xref: /openbsd-src/sys/kern/kern_clock.c (revision 62a742911104f98b9185b2c6b6007d9b1c36396c)
1 /*	$OpenBSD: kern_clock.c,v 1.20 1998/08/27 05:00:17 deraadt Exp $	*/
2 /*	$NetBSD: kern_clock.c,v 1.34 1996/06/09 04:51:03 briggs Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/dkstat.h>
47 #include <sys/callout.h>
48 #include <sys/kernel.h>
49 #include <sys/proc.h>
50 #include <sys/resourcevar.h>
51 #include <sys/signalvar.h>
52 #include <vm/vm.h>
53 #include <sys/sysctl.h>
54 #include <sys/timex.h>
55 
56 #include <machine/cpu.h>
57 
58 #ifdef GPROF
59 #include <sys/gmon.h>
60 #endif
61 
62 /*
63  * Clock handling routines.
64  *
65  * This code is written to operate with two timers that run independently of
66  * each other.  The main clock, running hz times per second, is used to keep
67  * track of real time.  The second timer handles kernel and user profiling,
68  * and does resource use estimation.  If the second timer is programmable,
69  * it is randomized to avoid aliasing between the two clocks.  For example,
70  * the randomization prevents an adversary from always giving up the cpu
71  * just before its quantum expires.  Otherwise, it would never accumulate
72  * cpu ticks.  The mean frequency of the second timer is stathz.
73  *
74  * If no second timer exists, stathz will be zero; in this case we drive
75  * profiling and statistics off the main clock.  This WILL NOT be accurate;
76  * do not do it unless absolutely necessary.
77  *
78  * The statistics clock may (or may not) be run at a higher rate while
79  * profiling.  This profile clock runs at profhz.  We require that profhz
80  * be an integral multiple of stathz.
81  *
82  * If the statistics clock is running fast, it must be divided by the ratio
83  * profhz/stathz for statistics.  (For profiling, every tick counts.)
84  */
85 
86 /*
87  * TODO:
88  *	allocate more timeout table slots when table overflows.
89  */
90 
91 
92 #ifdef NTP	/* NTP phase-locked loop in kernel */
93 /*
94  * Phase/frequency-lock loop (PLL/FLL) definitions
95  *
96  * The following variables are read and set by the ntp_adjtime() system
97  * call.
98  *
99  * time_state shows the state of the system clock, with values defined
100  * in the timex.h header file.
101  *
102  * time_status shows the status of the system clock, with bits defined
103  * in the timex.h header file.
104  *
105  * time_offset is used by the PLL/FLL to adjust the system time in small
106  * increments.
107  *
108  * time_constant determines the bandwidth or "stiffness" of the PLL.
109  *
110  * time_tolerance determines maximum frequency error or tolerance of the
111  * CPU clock oscillator and is a property of the architecture; however,
112  * in principle it could change as result of the presence of external
113  * discipline signals, for instance.
114  *
115  * time_precision is usually equal to the kernel tick variable; however,
116  * in cases where a precision clock counter or external clock is
117  * available, the resolution can be much less than this and depend on
118  * whether the external clock is working or not.
119  *
120  * time_maxerror is initialized by a ntp_adjtime() call and increased by
121  * the kernel once each second to reflect the maximum error bound
122  * growth.
123  *
124  * time_esterror is set and read by the ntp_adjtime() call, but
125  * otherwise not used by the kernel.
126  */
127 int time_state = TIME_OK;	/* clock state */
128 int time_status = STA_UNSYNC;	/* clock status bits */
129 long time_offset = 0;		/* time offset (us) */
130 long time_constant = 0;		/* pll time constant */
131 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
132 long time_precision;		/* clock precision (us) */
133 long time_maxerror = MAXPHASE;	/* maximum error (us) */
134 long time_esterror = MAXPHASE;	/* estimated error (us) */
135 
136 /*
137  * The following variables establish the state of the PLL/FLL and the
138  * residual time and frequency offset of the local clock. The scale
139  * factors are defined in the timex.h header file.
140  *
141  * time_phase and time_freq are the phase increment and the frequency
142  * increment, respectively, of the kernel time variable.
143  *
144  * time_freq is set via ntp_adjtime() from a value stored in a file when
145  * the synchronization daemon is first started. Its value is retrieved
146  * via ntp_adjtime() and written to the file about once per hour by the
147  * daemon.
148  *
149  * time_adj is the adjustment added to the value of tick at each timer
150  * interrupt and is recomputed from time_phase and time_freq at each
151  * seconds rollover.
152  *
153  * time_reftime is the second's portion of the system time at the last
154  * call to ntp_adjtime(). It is used to adjust the time_freq variable
155  * and to increase the time_maxerror as the time since last update
156  * increases.
157  */
158 long time_phase = 0;		/* phase offset (scaled us) */
159 long time_freq = 0;		/* frequency offset (scaled ppm) */
160 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
161 long time_reftime = 0;		/* time at last adjustment (s) */
162 
163 #ifdef PPS_SYNC
164 /*
165  * The following variables are used only if the kernel PPS discipline
166  * code is configured (PPS_SYNC). The scale factors are defined in the
167  * timex.h header file.
168  *
169  * pps_time contains the time at each calibration interval, as read by
170  * microtime(). pps_count counts the seconds of the calibration
171  * interval, the duration of which is nominally pps_shift in powers of
172  * two.
173  *
174  * pps_offset is the time offset produced by the time median filter
175  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
176  * this filter.
177  *
178  * pps_freq is the frequency offset produced by the frequency median
179  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
180  * by this filter.
181  *
182  * pps_usec is latched from a high resolution counter or external clock
183  * at pps_time. Here we want the hardware counter contents only, not the
184  * contents plus the time_tv.usec as usual.
185  *
186  * pps_valid counts the number of seconds since the last PPS update. It
187  * is used as a watchdog timer to disable the PPS discipline should the
188  * PPS signal be lost.
189  *
190  * pps_glitch counts the number of seconds since the beginning of an
191  * offset burst more than tick/2 from current nominal offset. It is used
192  * mainly to suppress error bursts due to priority conflicts between the
193  * PPS interrupt and timer interrupt.
194  *
195  * pps_intcnt counts the calibration intervals for use in the interval-
196  * adaptation algorithm. It's just too complicated for words.
197  */
198 struct timeval pps_time;	/* kernel time at last interval */
199 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
200 long pps_offset = 0;		/* pps time offset (us) */
201 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
202 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
203 long pps_freq = 0;		/* frequency offset (scaled ppm) */
204 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
205 long pps_usec = 0;		/* microsec counter at last interval */
206 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
207 int pps_glitch = 0;		/* pps signal glitch counter */
208 int pps_count = 0;		/* calibration interval counter (s) */
209 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
210 int pps_intcnt = 0;		/* intervals at current duration */
211 
212 /*
213  * PPS signal quality monitors
214  *
215  * pps_jitcnt counts the seconds that have been discarded because the
216  * jitter measured by the time median filter exceeds the limit MAXTIME
217  * (100 us).
218  *
219  * pps_calcnt counts the frequency calibration intervals, which are
220  * variable from 4 s to 256 s.
221  *
222  * pps_errcnt counts the calibration intervals which have been discarded
223  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
224  * calibration interval jitter exceeds two ticks.
225  *
226  * pps_stbcnt counts the calibration intervals that have been discarded
227  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
228  */
229 long pps_jitcnt = 0;		/* jitter limit exceeded */
230 long pps_calcnt = 0;		/* calibration intervals */
231 long pps_errcnt = 0;		/* calibration errors */
232 long pps_stbcnt = 0;		/* stability limit exceeded */
233 #endif /* PPS_SYNC */
234 
235 #ifdef EXT_CLOCK
236 /*
237  * External clock definitions
238  *
239  * The following definitions and declarations are used only if an
240  * external clock is configured on the system.
241  */
242 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
243 
244 /*
245  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
246  * interrupt and decremented once each second.
247  */
248 int clock_count = 0;		/* CPU clock counter */
249 
250 #ifdef HIGHBALL
251 /*
252  * The clock_offset and clock_cpu variables are used by the HIGHBALL
253  * interface. The clock_offset variable defines the offset between
254  * system time and the HIGBALL counters. The clock_cpu variable contains
255  * the offset between the system clock and the HIGHBALL clock for use in
256  * disciplining the kernel time variable.
257  */
258 extern struct timeval clock_offset; /* Highball clock offset */
259 long clock_cpu = 0;		/* CPU clock adjust */
260 #endif /* HIGHBALL */
261 #endif /* EXT_CLOCK */
262 #endif /* NTP */
263 
264 
265 /*
266  * Bump a timeval by a small number of usec's.
267  */
268 #define BUMPTIME(t, usec) { \
269 	register volatile struct timeval *tp = (t); \
270 	register long us; \
271  \
272 	tp->tv_usec = us = tp->tv_usec + (usec); \
273 	if (us >= 1000000) { \
274 		tp->tv_usec = us - 1000000; \
275 		tp->tv_sec++; \
276 	} \
277 }
278 
279 int	stathz;
280 int	profhz;
281 int	profprocs;
282 int	ticks;
283 static int psdiv, pscnt;		/* prof => stat divider */
284 int	psratio;			/* ratio: prof / stat */
285 int	tickfix, tickfixinterval;	/* used if tick not really integral */
286 #ifndef NTP
287 static int tickfixcnt;			/* accumulated fractional error */
288 #else
289 int	fixtick;			/* used by NTP for same */
290 int	shifthz;
291 #endif
292 
293 volatile struct	timeval time;
294 volatile struct	timeval mono_time;
295 
296 /*
297  * Initialize clock frequencies and start both clocks running.
298  */
299 void
300 initclocks()
301 {
302 	register int i;
303 
304 	/*
305 	 * Set divisors to 1 (normal case) and let the machine-specific
306 	 * code do its bit.
307 	 */
308 	psdiv = pscnt = 1;
309 	cpu_initclocks();
310 
311 	/*
312 	 * Compute profhz/stathz, and fix profhz if needed.
313 	 */
314 	i = stathz ? stathz : hz;
315 	if (profhz == 0)
316 		profhz = i;
317 	psratio = profhz / i;
318 
319 #ifdef NTP
320 	if (time_precision == 0)
321 		time_precision = tick;
322 
323 	switch (hz) {
324 	case 60:
325 	case 64:
326 		shifthz = SHIFT_SCALE - 6;
327 		break;
328 	case 96:
329 	case 100:
330 	case 128:
331 		shifthz = SHIFT_SCALE - 7;
332 		break;
333 	case 256:
334 		shifthz = SHIFT_SCALE - 8;
335 		break;
336 	case 1024:
337 		shifthz = SHIFT_SCALE - 10;
338 		break;
339 	default:
340 		panic("weird hz");
341 	}
342 #endif
343 }
344 
345 /*
346  * The real-time timer, interrupting hz times per second.
347  */
348 void
349 hardclock(frame)
350 	register struct clockframe *frame;
351 {
352 	register struct callout *p1;
353 	register struct proc *p;
354 	register int delta, needsoft;
355 	extern int tickdelta;
356 	extern long timedelta;
357 #ifdef NTP
358 	register int time_update;
359 	struct timeval newtime;
360 	register int ltemp;
361 #endif
362 
363 	/*
364 	 * Update real-time timeout queue.
365 	 * At front of queue are some number of events which are ``due''.
366 	 * The time to these is <= 0 and if negative represents the
367 	 * number of ticks which have passed since it was supposed to happen.
368 	 * The rest of the q elements (times > 0) are events yet to happen,
369 	 * where the time for each is given as a delta from the previous.
370 	 * Decrementing just the first of these serves to decrement the time
371 	 * to all events.
372 	 */
373 	needsoft = 0;
374 	for (p1 = calltodo.c_next; p1 != NULL; p1 = p1->c_next) {
375 		if (--p1->c_time > 0)
376 			break;
377 		needsoft = 1;
378 		if (p1->c_time == 0)
379 			break;
380 	}
381 
382 	p = curproc;
383 	if (p) {
384 		register struct pstats *pstats;
385 
386 		/*
387 		 * Run current process's virtual and profile time, as needed.
388 		 */
389 		pstats = p->p_stats;
390 		if (CLKF_USERMODE(frame) &&
391 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
392 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
393 			psignal(p, SIGVTALRM);
394 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
395 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
396 			psignal(p, SIGPROF);
397 	}
398 
399 	/*
400 	 * If no separate statistics clock is available, run it from here.
401 	 */
402 	if (stathz == 0)
403 		statclock(frame);
404 
405 	/*
406 	 * Increment the time-of-day.  The increment is normally just
407 	 * ``tick''.  If the machine is one which has a clock frequency
408 	 * such that ``hz'' would not divide the second evenly into
409 	 * milliseconds, a periodic adjustment must be applied.  Finally,
410 	 * if we are still adjusting the time (see adjtime()),
411 	 * ``tickdelta'' may also be added in.
412 	 */
413 	ticks++;
414 	delta = tick;
415 
416 #ifndef NTP
417 	if (tickfix) {
418 		tickfixcnt += tickfix;
419 		if (tickfixcnt >= tickfixinterval) {
420 			delta++;
421 			tickfixcnt -= tickfixinterval;
422 		}
423 	}
424 #else
425 	newtime = time;
426 #endif /* !NTP */
427 	/* Imprecise 4bsd adjtime() handling */
428 	if (timedelta != 0) {
429 		delta += tickdelta;
430 		timedelta -= tickdelta;
431 	}
432 
433 #ifdef notyet
434 	microset();
435 #endif
436 
437 #ifndef NTP
438 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
439 #endif
440 	BUMPTIME(&mono_time, delta);
441 
442 #ifdef NTP
443 	time_update = delta;
444 
445 	/*
446 	 * Compute the phase adjustment. If the low-order bits
447 	 * (time_phase) of the update overflow, bump the high-order bits
448 	 * (time_update).
449 	 */
450 	time_phase += time_adj;
451 	if (time_phase <= -FINEUSEC) {
452 		ltemp = -time_phase >> SHIFT_SCALE;
453 		time_phase += ltemp << SHIFT_SCALE;
454 		time_update -= ltemp;
455 	} else if (time_phase >= FINEUSEC) {
456 		ltemp = time_phase >> SHIFT_SCALE;
457 		time_phase -= ltemp << SHIFT_SCALE;
458 		time_update += ltemp;
459 	}
460 
461 #ifdef HIGHBALL
462 	/*
463 	 * If the HIGHBALL board is installed, we need to adjust the
464 	 * external clock offset in order to close the hardware feedback
465 	 * loop. This will adjust the external clock phase and frequency
466 	 * in small amounts. The additional phase noise and frequency
467 	 * wander this causes should be minimal. We also need to
468 	 * discipline the kernel time variable, since the PLL is used to
469 	 * discipline the external clock. If the Highball board is not
470 	 * present, we discipline kernel time with the PLL as usual. We
471 	 * assume that the external clock phase adjustment (time_update)
472 	 * and kernel phase adjustment (clock_cpu) are less than the
473 	 * value of tick.
474 	 */
475 	clock_offset.tv_usec += time_update;
476 	if (clock_offset.tv_usec >= 1000000) {
477 		clock_offset.tv_sec++;
478 		clock_offset.tv_usec -= 1000000;
479 	}
480 	if (clock_offset.tv_usec < 0) {
481 		clock_offset.tv_sec--;
482 		clock_offset.tv_usec += 1000000;
483 	}
484 	newtime.tv_usec += clock_cpu;
485 	clock_cpu = 0;
486 #else
487 	newtime.tv_usec += time_update;
488 #endif /* HIGHBALL */
489 
490 	/*
491 	 * On rollover of the second the phase adjustment to be used for
492 	 * the next second is calculated. Also, the maximum error is
493 	 * increased by the tolerance. If the PPS frequency discipline
494 	 * code is present, the phase is increased to compensate for the
495 	 * CPU clock oscillator frequency error.
496 	 *
497  	 * On a 32-bit machine and given parameters in the timex.h
498 	 * header file, the maximum phase adjustment is +-512 ms and
499 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
500 	 * 64-bit machine, you shouldn't need to ask.
501 	 */
502 	if (newtime.tv_usec >= 1000000) {
503 		newtime.tv_usec -= 1000000;
504 		newtime.tv_sec++;
505 		time_maxerror += time_tolerance >> SHIFT_USEC;
506 
507 		/*
508 		 * Leap second processing. If in leap-insert state at
509 		 * the end of the day, the system clock is set back one
510 		 * second; if in leap-delete state, the system clock is
511 		 * set ahead one second. The microtime() routine or
512 		 * external clock driver will insure that reported time
513 		 * is always monotonic. The ugly divides should be
514 		 * replaced.
515 		 */
516 		switch (time_state) {
517 		case TIME_OK:
518 			if (time_status & STA_INS)
519 				time_state = TIME_INS;
520 			else if (time_status & STA_DEL)
521 				time_state = TIME_DEL;
522 			break;
523 
524 		case TIME_INS:
525 			if (newtime.tv_sec % 86400 == 0) {
526 				newtime.tv_sec--;
527 				time_state = TIME_OOP;
528 			}
529 			break;
530 
531 		case TIME_DEL:
532 			if ((newtime.tv_sec + 1) % 86400 == 0) {
533 				newtime.tv_sec++;
534 				time_state = TIME_WAIT;
535 			}
536 			break;
537 
538 		case TIME_OOP:
539 			time_state = TIME_WAIT;
540 			break;
541 
542 		case TIME_WAIT:
543 			if (!(time_status & (STA_INS | STA_DEL)))
544 				time_state = TIME_OK;
545 			break;
546 		}
547 
548 		/*
549 		 * Compute the phase adjustment for the next second. In
550 		 * PLL mode, the offset is reduced by a fixed factor
551 		 * times the time constant. In FLL mode the offset is
552 		 * used directly. In either mode, the maximum phase
553 		 * adjustment for each second is clamped so as to spread
554 		 * the adjustment over not more than the number of
555 		 * seconds between updates.
556 		 */
557 		if (time_offset < 0) {
558 			ltemp = -time_offset;
559 			if (!(time_status & STA_FLL))
560 				ltemp >>= SHIFT_KG + time_constant;
561 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
562 				ltemp = (MAXPHASE / MINSEC) <<
563 				    SHIFT_UPDATE;
564 			time_offset += ltemp;
565 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
566 		} else if (time_offset > 0) {
567 			ltemp = time_offset;
568 			if (!(time_status & STA_FLL))
569 				ltemp >>= SHIFT_KG + time_constant;
570 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
571 				ltemp = (MAXPHASE / MINSEC) <<
572 				    SHIFT_UPDATE;
573 			time_offset -= ltemp;
574 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
575 		} else
576 			time_adj = 0;
577 
578 		/*
579 		 * Compute the frequency estimate and additional phase
580 		 * adjustment due to frequency error for the next
581 		 * second. When the PPS signal is engaged, gnaw on the
582 		 * watchdog counter and update the frequency computed by
583 		 * the pll and the PPS signal.
584 		 */
585 #ifdef PPS_SYNC
586 		pps_valid++;
587 		if (pps_valid >= PPS_VALID) {
588 			pps_valid = PPS_VALID;	/* Avoid possible overflow */
589 			pps_jitter = MAXTIME;
590 			pps_stabil = MAXFREQ;
591 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
592 			    STA_PPSWANDER | STA_PPSERROR);
593 		}
594 		ltemp = time_freq + pps_freq;
595 #else
596 		ltemp = time_freq;
597 #endif /* PPS_SYNC */
598 
599 		if (ltemp < 0)
600 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
601 		else
602 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
603 		time_adj += (long)fixtick << shifthz;
604 
605 		/*
606 		 * When the CPU clock oscillator frequency is not a
607 		 * power of 2 in Hz, shifthz is only an approximate
608 		 * scale factor.
609 		 */
610 		switch (hz) {
611 		case 96:
612 		case 100:
613 			/*
614 			 * In the following code the overall gain is increased
615 			 * by a factor of 1.25, which results in a residual
616 			 * error less than 3 percent.
617 			 */
618 			if (time_adj < 0)
619 				time_adj -= -time_adj >> 2;
620 			else
621 				time_adj += time_adj >> 2;
622 			break;
623 		case 60:
624 			/*
625 			 * 60 Hz m68k and vaxes have a PLL gain factor of of
626 			 * 60/64 (15/16) of what it should be.  In the following code
627 			 * the overall gain is increased by a factor of 1.0625,
628 			 * (17/16) which results in a residual error of just less
629 			 * than 0.4 percent.
630 			 */
631 			if (time_adj < 0)
632 				time_adj -= -time_adj >> 4;
633 			else
634 				time_adj += time_adj >> 4;
635 			break;
636 		}
637 
638 #ifdef EXT_CLOCK
639 		/*
640 		 * If an external clock is present, it is necessary to
641 		 * discipline the kernel time variable anyway, since not
642 		 * all system components use the microtime() interface.
643 		 * Here, the time offset between the external clock and
644 		 * kernel time variable is computed every so often.
645 		 */
646 		clock_count++;
647 		if (clock_count > CLOCK_INTERVAL) {
648 			clock_count = 0;
649 			microtime(&clock_ext);
650 			delta.tv_sec = clock_ext.tv_sec - newtime.tv_sec;
651 			delta.tv_usec = clock_ext.tv_usec - newtime.tv_usec;
652 			if (delta.tv_usec < 0)
653 				delta.tv_sec--;
654 			if (delta.tv_usec >= 500000) {
655 				delta.tv_usec -= 1000000;
656 				delta.tv_sec++;
657 			}
658 			if (delta.tv_usec < -500000) {
659 				delta.tv_usec += 1000000;
660 				delta.tv_sec--;
661 			}
662 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
663 			    delta.tv_usec > MAXPHASE) ||
664 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
665 			    delta.tv_usec < -MAXPHASE)) {
666 				newtime = clock_ext;
667 				delta.tv_sec = 0;
668 				delta.tv_usec = 0;
669 			}
670 #ifdef HIGHBALL
671 			clock_cpu = delta.tv_usec;
672 #else /* HIGHBALL */
673 			hardupdate(delta.tv_usec);
674 #endif /* HIGHBALL */
675 		}
676 #endif /* EXT_CLOCK */
677 	}
678 
679 #ifdef CPU_CLOCKUPDATE
680 	CPU_CLOCKUPDATE(&time, &newtime);
681 #else
682 	time = newtime;
683 #endif
684 
685 #endif /* NTP */
686 
687 	/*
688 	 * Process callouts at a very low cpu priority, so we don't keep the
689 	 * relatively high clock interrupt priority any longer than necessary.
690 	 */
691 	if (needsoft) {
692 		if (CLKF_BASEPRI(frame)) {
693 			/*
694 			 * Save the overhead of a software interrupt;
695 			 * it will happen as soon as we return, so do it now.
696 			 */
697 			(void)splsoftclock();
698 			softclock();
699 		} else
700 			setsoftclock();
701 	}
702 }
703 
704 /*
705  * Software (low priority) clock interrupt.
706  * Run periodic events from timeout queue.
707  */
708 /*ARGSUSED*/
709 void
710 softclock()
711 {
712 	register struct callout *c;
713 	register void *arg;
714 	register void (*func) __P((void *));
715 	register int s;
716 
717 	s = splhigh();
718 	while ((c = calltodo.c_next) != NULL && c->c_time <= 0) {
719 		func = c->c_func;
720 		arg = c->c_arg;
721 		calltodo.c_next = c->c_next;
722 		c->c_next = callfree;
723 		callfree = c;
724 		splx(s);
725 		(*func)(arg);
726 		(void) splhigh();
727 	}
728 	splx(s);
729 }
730 
731 /*
732  * timeout --
733  *	Execute a function after a specified length of time.
734  *
735  * untimeout --
736  *	Cancel previous timeout function call.
737  *
738  *	See AT&T BCI Driver Reference Manual for specification.  This
739  *	implementation differs from that one in that no identification
740  *	value is returned from timeout, rather, the original arguments
741  *	to timeout are used to identify entries for untimeout.
742  */
743 void
744 timeout(ftn, arg, ticks)
745 	void (*ftn) __P((void *));
746 	void *arg;
747 	register int ticks;
748 {
749 	register struct callout *new, *p, *t;
750 	register int s;
751 
752 	if (ticks <= 0)
753 		ticks = 1;
754 
755 	/* Lock out the clock. */
756 	s = splhigh();
757 
758 	/* Fill in the next free callout structure. */
759 	if (callfree == NULL)
760 		panic("timeout table full");
761 	new = callfree;
762 	callfree = new->c_next;
763 	new->c_arg = arg;
764 	new->c_func = ftn;
765 
766 	/*
767 	 * The time for each event is stored as a difference from the time
768 	 * of the previous event on the queue.  Walk the queue, correcting
769 	 * the ticks argument for queue entries passed.  Correct the ticks
770 	 * value for the queue entry immediately after the insertion point
771 	 * as well.  Watch out for negative c_time values; these represent
772 	 * overdue events.
773 	 */
774 	for (p = &calltodo;
775 	    (t = p->c_next) != NULL && ticks > t->c_time; p = t)
776 		if (t->c_time > 0)
777 			ticks -= t->c_time;
778 	new->c_time = ticks;
779 	if (t != NULL)
780 		t->c_time -= ticks;
781 
782 	/* Insert the new entry into the queue. */
783 	p->c_next = new;
784 	new->c_next = t;
785 	splx(s);
786 }
787 
788 void
789 untimeout(ftn, arg)
790 	void (*ftn) __P((void *));
791 	void *arg;
792 {
793 	register struct callout *p, *t;
794 	register int s;
795 
796 	s = splhigh();
797 	for (p = &calltodo; (t = p->c_next) != NULL; p = t)
798 		if (t->c_func == ftn && t->c_arg == arg) {
799 			/* Increment next entry's tick count. */
800 			if (t->c_next && t->c_time > 0)
801 				t->c_next->c_time += t->c_time;
802 
803 			/* Move entry from callout queue to callfree queue. */
804 			p->c_next = t->c_next;
805 			t->c_next = callfree;
806 			callfree = t;
807 			break;
808 		}
809 	splx(s);
810 }
811 
812 /*
813  * Compute number of hz until specified time.  Used to
814  * compute third argument to timeout() from an absolute time.
815  */
816 int
817 hzto(tv)
818 	struct timeval *tv;
819 {
820 	register long ticks, sec;
821 	int s;
822 
823 	/*
824 	 * If number of microseconds will fit in 32 bit arithmetic,
825 	 * then compute number of microseconds to time and scale to
826 	 * ticks.  Otherwise just compute number of hz in time, rounding
827 	 * times greater than representible to maximum value.  (We must
828 	 * compute in microseconds, because hz can be greater than 1000,
829 	 * and thus tick can be less than one millisecond).
830 	 *
831 	 * Delta times less than 14 hours can be computed ``exactly''.
832 	 * (Note that if hz would yeild a non-integral number of us per
833 	 * tick, i.e. tickfix is nonzero, timouts can be a tick longer
834 	 * than they should be.)  Maximum value for any timeout in 10ms
835 	 * ticks is 250 days.
836 	 */
837 	s = splhigh();
838 	sec = tv->tv_sec - time.tv_sec;
839 	if (sec <= 0x7fffffff / 1000000 - 1)
840 		ticks = ((tv->tv_sec - time.tv_sec) * 1000000 +
841 			(tv->tv_usec - time.tv_usec)) / tick;
842 	else if (sec <= 0x7fffffff / hz)
843 		ticks = sec * hz;
844 	else
845 		ticks = 0x7fffffff;
846 	splx(s);
847 	return (ticks);
848 }
849 
850 /*
851  * Start profiling on a process.
852  *
853  * Kernel profiling passes proc0 which never exits and hence
854  * keeps the profile clock running constantly.
855  */
856 void
857 startprofclock(p)
858 	register struct proc *p;
859 {
860 	int s;
861 
862 	if ((p->p_flag & P_PROFIL) == 0) {
863 		p->p_flag |= P_PROFIL;
864 		if (++profprocs == 1 && stathz != 0) {
865 			s = splstatclock();
866 			psdiv = pscnt = psratio;
867 			setstatclockrate(profhz);
868 			splx(s);
869 		}
870 	}
871 }
872 
873 /*
874  * Stop profiling on a process.
875  */
876 void
877 stopprofclock(p)
878 	register struct proc *p;
879 {
880 	int s;
881 
882 	if (p->p_flag & P_PROFIL) {
883 		p->p_flag &= ~P_PROFIL;
884 		if (--profprocs == 0 && stathz != 0) {
885 			s = splstatclock();
886 			psdiv = pscnt = 1;
887 			setstatclockrate(stathz);
888 			splx(s);
889 		}
890 	}
891 }
892 
893 /*
894  * Statistics clock.  Grab profile sample, and if divider reaches 0,
895  * do process and kernel statistics.
896  */
897 void
898 statclock(frame)
899 	register struct clockframe *frame;
900 {
901 #ifdef GPROF
902 	register struct gmonparam *g;
903 	register int i;
904 #endif
905 	register struct proc *p;
906 
907 	if (CLKF_USERMODE(frame)) {
908 		p = curproc;
909 		if (p->p_flag & P_PROFIL)
910 			addupc_intr(p, CLKF_PC(frame), 1);
911 		if (--pscnt > 0)
912 			return;
913 		/*
914 		 * Came from user mode; CPU was in user state.
915 		 * If this process is being profiled record the tick.
916 		 */
917 		p->p_uticks++;
918 		if (p->p_nice > NZERO)
919 			cp_time[CP_NICE]++;
920 		else
921 			cp_time[CP_USER]++;
922 	} else {
923 #ifdef GPROF
924 		/*
925 		 * Kernel statistics are just like addupc_intr, only easier.
926 		 */
927 		g = &_gmonparam;
928 		if (g->state == GMON_PROF_ON) {
929 			i = CLKF_PC(frame) - g->lowpc;
930 			if (i < g->textsize) {
931 				i /= HISTFRACTION * sizeof(*g->kcount);
932 				g->kcount[i]++;
933 			}
934 		}
935 #endif
936 		if (--pscnt > 0)
937 			return;
938 		/*
939 		 * Came from kernel mode, so we were:
940 		 * - handling an interrupt,
941 		 * - doing syscall or trap work on behalf of the current
942 		 *   user process, or
943 		 * - spinning in the idle loop.
944 		 * Whichever it is, charge the time as appropriate.
945 		 * Note that we charge interrupts to the current process,
946 		 * regardless of whether they are ``for'' that process,
947 		 * so that we know how much of its real time was spent
948 		 * in ``non-process'' (i.e., interrupt) work.
949 		 */
950 		p = curproc;
951 		if (CLKF_INTR(frame)) {
952 			if (p != NULL)
953 				p->p_iticks++;
954 			cp_time[CP_INTR]++;
955 		} else if (p != NULL) {
956 			p->p_sticks++;
957 			cp_time[CP_SYS]++;
958 		} else
959 			cp_time[CP_IDLE]++;
960 	}
961 	pscnt = psdiv;
962 
963 	/*
964 	 * We adjust the priority of the current process.  The priority of
965 	 * a process gets worse as it accumulates CPU time.  The cpu usage
966 	 * estimator (p_estcpu) is increased here.  The formula for computing
967 	 * priorities (in kern_synch.c) will compute a different value each
968 	 * time p_estcpu increases by 4.  The cpu usage estimator ramps up
969 	 * quite quickly when the process is running (linearly), and decays
970 	 * away exponentially, at a rate which is proportionally slower when
971 	 * the system is busy.  The basic principal is that the system will
972 	 * 90% forget that the process used a lot of CPU time in 5 * loadav
973 	 * seconds.  This causes the system to favor processes which haven't
974 	 * run much recently, and to round-robin among other processes.
975 	 */
976 	if (p != NULL) {
977 		p->p_cpticks++;
978 		if (++p->p_estcpu == 0)
979 			p->p_estcpu--;
980 		if ((p->p_estcpu & 3) == 0) {
981 			resetpriority(p);
982 			if (p->p_priority >= PUSER)
983 				p->p_priority = p->p_usrpri;
984 		}
985 	}
986 }
987 
988 
989 #ifdef NTP	/* NTP phase-locked loop in kernel */
990 
991 /*
992  * hardupdate() - local clock update
993  *
994  * This routine is called by ntp_adjtime() to update the local clock
995  * phase and frequency. The implementation is of an adaptive-parameter,
996  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
997  * time and frequency offset estimates for each call. If the kernel PPS
998  * discipline code is configured (PPS_SYNC), the PPS signal itself
999  * determines the new time offset, instead of the calling argument.
1000  * Presumably, calls to ntp_adjtime() occur only when the caller
1001  * believes the local clock is valid within some bound (+-128 ms with
1002  * NTP). If the caller's time is far different than the PPS time, an
1003  * argument will ensue, and it's not clear who will lose.
1004  *
1005  * For uncompensated quartz crystal oscillatores and nominal update
1006  * intervals less than 1024 s, operation should be in phase-lock mode
1007  * (STA_FLL = 0), where the loop is disciplined to phase. For update
1008  * intervals greater than thiss, operation should be in frequency-lock
1009  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
1010  *
1011  * Note: splclock() is in effect.
1012  */
1013 void
1014 hardupdate(offset)
1015 	long offset;
1016 {
1017 	long ltemp, mtemp;
1018 
1019 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
1020 		return;
1021 	ltemp = offset;
1022 #ifdef PPS_SYNC
1023 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
1024 		ltemp = pps_offset;
1025 #endif /* PPS_SYNC */
1026 
1027 	/*
1028 	 * Scale the phase adjustment and clamp to the operating range.
1029 	 */
1030 	if (ltemp > MAXPHASE)
1031 		time_offset = MAXPHASE << SHIFT_UPDATE;
1032 	else if (ltemp < -MAXPHASE)
1033 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
1034 	else
1035 		time_offset = ltemp << SHIFT_UPDATE;
1036 
1037 	/*
1038 	 * Select whether the frequency is to be controlled and in which
1039 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
1040 	 * multiply/divide should be replaced someday.
1041 	 */
1042 	if (time_status & STA_FREQHOLD || time_reftime == 0)
1043 		time_reftime = time.tv_sec;
1044 	mtemp = time.tv_sec - time_reftime;
1045 	time_reftime = time.tv_sec;
1046 	if (time_status & STA_FLL) {
1047 		if (mtemp >= MINSEC) {
1048 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
1049 			    SHIFT_UPDATE));
1050 			if (ltemp < 0)
1051 				time_freq -= -ltemp >> SHIFT_KH;
1052 			else
1053 				time_freq += ltemp >> SHIFT_KH;
1054 		}
1055 	} else {
1056 		if (mtemp < MAXSEC) {
1057 			ltemp *= mtemp;
1058 			if (ltemp < 0)
1059 				time_freq -= -ltemp >> (time_constant +
1060 				    time_constant + SHIFT_KF -
1061 				    SHIFT_USEC);
1062 			else
1063 				time_freq += ltemp >> (time_constant +
1064 				    time_constant + SHIFT_KF -
1065 				    SHIFT_USEC);
1066 		}
1067 	}
1068 	if (time_freq > time_tolerance)
1069 		time_freq = time_tolerance;
1070 	else if (time_freq < -time_tolerance)
1071 		time_freq = -time_tolerance;
1072 }
1073 
1074 #ifdef PPS_SYNC
1075 /*
1076  * hardpps() - discipline CPU clock oscillator to external PPS signal
1077  *
1078  * This routine is called at each PPS interrupt in order to discipline
1079  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1080  * and leaves it in a handy spot for the hardclock() routine. It
1081  * integrates successive PPS phase differences and calculates the
1082  * frequency offset. This is used in hardclock() to discipline the CPU
1083  * clock oscillator so that intrinsic frequency error is cancelled out.
1084  * The code requires the caller to capture the time and hardware counter
1085  * value at the on-time PPS signal transition.
1086  *
1087  * Note that, on some Unix systems, this routine runs at an interrupt
1088  * priority level higher than the timer interrupt routine hardclock().
1089  * Therefore, the variables used are distinct from the hardclock()
1090  * variables, except for certain exceptions: The PPS frequency pps_freq
1091  * and phase pps_offset variables are determined by this routine and
1092  * updated atomically. The time_tolerance variable can be considered a
1093  * constant, since it is infrequently changed, and then only when the
1094  * PPS signal is disabled. The watchdog counter pps_valid is updated
1095  * once per second by hardclock() and is atomically cleared in this
1096  * routine.
1097  */
1098 void
1099 hardpps(tvp, usec)
1100 	struct timeval *tvp;		/* time at PPS */
1101 	long usec;			/* hardware counter at PPS */
1102 {
1103 	long u_usec, v_usec, bigtick;
1104 	long cal_sec, cal_usec;
1105 
1106 	/*
1107 	 * An occasional glitch can be produced when the PPS interrupt
1108 	 * occurs in the hardclock() routine before the time variable is
1109 	 * updated. Here the offset is discarded when the difference
1110 	 * between it and the last one is greater than tick/2, but not
1111 	 * if the interval since the first discard exceeds 30 s.
1112 	 */
1113 	time_status |= STA_PPSSIGNAL;
1114 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1115 	pps_valid = 0;
1116 	u_usec = -tvp->tv_usec;
1117 	if (u_usec < -500000)
1118 		u_usec += 1000000;
1119 	v_usec = pps_offset - u_usec;
1120 	if (v_usec < 0)
1121 		v_usec = -v_usec;
1122 	if (v_usec > (tick >> 1)) {
1123 		if (pps_glitch > MAXGLITCH) {
1124 			pps_glitch = 0;
1125 			pps_tf[2] = u_usec;
1126 			pps_tf[1] = u_usec;
1127 		} else {
1128 			pps_glitch++;
1129 			u_usec = pps_offset;
1130 		}
1131 	} else
1132 		pps_glitch = 0;
1133 
1134 	/*
1135 	 * A three-stage median filter is used to help deglitch the pps
1136 	 * time. The median sample becomes the time offset estimate; the
1137 	 * difference between the other two samples becomes the time
1138 	 * dispersion (jitter) estimate.
1139 	 */
1140 	pps_tf[2] = pps_tf[1];
1141 	pps_tf[1] = pps_tf[0];
1142 	pps_tf[0] = u_usec;
1143 	if (pps_tf[0] > pps_tf[1]) {
1144 		if (pps_tf[1] > pps_tf[2]) {
1145 			pps_offset = pps_tf[1];		/* 0 1 2 */
1146 			v_usec = pps_tf[0] - pps_tf[2];
1147 		} else if (pps_tf[2] > pps_tf[0]) {
1148 			pps_offset = pps_tf[0];		/* 2 0 1 */
1149 			v_usec = pps_tf[2] - pps_tf[1];
1150 		} else {
1151 			pps_offset = pps_tf[2];		/* 0 2 1 */
1152 			v_usec = pps_tf[0] - pps_tf[1];
1153 		}
1154 	} else {
1155 		if (pps_tf[1] < pps_tf[2]) {
1156 			pps_offset = pps_tf[1];		/* 2 1 0 */
1157 			v_usec = pps_tf[2] - pps_tf[0];
1158 		} else  if (pps_tf[2] < pps_tf[0]) {
1159 			pps_offset = pps_tf[0];		/* 1 0 2 */
1160 			v_usec = pps_tf[1] - pps_tf[2];
1161 		} else {
1162 			pps_offset = pps_tf[2];		/* 1 2 0 */
1163 			v_usec = pps_tf[1] - pps_tf[0];
1164 		}
1165 	}
1166 	if (v_usec > MAXTIME)
1167 		pps_jitcnt++;
1168 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1169 	if (v_usec < 0)
1170 		pps_jitter -= -v_usec >> PPS_AVG;
1171 	else
1172 		pps_jitter += v_usec >> PPS_AVG;
1173 	if (pps_jitter > (MAXTIME >> 1))
1174 		time_status |= STA_PPSJITTER;
1175 
1176 	/*
1177 	 * During the calibration interval adjust the starting time when
1178 	 * the tick overflows. At the end of the interval compute the
1179 	 * duration of the interval and the difference of the hardware
1180 	 * counters at the beginning and end of the interval. This code
1181 	 * is deliciously complicated by the fact valid differences may
1182 	 * exceed the value of tick when using long calibration
1183 	 * intervals and small ticks. Note that the counter can be
1184 	 * greater than tick if caught at just the wrong instant, but
1185 	 * the values returned and used here are correct.
1186 	 */
1187 	bigtick = (long)tick << SHIFT_USEC;
1188 	pps_usec -= pps_freq;
1189 	if (pps_usec >= bigtick)
1190 		pps_usec -= bigtick;
1191 	if (pps_usec < 0)
1192 		pps_usec += bigtick;
1193 	pps_time.tv_sec++;
1194 	pps_count++;
1195 	if (pps_count < (1 << pps_shift))
1196 		return;
1197 	pps_count = 0;
1198 	pps_calcnt++;
1199 	u_usec = usec << SHIFT_USEC;
1200 	v_usec = pps_usec - u_usec;
1201 	if (v_usec >= bigtick >> 1)
1202 		v_usec -= bigtick;
1203 	if (v_usec < -(bigtick >> 1))
1204 		v_usec += bigtick;
1205 	if (v_usec < 0)
1206 		v_usec = -(-v_usec >> pps_shift);
1207 	else
1208 		v_usec = v_usec >> pps_shift;
1209 	pps_usec = u_usec;
1210 	cal_sec = tvp->tv_sec;
1211 	cal_usec = tvp->tv_usec;
1212 	cal_sec -= pps_time.tv_sec;
1213 	cal_usec -= pps_time.tv_usec;
1214 	if (cal_usec < 0) {
1215 		cal_usec += 1000000;
1216 		cal_sec--;
1217 	}
1218 	pps_time = *tvp;
1219 
1220 	/*
1221 	 * Check for lost interrupts, noise, excessive jitter and
1222 	 * excessive frequency error. The number of timer ticks during
1223 	 * the interval may vary +-1 tick. Add to this a margin of one
1224 	 * tick for the PPS signal jitter and maximum frequency
1225 	 * deviation. If the limits are exceeded, the calibration
1226 	 * interval is reset to the minimum and we start over.
1227 	 */
1228 	u_usec = (long)tick << 1;
1229 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1230 	    || (cal_sec == 0 && cal_usec < u_usec))
1231 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
1232 		pps_errcnt++;
1233 		pps_shift = PPS_SHIFT;
1234 		pps_intcnt = 0;
1235 		time_status |= STA_PPSERROR;
1236 		return;
1237 	}
1238 
1239 	/*
1240 	 * A three-stage median filter is used to help deglitch the pps
1241 	 * frequency. The median sample becomes the frequency offset
1242 	 * estimate; the difference between the other two samples
1243 	 * becomes the frequency dispersion (stability) estimate.
1244 	 */
1245 	pps_ff[2] = pps_ff[1];
1246 	pps_ff[1] = pps_ff[0];
1247 	pps_ff[0] = v_usec;
1248 	if (pps_ff[0] > pps_ff[1]) {
1249 		if (pps_ff[1] > pps_ff[2]) {
1250 			u_usec = pps_ff[1];		/* 0 1 2 */
1251 			v_usec = pps_ff[0] - pps_ff[2];
1252 		} else if (pps_ff[2] > pps_ff[0]) {
1253 			u_usec = pps_ff[0];		/* 2 0 1 */
1254 			v_usec = pps_ff[2] - pps_ff[1];
1255 		} else {
1256 			u_usec = pps_ff[2];		/* 0 2 1 */
1257 			v_usec = pps_ff[0] - pps_ff[1];
1258 		}
1259 	} else {
1260 		if (pps_ff[1] < pps_ff[2]) {
1261 			u_usec = pps_ff[1];		/* 2 1 0 */
1262 			v_usec = pps_ff[2] - pps_ff[0];
1263 		} else  if (pps_ff[2] < pps_ff[0]) {
1264 			u_usec = pps_ff[0];		/* 1 0 2 */
1265 			v_usec = pps_ff[1] - pps_ff[2];
1266 		} else {
1267 			u_usec = pps_ff[2];		/* 1 2 0 */
1268 			v_usec = pps_ff[1] - pps_ff[0];
1269 		}
1270 	}
1271 
1272 	/*
1273 	 * Here the frequency dispersion (stability) is updated. If it
1274 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1275 	 * offset is updated as well, but clamped to the tolerance. It
1276 	 * will be processed later by the hardclock() routine.
1277 	 */
1278 	v_usec = (v_usec >> 1) - pps_stabil;
1279 	if (v_usec < 0)
1280 		pps_stabil -= -v_usec >> PPS_AVG;
1281 	else
1282 		pps_stabil += v_usec >> PPS_AVG;
1283 	if (pps_stabil > MAXFREQ >> 2) {
1284 		pps_stbcnt++;
1285 		time_status |= STA_PPSWANDER;
1286 		return;
1287 	}
1288 	if (time_status & STA_PPSFREQ) {
1289 		if (u_usec < 0) {
1290 			pps_freq -= -u_usec >> PPS_AVG;
1291 			if (pps_freq < -time_tolerance)
1292 				pps_freq = -time_tolerance;
1293 			u_usec = -u_usec;
1294 		} else {
1295 			pps_freq += u_usec >> PPS_AVG;
1296 			if (pps_freq > time_tolerance)
1297 				pps_freq = time_tolerance;
1298 		}
1299 	}
1300 
1301 	/*
1302 	 * Here the calibration interval is adjusted. If the maximum
1303 	 * time difference is greater than tick / 4, reduce the interval
1304 	 * by half. If this is not the case for four consecutive
1305 	 * intervals, double the interval.
1306 	 */
1307 	if (u_usec << pps_shift > bigtick >> 2) {
1308 		pps_intcnt = 0;
1309 		if (pps_shift > PPS_SHIFT)
1310 			pps_shift--;
1311 	} else if (pps_intcnt >= 4) {
1312 		pps_intcnt = 0;
1313 		if (pps_shift < PPS_SHIFTMAX)
1314 			pps_shift++;
1315 	} else
1316 		pps_intcnt++;
1317 }
1318 #endif /* PPS_SYNC */
1319 #endif /* NTP  */
1320 
1321 
1322 /*
1323  * Return information about system clocks.
1324  */
1325 int
1326 sysctl_clockrate(where, sizep)
1327 	register char *where;
1328 	size_t *sizep;
1329 {
1330 	struct clockinfo clkinfo;
1331 
1332 	/*
1333 	 * Construct clockinfo structure.
1334 	 */
1335 	clkinfo.tick = tick;
1336 	clkinfo.tickadj = tickadj;
1337 	clkinfo.hz = hz;
1338 	clkinfo.profhz = profhz;
1339 	clkinfo.stathz = stathz ? stathz : hz;
1340 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1341 }
1342 
1343 #ifdef DDB
1344 #include <machine/db_machdep.h>
1345 
1346 #include <ddb/db_interface.h>
1347 #include <ddb/db_access.h>
1348 #include <ddb/db_sym.h>
1349 #include <ddb/db_output.h>
1350 
1351 void db_show_callout(addr, haddr, count, modif)
1352 	db_expr_t addr;
1353 	int haddr;
1354 	db_expr_t count;
1355 	char *modif;
1356 {
1357 	register struct callout *p1;
1358 	register int	cum;
1359 	register int	s;
1360 	db_expr_t	offset;
1361 	char		*name;
1362 
1363         db_printf("      cum     ticks      arg  func\n");
1364 	s = splhigh();
1365 	for (cum = 0, p1 = calltodo.c_next; p1; p1 = p1->c_next) {
1366 		register int t = p1->c_time;
1367 
1368 		if (t > 0)
1369 			cum += t;
1370 
1371 		db_find_sym_and_offset((db_addr_t)p1->c_func, &name, &offset);
1372 		if (name == NULL)
1373 			name = "?";
1374 
1375                 db_printf("%9d %9d %8x  %s (%x)\n",
1376 			  cum, t, p1->c_arg, name, p1->c_func);
1377 	}
1378 	splx(s);
1379 }
1380 #endif
1381