1 /* $OpenBSD: kern_clock.c,v 1.35 2002/04/24 21:53:12 espie Exp $ */ 2 /* $NetBSD: kern_clock.c,v 1.34 1996/06/09 04:51:03 briggs Exp $ */ 3 4 /*- 5 * Copyright (c) 1982, 1986, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 42 */ 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/dkstat.h> 47 #include <sys/timeout.h> 48 #include <sys/kernel.h> 49 #include <sys/limits.h> 50 #include <sys/proc.h> 51 #include <sys/resourcevar.h> 52 #include <sys/signalvar.h> 53 #include <uvm/uvm_extern.h> 54 #include <sys/sysctl.h> 55 #include <sys/timex.h> 56 #include <sys/sched.h> 57 58 #include <machine/cpu.h> 59 60 #ifdef GPROF 61 #include <sys/gmon.h> 62 #endif 63 64 /* 65 * Clock handling routines. 66 * 67 * This code is written to operate with two timers that run independently of 68 * each other. The main clock, running hz times per second, is used to keep 69 * track of real time. The second timer handles kernel and user profiling, 70 * and does resource use estimation. If the second timer is programmable, 71 * it is randomized to avoid aliasing between the two clocks. For example, 72 * the randomization prevents an adversary from always giving up the cpu 73 * just before its quantum expires. Otherwise, it would never accumulate 74 * cpu ticks. The mean frequency of the second timer is stathz. 75 * 76 * If no second timer exists, stathz will be zero; in this case we drive 77 * profiling and statistics off the main clock. This WILL NOT be accurate; 78 * do not do it unless absolutely necessary. 79 * 80 * The statistics clock may (or may not) be run at a higher rate while 81 * profiling. This profile clock runs at profhz. We require that profhz 82 * be an integral multiple of stathz. 83 * 84 * If the statistics clock is running fast, it must be divided by the ratio 85 * profhz/stathz for statistics. (For profiling, every tick counts.) 86 */ 87 88 #ifdef NTP /* NTP phase-locked loop in kernel */ 89 /* 90 * Phase/frequency-lock loop (PLL/FLL) definitions 91 * 92 * The following variables are read and set by the ntp_adjtime() system 93 * call. 94 * 95 * time_state shows the state of the system clock, with values defined 96 * in the timex.h header file. 97 * 98 * time_status shows the status of the system clock, with bits defined 99 * in the timex.h header file. 100 * 101 * time_offset is used by the PLL/FLL to adjust the system time in small 102 * increments. 103 * 104 * time_constant determines the bandwidth or "stiffness" of the PLL. 105 * 106 * time_tolerance determines maximum frequency error or tolerance of the 107 * CPU clock oscillator and is a property of the architecture; however, 108 * in principle it could change as result of the presence of external 109 * discipline signals, for instance. 110 * 111 * time_precision is usually equal to the kernel tick variable; however, 112 * in cases where a precision clock counter or external clock is 113 * available, the resolution can be much less than this and depend on 114 * whether the external clock is working or not. 115 * 116 * time_maxerror is initialized by a ntp_adjtime() call and increased by 117 * the kernel once each second to reflect the maximum error bound 118 * growth. 119 * 120 * time_esterror is set and read by the ntp_adjtime() call, but 121 * otherwise not used by the kernel. 122 */ 123 int time_state = TIME_OK; /* clock state */ 124 int time_status = STA_UNSYNC; /* clock status bits */ 125 long time_offset = 0; /* time offset (us) */ 126 long time_constant = 0; /* pll time constant */ 127 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 128 long time_precision; /* clock precision (us) */ 129 long time_maxerror = MAXPHASE; /* maximum error (us) */ 130 long time_esterror = MAXPHASE; /* estimated error (us) */ 131 132 /* 133 * The following variables establish the state of the PLL/FLL and the 134 * residual time and frequency offset of the local clock. The scale 135 * factors are defined in the timex.h header file. 136 * 137 * time_phase and time_freq are the phase increment and the frequency 138 * increment, respectively, of the kernel time variable. 139 * 140 * time_freq is set via ntp_adjtime() from a value stored in a file when 141 * the synchronization daemon is first started. Its value is retrieved 142 * via ntp_adjtime() and written to the file about once per hour by the 143 * daemon. 144 * 145 * time_adj is the adjustment added to the value of tick at each timer 146 * interrupt and is recomputed from time_phase and time_freq at each 147 * seconds rollover. 148 * 149 * time_reftime is the second's portion of the system time at the last 150 * call to ntp_adjtime(). It is used to adjust the time_freq variable 151 * and to increase the time_maxerror as the time since last update 152 * increases. 153 */ 154 long time_phase = 0; /* phase offset (scaled us) */ 155 long time_freq = 0; /* frequency offset (scaled ppm) */ 156 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 157 long time_reftime = 0; /* time at last adjustment (s) */ 158 159 #ifdef PPS_SYNC 160 /* 161 * The following variables are used only if the kernel PPS discipline 162 * code is configured (PPS_SYNC). The scale factors are defined in the 163 * timex.h header file. 164 * 165 * pps_time contains the time at each calibration interval, as read by 166 * microtime(). pps_count counts the seconds of the calibration 167 * interval, the duration of which is nominally pps_shift in powers of 168 * two. 169 * 170 * pps_offset is the time offset produced by the time median filter 171 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 172 * this filter. 173 * 174 * pps_freq is the frequency offset produced by the frequency median 175 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 176 * by this filter. 177 * 178 * pps_usec is latched from a high resolution counter or external clock 179 * at pps_time. Here we want the hardware counter contents only, not the 180 * contents plus the time_tv.usec as usual. 181 * 182 * pps_valid counts the number of seconds since the last PPS update. It 183 * is used as a watchdog timer to disable the PPS discipline should the 184 * PPS signal be lost. 185 * 186 * pps_glitch counts the number of seconds since the beginning of an 187 * offset burst more than tick/2 from current nominal offset. It is used 188 * mainly to suppress error bursts due to priority conflicts between the 189 * PPS interrupt and timer interrupt. 190 * 191 * pps_intcnt counts the calibration intervals for use in the interval- 192 * adaptation algorithm. It's just too complicated for words. 193 */ 194 struct timeval pps_time; /* kernel time at last interval */ 195 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 196 long pps_offset = 0; /* pps time offset (us) */ 197 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 198 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 199 long pps_freq = 0; /* frequency offset (scaled ppm) */ 200 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 201 long pps_usec = 0; /* microsec counter at last interval */ 202 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 203 int pps_glitch = 0; /* pps signal glitch counter */ 204 int pps_count = 0; /* calibration interval counter (s) */ 205 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 206 int pps_intcnt = 0; /* intervals at current duration */ 207 208 /* 209 * PPS signal quality monitors 210 * 211 * pps_jitcnt counts the seconds that have been discarded because the 212 * jitter measured by the time median filter exceeds the limit MAXTIME 213 * (100 us). 214 * 215 * pps_calcnt counts the frequency calibration intervals, which are 216 * variable from 4 s to 256 s. 217 * 218 * pps_errcnt counts the calibration intervals which have been discarded 219 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 220 * calibration interval jitter exceeds two ticks. 221 * 222 * pps_stbcnt counts the calibration intervals that have been discarded 223 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 224 */ 225 long pps_jitcnt = 0; /* jitter limit exceeded */ 226 long pps_calcnt = 0; /* calibration intervals */ 227 long pps_errcnt = 0; /* calibration errors */ 228 long pps_stbcnt = 0; /* stability limit exceeded */ 229 #endif /* PPS_SYNC */ 230 231 #ifdef EXT_CLOCK 232 /* 233 * External clock definitions 234 * 235 * The following definitions and declarations are used only if an 236 * external clock is configured on the system. 237 */ 238 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 239 240 /* 241 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 242 * interrupt and decremented once each second. 243 */ 244 int clock_count = 0; /* CPU clock counter */ 245 246 #ifdef HIGHBALL 247 /* 248 * The clock_offset and clock_cpu variables are used by the HIGHBALL 249 * interface. The clock_offset variable defines the offset between 250 * system time and the HIGBALL counters. The clock_cpu variable contains 251 * the offset between the system clock and the HIGHBALL clock for use in 252 * disciplining the kernel time variable. 253 */ 254 extern struct timeval clock_offset; /* Highball clock offset */ 255 long clock_cpu = 0; /* CPU clock adjust */ 256 #endif /* HIGHBALL */ 257 #endif /* EXT_CLOCK */ 258 #endif /* NTP */ 259 260 261 /* 262 * Bump a timeval by a small number of usec's. 263 */ 264 #define BUMPTIME(t, usec) { \ 265 register volatile struct timeval *tp = (t); \ 266 register long us; \ 267 \ 268 tp->tv_usec = us = tp->tv_usec + (usec); \ 269 if (us >= 1000000) { \ 270 tp->tv_usec = us - 1000000; \ 271 tp->tv_sec++; \ 272 } \ 273 } 274 275 int stathz; 276 int schedhz; 277 int profhz; 278 int profprocs; 279 int ticks; 280 static int psdiv, pscnt; /* prof => stat divider */ 281 int psratio; /* ratio: prof / stat */ 282 int tickfix, tickfixinterval; /* used if tick not really integral */ 283 #ifndef NTP 284 static int tickfixcnt; /* accumulated fractional error */ 285 #else 286 int fixtick; /* used by NTP for same */ 287 int shifthz; 288 #endif 289 290 volatile struct timeval time; 291 volatile struct timeval mono_time; 292 293 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 294 void *softclock_si; 295 void generic_softclock(void *); 296 297 void 298 generic_softclock(void *ignore) 299 { 300 /* 301 * XXX - dont' commit, just a dummy wrapper until we learn everyone 302 * deal with a changed proto for softclock(). 303 */ 304 softclock(); 305 } 306 #endif 307 308 /* 309 * Initialize clock frequencies and start both clocks running. 310 */ 311 void 312 initclocks() 313 { 314 int i; 315 316 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 317 softclock_si = softintr_establish(IPL_SOFTCLOCK, generic_softclock, NULL); 318 if (softclock_si == NULL) 319 panic("initclocks: unable to register softclock intr"); 320 #endif 321 322 /* 323 * Set divisors to 1 (normal case) and let the machine-specific 324 * code do its bit. 325 */ 326 psdiv = pscnt = 1; 327 cpu_initclocks(); 328 329 /* 330 * Compute profhz/stathz, and fix profhz if needed. 331 */ 332 i = stathz ? stathz : hz; 333 if (profhz == 0) 334 profhz = i; 335 psratio = profhz / i; 336 337 #ifdef NTP 338 if (time_precision == 0) 339 time_precision = tick; 340 341 switch (hz) { 342 case 60: 343 case 64: 344 shifthz = SHIFT_SCALE - 6; 345 break; 346 case 96: 347 case 100: 348 case 128: 349 shifthz = SHIFT_SCALE - 7; 350 break; 351 case 256: 352 shifthz = SHIFT_SCALE - 8; 353 break; 354 case 1024: 355 shifthz = SHIFT_SCALE - 10; 356 break; 357 case 1200: 358 shifthz = SHIFT_SCALE - 11; 359 break; 360 default: 361 panic("weird hz"); 362 } 363 #endif 364 } 365 366 /* 367 * The real-time timer, interrupting hz times per second. 368 */ 369 void 370 hardclock(frame) 371 register struct clockframe *frame; 372 { 373 register struct proc *p; 374 register int delta; 375 extern int tickdelta; 376 extern long timedelta; 377 #ifdef NTP 378 register int time_update; 379 struct timeval newtime; 380 register int ltemp; 381 #endif 382 383 p = curproc; 384 if (p) { 385 register struct pstats *pstats; 386 387 /* 388 * Run current process's virtual and profile time, as needed. 389 */ 390 pstats = p->p_stats; 391 if (CLKF_USERMODE(frame) && 392 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 393 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 394 psignal(p, SIGVTALRM); 395 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 396 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 397 psignal(p, SIGPROF); 398 } 399 400 /* 401 * If no separate statistics clock is available, run it from here. 402 */ 403 if (stathz == 0) 404 statclock(frame); 405 406 /* 407 * Increment the time-of-day. The increment is normally just 408 * ``tick''. If the machine is one which has a clock frequency 409 * such that ``hz'' would not divide the second evenly into 410 * milliseconds, a periodic adjustment must be applied. Finally, 411 * if we are still adjusting the time (see adjtime()), 412 * ``tickdelta'' may also be added in. 413 */ 414 ticks++; 415 delta = tick; 416 417 #ifndef NTP 418 if (tickfix) { 419 tickfixcnt += tickfix; 420 if (tickfixcnt >= tickfixinterval) { 421 delta++; 422 tickfixcnt -= tickfixinterval; 423 } 424 } 425 #else 426 newtime = time; 427 #endif /* !NTP */ 428 /* Imprecise 4bsd adjtime() handling */ 429 if (timedelta != 0) { 430 delta += tickdelta; 431 timedelta -= tickdelta; 432 } 433 434 #ifdef notyet 435 microset(); 436 #endif 437 438 #ifndef NTP 439 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 440 #endif 441 BUMPTIME(&mono_time, delta); 442 443 #ifdef NTP 444 time_update = delta; 445 446 /* 447 * Compute the phase adjustment. If the low-order bits 448 * (time_phase) of the update overflow, bump the high-order bits 449 * (time_update). 450 */ 451 time_phase += time_adj; 452 if (time_phase <= -FINEUSEC) { 453 ltemp = -time_phase >> SHIFT_SCALE; 454 time_phase += ltemp << SHIFT_SCALE; 455 time_update -= ltemp; 456 } else if (time_phase >= FINEUSEC) { 457 ltemp = time_phase >> SHIFT_SCALE; 458 time_phase -= ltemp << SHIFT_SCALE; 459 time_update += ltemp; 460 } 461 462 #ifdef HIGHBALL 463 /* 464 * If the HIGHBALL board is installed, we need to adjust the 465 * external clock offset in order to close the hardware feedback 466 * loop. This will adjust the external clock phase and frequency 467 * in small amounts. The additional phase noise and frequency 468 * wander this causes should be minimal. We also need to 469 * discipline the kernel time variable, since the PLL is used to 470 * discipline the external clock. If the Highball board is not 471 * present, we discipline kernel time with the PLL as usual. We 472 * assume that the external clock phase adjustment (time_update) 473 * and kernel phase adjustment (clock_cpu) are less than the 474 * value of tick. 475 */ 476 clock_offset.tv_usec += time_update; 477 if (clock_offset.tv_usec >= 1000000) { 478 clock_offset.tv_sec++; 479 clock_offset.tv_usec -= 1000000; 480 } 481 if (clock_offset.tv_usec < 0) { 482 clock_offset.tv_sec--; 483 clock_offset.tv_usec += 1000000; 484 } 485 newtime.tv_usec += clock_cpu; 486 clock_cpu = 0; 487 #else 488 newtime.tv_usec += time_update; 489 #endif /* HIGHBALL */ 490 491 /* 492 * On rollover of the second the phase adjustment to be used for 493 * the next second is calculated. Also, the maximum error is 494 * increased by the tolerance. If the PPS frequency discipline 495 * code is present, the phase is increased to compensate for the 496 * CPU clock oscillator frequency error. 497 * 498 * On a 32-bit machine and given parameters in the timex.h 499 * header file, the maximum phase adjustment is +-512 ms and 500 * maximum frequency offset is a tad less than) +-512 ppm. On a 501 * 64-bit machine, you shouldn't need to ask. 502 */ 503 if (newtime.tv_usec >= 1000000) { 504 newtime.tv_usec -= 1000000; 505 newtime.tv_sec++; 506 time_maxerror += time_tolerance >> SHIFT_USEC; 507 508 /* 509 * Leap second processing. If in leap-insert state at 510 * the end of the day, the system clock is set back one 511 * second; if in leap-delete state, the system clock is 512 * set ahead one second. The microtime() routine or 513 * external clock driver will insure that reported time 514 * is always monotonic. The ugly divides should be 515 * replaced. 516 */ 517 switch (time_state) { 518 case TIME_OK: 519 if (time_status & STA_INS) 520 time_state = TIME_INS; 521 else if (time_status & STA_DEL) 522 time_state = TIME_DEL; 523 break; 524 525 case TIME_INS: 526 if (newtime.tv_sec % 86400 == 0) { 527 newtime.tv_sec--; 528 time_state = TIME_OOP; 529 } 530 break; 531 532 case TIME_DEL: 533 if ((newtime.tv_sec + 1) % 86400 == 0) { 534 newtime.tv_sec++; 535 time_state = TIME_WAIT; 536 } 537 break; 538 539 case TIME_OOP: 540 time_state = TIME_WAIT; 541 break; 542 543 case TIME_WAIT: 544 if (!(time_status & (STA_INS | STA_DEL))) 545 time_state = TIME_OK; 546 break; 547 } 548 549 /* 550 * Compute the phase adjustment for the next second. In 551 * PLL mode, the offset is reduced by a fixed factor 552 * times the time constant. In FLL mode the offset is 553 * used directly. In either mode, the maximum phase 554 * adjustment for each second is clamped so as to spread 555 * the adjustment over not more than the number of 556 * seconds between updates. 557 */ 558 if (time_offset < 0) { 559 ltemp = -time_offset; 560 if (!(time_status & STA_FLL)) 561 ltemp >>= SHIFT_KG + time_constant; 562 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 563 ltemp = (MAXPHASE / MINSEC) << 564 SHIFT_UPDATE; 565 time_offset += ltemp; 566 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 567 } else if (time_offset > 0) { 568 ltemp = time_offset; 569 if (!(time_status & STA_FLL)) 570 ltemp >>= SHIFT_KG + time_constant; 571 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 572 ltemp = (MAXPHASE / MINSEC) << 573 SHIFT_UPDATE; 574 time_offset -= ltemp; 575 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 576 } else 577 time_adj = 0; 578 579 /* 580 * Compute the frequency estimate and additional phase 581 * adjustment due to frequency error for the next 582 * second. When the PPS signal is engaged, gnaw on the 583 * watchdog counter and update the frequency computed by 584 * the pll and the PPS signal. 585 */ 586 #ifdef PPS_SYNC 587 pps_valid++; 588 if (pps_valid >= PPS_VALID) { 589 pps_valid = PPS_VALID; /* Avoid possible overflow */ 590 pps_jitter = MAXTIME; 591 pps_stabil = MAXFREQ; 592 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 593 STA_PPSWANDER | STA_PPSERROR); 594 } 595 ltemp = time_freq + pps_freq; 596 #else 597 ltemp = time_freq; 598 #endif /* PPS_SYNC */ 599 600 if (ltemp < 0) 601 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 602 else 603 time_adj += ltemp >> (SHIFT_USEC - shifthz); 604 time_adj += (long)fixtick << shifthz; 605 606 /* 607 * When the CPU clock oscillator frequency is not a 608 * power of 2 in Hz, shifthz is only an approximate 609 * scale factor. 610 */ 611 switch (hz) { 612 case 96: 613 case 100: 614 /* 615 * In the following code the overall gain is increased 616 * by a factor of 1.25, which results in a residual 617 * error less than 3 percent. 618 */ 619 if (time_adj < 0) 620 time_adj -= -time_adj >> 2; 621 else 622 time_adj += time_adj >> 2; 623 break; 624 case 60: 625 /* 626 * 60 Hz m68k and vaxes have a PLL gain factor of of 627 * 60/64 (15/16) of what it should be. In the following code 628 * the overall gain is increased by a factor of 1.0625, 629 * (17/16) which results in a residual error of just less 630 * than 0.4 percent. 631 */ 632 if (time_adj < 0) 633 time_adj -= -time_adj >> 4; 634 else 635 time_adj += time_adj >> 4; 636 break; 637 } 638 639 #ifdef EXT_CLOCK 640 /* 641 * If an external clock is present, it is necessary to 642 * discipline the kernel time variable anyway, since not 643 * all system components use the microtime() interface. 644 * Here, the time offset between the external clock and 645 * kernel time variable is computed every so often. 646 */ 647 clock_count++; 648 if (clock_count > CLOCK_INTERVAL) { 649 clock_count = 0; 650 microtime(&clock_ext); 651 delta.tv_sec = clock_ext.tv_sec - newtime.tv_sec; 652 delta.tv_usec = clock_ext.tv_usec - newtime.tv_usec; 653 if (delta.tv_usec < 0) 654 delta.tv_sec--; 655 if (delta.tv_usec >= 500000) { 656 delta.tv_usec -= 1000000; 657 delta.tv_sec++; 658 } 659 if (delta.tv_usec < -500000) { 660 delta.tv_usec += 1000000; 661 delta.tv_sec--; 662 } 663 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 664 delta.tv_usec > MAXPHASE) || 665 delta.tv_sec < -1 || (delta.tv_sec == -1 && 666 delta.tv_usec < -MAXPHASE)) { 667 newtime = clock_ext; 668 delta.tv_sec = 0; 669 delta.tv_usec = 0; 670 } 671 #ifdef HIGHBALL 672 clock_cpu = delta.tv_usec; 673 #else /* HIGHBALL */ 674 hardupdate(delta.tv_usec); 675 #endif /* HIGHBALL */ 676 } 677 #endif /* EXT_CLOCK */ 678 } 679 680 #ifdef CPU_CLOCKUPDATE 681 CPU_CLOCKUPDATE(&time, &newtime); 682 #else 683 time = newtime; 684 #endif 685 686 #endif /* NTP */ 687 688 /* 689 * Update real-time timeout queue. 690 * Process callouts at a very low cpu priority, so we don't keep the 691 * relatively high clock interrupt priority any longer than necessary. 692 */ 693 if (timeout_hardclock_update()) { 694 if (CLKF_BASEPRI(frame)) { 695 /* 696 * Save the overhead of a software interrupt; 697 * it will happen as soon as we return, so do it now. 698 */ 699 spllowersoftclock(); 700 softclock(); 701 } else { 702 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 703 softintr_schedule(softclock_si); 704 #else 705 setsoftclock(); 706 #endif 707 } 708 } 709 } 710 711 /* 712 * Compute number of hz until specified time. Used to 713 * compute the second argument to timeout_add() from an absolute time. 714 */ 715 int 716 hzto(tv) 717 struct timeval *tv; 718 { 719 unsigned long ticks; 720 long sec, usec; 721 int s; 722 723 /* 724 * If the number of usecs in the whole seconds part of the time 725 * difference fits in a long, then the total number of usecs will 726 * fit in an unsigned long. Compute the total and convert it to 727 * ticks, rounding up and adding 1 to allow for the current tick 728 * to expire. Rounding also depends on unsigned long arithmetic 729 * to avoid overflow. 730 * 731 * Otherwise, if the number of ticks in the whole seconds part of 732 * the time difference fits in a long, then convert the parts to 733 * ticks separately and add, using similar rounding methods and 734 * overflow avoidance. This method would work in the previous 735 * case but it is slightly slower and assumes that hz is integral. 736 * 737 * Otherwise, round the time difference down to the maximum 738 * representable value. 739 * 740 * If ints have 32 bits, then the maximum value for any timeout in 741 * 10ms ticks is 248 days. 742 */ 743 s = splhigh(); 744 sec = tv->tv_sec - time.tv_sec; 745 usec = tv->tv_usec - time.tv_usec; 746 splx(s); 747 if (usec < 0) { 748 sec--; 749 usec += 1000000; 750 } 751 if (sec < 0 || (sec == 0 && usec <= 0)) { 752 ticks = 0; 753 } else if (sec <= LONG_MAX / 1000000) 754 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 755 / tick + 1; 756 else if (sec <= LONG_MAX / hz) 757 ticks = sec * hz 758 + ((unsigned long)usec + (tick - 1)) / tick + 1; 759 else 760 ticks = LONG_MAX; 761 if (ticks > INT_MAX) 762 ticks = INT_MAX; 763 return ((int)ticks); 764 } 765 766 /* 767 * Compute number of hz in the specified amount of time. 768 */ 769 int 770 tvtohz(struct timeval *tv) 771 { 772 unsigned long ticks; 773 long sec, usec; 774 775 /* 776 * If the number of usecs in the whole seconds part of the time 777 * fits in a long, then the total number of usecs will 778 * fit in an unsigned long. Compute the total and convert it to 779 * ticks, rounding up and adding 1 to allow for the current tick 780 * to expire. Rounding also depends on unsigned long arithmetic 781 * to avoid overflow. 782 * 783 * Otherwise, if the number of ticks in the whole seconds part of 784 * the time fits in a long, then convert the parts to 785 * ticks separately and add, using similar rounding methods and 786 * overflow avoidance. This method would work in the previous 787 * case but it is slightly slower and assumes that hz is integral. 788 * 789 * Otherwise, round the time down to the maximum 790 * representable value. 791 * 792 * If ints have 32 bits, then the maximum value for any timeout in 793 * 10ms ticks is 248 days. 794 */ 795 sec = tv->tv_sec; 796 usec = tv->tv_usec; 797 if (sec < 0 || (sec == 0 && usec <= 0)) 798 ticks = 0; 799 else if (sec <= LONG_MAX / 1000000) 800 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 801 / tick + 1; 802 else if (sec <= LONG_MAX / hz) 803 ticks = sec * hz 804 + ((unsigned long)usec + (tick - 1)) / tick + 1; 805 else 806 ticks = LONG_MAX; 807 if (ticks > INT_MAX) 808 ticks = INT_MAX; 809 return ((int)ticks); 810 } 811 812 /* 813 * Start profiling on a process. 814 * 815 * Kernel profiling passes proc0 which never exits and hence 816 * keeps the profile clock running constantly. 817 */ 818 void 819 startprofclock(p) 820 register struct proc *p; 821 { 822 int s; 823 824 if ((p->p_flag & P_PROFIL) == 0) { 825 p->p_flag |= P_PROFIL; 826 if (++profprocs == 1 && stathz != 0) { 827 s = splstatclock(); 828 psdiv = pscnt = psratio; 829 setstatclockrate(profhz); 830 splx(s); 831 } 832 } 833 } 834 835 /* 836 * Stop profiling on a process. 837 */ 838 void 839 stopprofclock(p) 840 register struct proc *p; 841 { 842 int s; 843 844 if (p->p_flag & P_PROFIL) { 845 p->p_flag &= ~P_PROFIL; 846 if (--profprocs == 0 && stathz != 0) { 847 s = splstatclock(); 848 psdiv = pscnt = 1; 849 setstatclockrate(stathz); 850 splx(s); 851 } 852 } 853 } 854 855 /* 856 * Statistics clock. Grab profile sample, and if divider reaches 0, 857 * do process and kernel statistics. 858 */ 859 void 860 statclock(frame) 861 register struct clockframe *frame; 862 { 863 #ifdef GPROF 864 register struct gmonparam *g; 865 register int i; 866 #endif 867 static int schedclk; 868 register struct proc *p; 869 870 if (CLKF_USERMODE(frame)) { 871 p = curproc; 872 if (p->p_flag & P_PROFIL) 873 addupc_intr(p, CLKF_PC(frame), 1); 874 if (--pscnt > 0) 875 return; 876 /* 877 * Came from user mode; CPU was in user state. 878 * If this process is being profiled record the tick. 879 */ 880 p->p_uticks++; 881 if (p->p_nice > NZERO) 882 cp_time[CP_NICE]++; 883 else 884 cp_time[CP_USER]++; 885 } else { 886 #ifdef GPROF 887 /* 888 * Kernel statistics are just like addupc_intr, only easier. 889 */ 890 g = &_gmonparam; 891 if (g->state == GMON_PROF_ON) { 892 i = CLKF_PC(frame) - g->lowpc; 893 if (i < g->textsize) { 894 i /= HISTFRACTION * sizeof(*g->kcount); 895 g->kcount[i]++; 896 } 897 } 898 #endif 899 if (--pscnt > 0) 900 return; 901 /* 902 * Came from kernel mode, so we were: 903 * - handling an interrupt, 904 * - doing syscall or trap work on behalf of the current 905 * user process, or 906 * - spinning in the idle loop. 907 * Whichever it is, charge the time as appropriate. 908 * Note that we charge interrupts to the current process, 909 * regardless of whether they are ``for'' that process, 910 * so that we know how much of its real time was spent 911 * in ``non-process'' (i.e., interrupt) work. 912 */ 913 p = curproc; 914 if (CLKF_INTR(frame)) { 915 if (p != NULL) 916 p->p_iticks++; 917 cp_time[CP_INTR]++; 918 } else if (p != NULL) { 919 p->p_sticks++; 920 cp_time[CP_SYS]++; 921 } else 922 cp_time[CP_IDLE]++; 923 } 924 pscnt = psdiv; 925 926 if (p != NULL) { 927 p->p_cpticks++; 928 /* 929 * If no schedclock is provided, call it here at ~~12-25 Hz; 930 * ~~16 Hz is best 931 */ 932 if (schedhz == 0) 933 if ((++schedclk & 3) == 0) 934 schedclock(p); 935 } 936 } 937 938 939 #ifdef NTP /* NTP phase-locked loop in kernel */ 940 941 /* 942 * hardupdate() - local clock update 943 * 944 * This routine is called by ntp_adjtime() to update the local clock 945 * phase and frequency. The implementation is of an adaptive-parameter, 946 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 947 * time and frequency offset estimates for each call. If the kernel PPS 948 * discipline code is configured (PPS_SYNC), the PPS signal itself 949 * determines the new time offset, instead of the calling argument. 950 * Presumably, calls to ntp_adjtime() occur only when the caller 951 * believes the local clock is valid within some bound (+-128 ms with 952 * NTP). If the caller's time is far different than the PPS time, an 953 * argument will ensue, and it's not clear who will lose. 954 * 955 * For uncompensated quartz crystal oscillatores and nominal update 956 * intervals less than 1024 s, operation should be in phase-lock mode 957 * (STA_FLL = 0), where the loop is disciplined to phase. For update 958 * intervals greater than this, operation should be in frequency-lock 959 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 960 * 961 * Note: splclock() is in effect. 962 */ 963 void 964 hardupdate(offset) 965 long offset; 966 { 967 long ltemp, mtemp; 968 969 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 970 return; 971 ltemp = offset; 972 #ifdef PPS_SYNC 973 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 974 ltemp = pps_offset; 975 #endif /* PPS_SYNC */ 976 977 /* 978 * Scale the phase adjustment and clamp to the operating range. 979 */ 980 if (ltemp > MAXPHASE) 981 time_offset = MAXPHASE << SHIFT_UPDATE; 982 else if (ltemp < -MAXPHASE) 983 time_offset = -(MAXPHASE << SHIFT_UPDATE); 984 else 985 time_offset = ltemp << SHIFT_UPDATE; 986 987 /* 988 * Select whether the frequency is to be controlled and in which 989 * mode (PLL or FLL). Clamp to the operating range. Ugly 990 * multiply/divide should be replaced someday. 991 */ 992 if (time_status & STA_FREQHOLD || time_reftime == 0) 993 time_reftime = time.tv_sec; 994 mtemp = time.tv_sec - time_reftime; 995 time_reftime = time.tv_sec; 996 if (time_status & STA_FLL) { 997 if (mtemp >= MINSEC) { 998 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 999 SHIFT_UPDATE)); 1000 if (ltemp < 0) 1001 time_freq -= -ltemp >> SHIFT_KH; 1002 else 1003 time_freq += ltemp >> SHIFT_KH; 1004 } 1005 } else { 1006 if (mtemp < MAXSEC) { 1007 ltemp *= mtemp; 1008 if (ltemp < 0) 1009 time_freq -= -ltemp >> (time_constant + 1010 time_constant + SHIFT_KF - 1011 SHIFT_USEC); 1012 else 1013 time_freq += ltemp >> (time_constant + 1014 time_constant + SHIFT_KF - 1015 SHIFT_USEC); 1016 } 1017 } 1018 if (time_freq > time_tolerance) 1019 time_freq = time_tolerance; 1020 else if (time_freq < -time_tolerance) 1021 time_freq = -time_tolerance; 1022 } 1023 1024 #ifdef PPS_SYNC 1025 /* 1026 * hardpps() - discipline CPU clock oscillator to external PPS signal 1027 * 1028 * This routine is called at each PPS interrupt in order to discipline 1029 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 1030 * and leaves it in a handy spot for the hardclock() routine. It 1031 * integrates successive PPS phase differences and calculates the 1032 * frequency offset. This is used in hardclock() to discipline the CPU 1033 * clock oscillator so that intrinsic frequency error is cancelled out. 1034 * The code requires the caller to capture the time and hardware counter 1035 * value at the on-time PPS signal transition. 1036 * 1037 * Note that, on some Unix systems, this routine runs at an interrupt 1038 * priority level higher than the timer interrupt routine hardclock(). 1039 * Therefore, the variables used are distinct from the hardclock() 1040 * variables, except for certain exceptions: The PPS frequency pps_freq 1041 * and phase pps_offset variables are determined by this routine and 1042 * updated atomically. The time_tolerance variable can be considered a 1043 * constant, since it is infrequently changed, and then only when the 1044 * PPS signal is disabled. The watchdog counter pps_valid is updated 1045 * once per second by hardclock() and is atomically cleared in this 1046 * routine. 1047 */ 1048 void 1049 hardpps(tvp, usec) 1050 struct timeval *tvp; /* time at PPS */ 1051 long usec; /* hardware counter at PPS */ 1052 { 1053 long u_usec, v_usec, bigtick; 1054 long cal_sec, cal_usec; 1055 1056 /* 1057 * An occasional glitch can be produced when the PPS interrupt 1058 * occurs in the hardclock() routine before the time variable is 1059 * updated. Here the offset is discarded when the difference 1060 * between it and the last one is greater than tick/2, but not 1061 * if the interval since the first discard exceeds 30 s. 1062 */ 1063 time_status |= STA_PPSSIGNAL; 1064 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1065 pps_valid = 0; 1066 u_usec = -tvp->tv_usec; 1067 if (u_usec < -500000) 1068 u_usec += 1000000; 1069 v_usec = pps_offset - u_usec; 1070 if (v_usec < 0) 1071 v_usec = -v_usec; 1072 if (v_usec > (tick >> 1)) { 1073 if (pps_glitch > MAXGLITCH) { 1074 pps_glitch = 0; 1075 pps_tf[2] = u_usec; 1076 pps_tf[1] = u_usec; 1077 } else { 1078 pps_glitch++; 1079 u_usec = pps_offset; 1080 } 1081 } else 1082 pps_glitch = 0; 1083 1084 /* 1085 * A three-stage median filter is used to help deglitch the pps 1086 * time. The median sample becomes the time offset estimate; the 1087 * difference between the other two samples becomes the time 1088 * dispersion (jitter) estimate. 1089 */ 1090 pps_tf[2] = pps_tf[1]; 1091 pps_tf[1] = pps_tf[0]; 1092 pps_tf[0] = u_usec; 1093 if (pps_tf[0] > pps_tf[1]) { 1094 if (pps_tf[1] > pps_tf[2]) { 1095 pps_offset = pps_tf[1]; /* 0 1 2 */ 1096 v_usec = pps_tf[0] - pps_tf[2]; 1097 } else if (pps_tf[2] > pps_tf[0]) { 1098 pps_offset = pps_tf[0]; /* 2 0 1 */ 1099 v_usec = pps_tf[2] - pps_tf[1]; 1100 } else { 1101 pps_offset = pps_tf[2]; /* 0 2 1 */ 1102 v_usec = pps_tf[0] - pps_tf[1]; 1103 } 1104 } else { 1105 if (pps_tf[1] < pps_tf[2]) { 1106 pps_offset = pps_tf[1]; /* 2 1 0 */ 1107 v_usec = pps_tf[2] - pps_tf[0]; 1108 } else if (pps_tf[2] < pps_tf[0]) { 1109 pps_offset = pps_tf[0]; /* 1 0 2 */ 1110 v_usec = pps_tf[1] - pps_tf[2]; 1111 } else { 1112 pps_offset = pps_tf[2]; /* 1 2 0 */ 1113 v_usec = pps_tf[1] - pps_tf[0]; 1114 } 1115 } 1116 if (v_usec > MAXTIME) 1117 pps_jitcnt++; 1118 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1119 if (v_usec < 0) 1120 pps_jitter -= -v_usec >> PPS_AVG; 1121 else 1122 pps_jitter += v_usec >> PPS_AVG; 1123 if (pps_jitter > (MAXTIME >> 1)) 1124 time_status |= STA_PPSJITTER; 1125 1126 /* 1127 * During the calibration interval adjust the starting time when 1128 * the tick overflows. At the end of the interval compute the 1129 * duration of the interval and the difference of the hardware 1130 * counters at the beginning and end of the interval. This code 1131 * is deliciously complicated by the fact valid differences may 1132 * exceed the value of tick when using long calibration 1133 * intervals and small ticks. Note that the counter can be 1134 * greater than tick if caught at just the wrong instant, but 1135 * the values returned and used here are correct. 1136 */ 1137 bigtick = (long)tick << SHIFT_USEC; 1138 pps_usec -= pps_freq; 1139 if (pps_usec >= bigtick) 1140 pps_usec -= bigtick; 1141 if (pps_usec < 0) 1142 pps_usec += bigtick; 1143 pps_time.tv_sec++; 1144 pps_count++; 1145 if (pps_count < (1 << pps_shift)) 1146 return; 1147 pps_count = 0; 1148 pps_calcnt++; 1149 u_usec = usec << SHIFT_USEC; 1150 v_usec = pps_usec - u_usec; 1151 if (v_usec >= bigtick >> 1) 1152 v_usec -= bigtick; 1153 if (v_usec < -(bigtick >> 1)) 1154 v_usec += bigtick; 1155 if (v_usec < 0) 1156 v_usec = -(-v_usec >> pps_shift); 1157 else 1158 v_usec = v_usec >> pps_shift; 1159 pps_usec = u_usec; 1160 cal_sec = tvp->tv_sec; 1161 cal_usec = tvp->tv_usec; 1162 cal_sec -= pps_time.tv_sec; 1163 cal_usec -= pps_time.tv_usec; 1164 if (cal_usec < 0) { 1165 cal_usec += 1000000; 1166 cal_sec--; 1167 } 1168 pps_time = *tvp; 1169 1170 /* 1171 * Check for lost interrupts, noise, excessive jitter and 1172 * excessive frequency error. The number of timer ticks during 1173 * the interval may vary +-1 tick. Add to this a margin of one 1174 * tick for the PPS signal jitter and maximum frequency 1175 * deviation. If the limits are exceeded, the calibration 1176 * interval is reset to the minimum and we start over. 1177 */ 1178 u_usec = (long)tick << 1; 1179 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1180 || (cal_sec == 0 && cal_usec < u_usec)) 1181 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1182 pps_errcnt++; 1183 pps_shift = PPS_SHIFT; 1184 pps_intcnt = 0; 1185 time_status |= STA_PPSERROR; 1186 return; 1187 } 1188 1189 /* 1190 * A three-stage median filter is used to help deglitch the pps 1191 * frequency. The median sample becomes the frequency offset 1192 * estimate; the difference between the other two samples 1193 * becomes the frequency dispersion (stability) estimate. 1194 */ 1195 pps_ff[2] = pps_ff[1]; 1196 pps_ff[1] = pps_ff[0]; 1197 pps_ff[0] = v_usec; 1198 if (pps_ff[0] > pps_ff[1]) { 1199 if (pps_ff[1] > pps_ff[2]) { 1200 u_usec = pps_ff[1]; /* 0 1 2 */ 1201 v_usec = pps_ff[0] - pps_ff[2]; 1202 } else if (pps_ff[2] > pps_ff[0]) { 1203 u_usec = pps_ff[0]; /* 2 0 1 */ 1204 v_usec = pps_ff[2] - pps_ff[1]; 1205 } else { 1206 u_usec = pps_ff[2]; /* 0 2 1 */ 1207 v_usec = pps_ff[0] - pps_ff[1]; 1208 } 1209 } else { 1210 if (pps_ff[1] < pps_ff[2]) { 1211 u_usec = pps_ff[1]; /* 2 1 0 */ 1212 v_usec = pps_ff[2] - pps_ff[0]; 1213 } else if (pps_ff[2] < pps_ff[0]) { 1214 u_usec = pps_ff[0]; /* 1 0 2 */ 1215 v_usec = pps_ff[1] - pps_ff[2]; 1216 } else { 1217 u_usec = pps_ff[2]; /* 1 2 0 */ 1218 v_usec = pps_ff[1] - pps_ff[0]; 1219 } 1220 } 1221 1222 /* 1223 * Here the frequency dispersion (stability) is updated. If it 1224 * is less than one-fourth the maximum (MAXFREQ), the frequency 1225 * offset is updated as well, but clamped to the tolerance. It 1226 * will be processed later by the hardclock() routine. 1227 */ 1228 v_usec = (v_usec >> 1) - pps_stabil; 1229 if (v_usec < 0) 1230 pps_stabil -= -v_usec >> PPS_AVG; 1231 else 1232 pps_stabil += v_usec >> PPS_AVG; 1233 if (pps_stabil > MAXFREQ >> 2) { 1234 pps_stbcnt++; 1235 time_status |= STA_PPSWANDER; 1236 return; 1237 } 1238 if (time_status & STA_PPSFREQ) { 1239 if (u_usec < 0) { 1240 pps_freq -= -u_usec >> PPS_AVG; 1241 if (pps_freq < -time_tolerance) 1242 pps_freq = -time_tolerance; 1243 u_usec = -u_usec; 1244 } else { 1245 pps_freq += u_usec >> PPS_AVG; 1246 if (pps_freq > time_tolerance) 1247 pps_freq = time_tolerance; 1248 } 1249 } 1250 1251 /* 1252 * Here the calibration interval is adjusted. If the maximum 1253 * time difference is greater than tick / 4, reduce the interval 1254 * by half. If this is not the case for four consecutive 1255 * intervals, double the interval. 1256 */ 1257 if (u_usec << pps_shift > bigtick >> 2) { 1258 pps_intcnt = 0; 1259 if (pps_shift > PPS_SHIFT) 1260 pps_shift--; 1261 } else if (pps_intcnt >= 4) { 1262 pps_intcnt = 0; 1263 if (pps_shift < PPS_SHIFTMAX) 1264 pps_shift++; 1265 } else 1266 pps_intcnt++; 1267 } 1268 #endif /* PPS_SYNC */ 1269 #endif /* NTP */ 1270 1271 1272 /* 1273 * Return information about system clocks. 1274 */ 1275 int 1276 sysctl_clockrate(where, sizep) 1277 register char *where; 1278 size_t *sizep; 1279 { 1280 struct clockinfo clkinfo; 1281 1282 /* 1283 * Construct clockinfo structure. 1284 */ 1285 clkinfo.tick = tick; 1286 clkinfo.tickadj = tickadj; 1287 clkinfo.hz = hz; 1288 clkinfo.profhz = profhz; 1289 clkinfo.stathz = stathz ? stathz : hz; 1290 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1291 } 1292