc = &ci->ci_schedstate;
492 #else
493 	static int schedclk;
494 #endif
495 	struct proc *p = curproc;
496 
497 #ifdef __HAVE_CPUINFO
498 	/*
499 	 * Notice changes in divisor frequency, and adjust clock
500 	 * frequency accordingly.
501 	 */
502 	if (spc->spc_psdiv != psdiv) {
503 		spc->spc_psdiv = psdiv;
504 		spc->spc_pscnt = psdiv;
505 		if (psdiv == 1) {
506 			setstatclockrate(stathz);
507 		} else {
508 			setstatclockrate(profhz);
509 		}
510 	}
511 
512 /* XXX Kludgey */
513 #define pscnt spc->spc_pscnt
514 #define cp_time spc->spc_cp_time
515 #endif
516 
517 	if (CLKF_USERMODE(frame)) {
518 		if (p->p_flag & P_PROFIL)
519 			addupc_intr(p, CLKF_PC(frame));
520 		if (--pscnt > 0)
521 			return;
522 		/*
523 		 * Came from user mode; CPU was in user state.
524 		 * If this process is being profiled record the tick.
525 		 */
526 		p->p_uticks++;
527 		if (p->p_nice > NZERO)
528 			cp_time[CP_NICE]++;
529 		else
530 			cp_time[CP_USER]++;
531 	} else {
532 #ifdef GPROF
533 		/*
534 		 * Kernel statistics are just like addupc_intr, only easier.
535 		 */
536 		g = &_gmonparam;
537 		if (g->state == GMON_PROF_ON) {
538 			i = CLKF_PC(frame) - g->lowpc;
539 			if (i < g->textsize) {
540 				i /= HISTFRACTION * sizeof(*g->kcount);
541 				g->kcount[i]++;
542 			}
543 		}
544 #endif
545 #if defined(PROC_PC)
546 		if (p != NULL && p->p_flag & P_PROFIL)
547 			addupc_intr(p, PROC_PC(p));
548 #endif
549 		if (--pscnt > 0)
550 			return;
551 		/*
552 		 * Came from kernel mode, so we were:
553 		 * - handling an interrupt,
554 		 * - doing syscall or trap work on behalf of the current
555 		 *   user process, or
556 		 * - spinning in the idle loop.
557 		 * Whichever it is, charge the time as appropriate.
558 		 * Note that we charge interrupts to the current process,
559 		 * regardless of whether they are ``for'' that process,
560 		 * so that we know how much of its real time was spent
561 		 * in ``non-process'' (i.e., interrupt) work.
562 		 */
563 		if (CLKF_INTR(frame)) {
564 			if (p != NULL)
565 				p->p_iticks++;
566 			cp_time[CP_INTR]++;
567 		} else if (p != NULL) {
568 			p->p_sticks++;
569 			cp_time[CP_SYS]++;
570 		} else
571 			cp_time[CP_IDLE]++;
572 	}
573 	pscnt = psdiv;
574 
575 #ifdef __HAVE_CPUINFO
576 #undef pscnt
577 #undef cp_time
578 #endif
579 
580 	if (p != NULL) {
581 		p->p_cpticks++;
582 		/*
583 		 * If no schedclock is provided, call it here at ~~12-25 Hz;
584 		 * ~~16 Hz is best
585 		 */
586 		if (schedhz == 0) {
587 #ifdef __HAVE_CPUINFO
588 			if ((++curcpu()->ci_schedstate.spc_schedticks & 3) ==
589 			    0)
590 				schedclock(p);
591 #else
592 			if ((++schedclk & 3) == 0)
593 				schedclock(p);
594 #endif
595 		}
596 	}
597 }
598 
599 /*
600  * Return information about system clocks.
601  */
602 int
603 sysctl_clockrate(char *where, size_t *sizep)
604 {
605 	struct clockinfo clkinfo;
606 
607 	/*
608 	 * Construct clockinfo structure.
609 	 */
610 	clkinfo.tick = tick;
611 	clkinfo.tickadj = tickadj;
612 	clkinfo.hz = hz;
613 	clkinfo.profhz = profhz;
614 	clkinfo.stathz = stathz ? stathz : hz;
615 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
616 }
617 
618 #ifndef __HAVE_TIMECOUNTER
619 /*
620  * Placeholders until everyone uses the timecounters code.
621  * Won't improve anything except maybe removing a bunch of bugs in fixed code.
622  */
623 
624 void
625 getmicrotime(struct timeval *tvp)
626 {
627 	int s;
628 
629 	s = splhigh();
630 	*tvp = time;
631 	splx(s);
632 }
633 
634 void
635 nanotime(struct timespec *tsp)
636 {
637 	struct timeval tv;
638 
639 	microtime(&tv);
640 	TIMEVAL_TO_TIMESPEC(&tv, tsp);
641 }
642 
643 void
644 getnanotime(struct timespec *tsp)
645 {
646 	struct timeval tv;
647 
648 	getmicrotime(&tv);
649 	TIMEVAL_TO_TIMESPEC(&tv, tsp);
650 }
651 
652 void
653 nanouptime(struct timespec *tsp)
654 {
655 	struct timeval tv;
656 
657 	microuptime(&tv);
658 	TIMEVAL_TO_TIMESPEC(&tv, tsp);
659 }
660 
661 
662 void
663 getnanouptime(struct timespec *tsp)
664 {
665 	struct timeval tv;
666 
667 	getmicrouptime(&tv);
668 	TIMEVAL_TO_TIMESPEC(&tv, tsp);
669 }
670 
671 void
672 microuptime(struct timeval *tvp)
673 {
674 	struct timeval tv;
675 
676 	microtime(&tv);
677 	timersub(&tv, &boottime, tvp);
678 }
679 
680 void
681 getmicrouptime(struct timeval *tvp)
682 {
683 	int s;
684 
685 	s = splhigh();
686 	*tvp = mono_time;
687 	splx(s);
688 }
689 #endif /* __HAVE_TIMECOUNTER */
690