xref: /openbsd-src/sys/kern/kern_clock.c (revision 4c366c49483bea72f8be132af77834ba3cb0b576)
1 /*	$OpenBSD: kern_clock.c,v 1.38 2002/07/03 21:19:08 miod Exp $	*/
2 /*	$NetBSD: kern_clock.c,v 1.34 1996/06/09 04:51:03 briggs Exp $	*/
3 
4 /*-
5  * Copyright (c) 1982, 1986, 1991, 1993
6  *	The Regents of the University of California.  All rights reserved.
7  * (c) UNIX System Laboratories, Inc.
8  * All or some portions of this file are derived from material licensed
9  * to the University of California by American Telephone and Telegraph
10  * Co. or Unix System Laboratories, Inc. and are reproduced herein with
11  * the permission of UNIX System Laboratories, Inc.
12  *
13  * Redistribution and use in source and binary forms, with or without
14  * modification, are permitted provided that the following conditions
15  * are met:
16  * 1. Redistributions of source code must retain the above copyright
17  *    notice, this list of conditions and the following disclaimer.
18  * 2. Redistributions in binary form must reproduce the above copyright
19  *    notice, this list of conditions and the following disclaimer in the
20  *    documentation and/or other materials provided with the distribution.
21  * 3. All advertising materials mentioning features or use of this software
22  *    must display the following acknowledgement:
23  *	This product includes software developed by the University of
24  *	California, Berkeley and its contributors.
25  * 4. Neither the name of the University nor the names of its contributors
26  *    may be used to endorse or promote products derived from this software
27  *    without specific prior written permission.
28  *
29  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
30  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
31  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
32  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
33  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
35  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
36  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
37  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
38  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
39  * SUCH DAMAGE.
40  *
41  *	@(#)kern_clock.c	8.5 (Berkeley) 1/21/94
42  */
43 
44 #include <sys/param.h>
45 #include <sys/systm.h>
46 #include <sys/dkstat.h>
47 #include <sys/timeout.h>
48 #include <sys/kernel.h>
49 #include <sys/limits.h>
50 #include <sys/proc.h>
51 #include <sys/resourcevar.h>
52 #include <sys/signalvar.h>
53 #include <uvm/uvm_extern.h>
54 #include <sys/sysctl.h>
55 #include <sys/timex.h>
56 #include <sys/sched.h>
57 
58 #include <machine/cpu.h>
59 
60 #ifdef GPROF
61 #include <sys/gmon.h>
62 #endif
63 
64 /*
65  * Clock handling routines.
66  *
67  * This code is written to operate with two timers that run independently of
68  * each other.  The main clock, running hz times per second, is used to keep
69  * track of real time.  The second timer handles kernel and user profiling,
70  * and does resource use estimation.  If the second timer is programmable,
71  * it is randomized to avoid aliasing between the two clocks.  For example,
72  * the randomization prevents an adversary from always giving up the cpu
73  * just before its quantum expires.  Otherwise, it would never accumulate
74  * cpu ticks.  The mean frequency of the second timer is stathz.
75  *
76  * If no second timer exists, stathz will be zero; in this case we drive
77  * profiling and statistics off the main clock.  This WILL NOT be accurate;
78  * do not do it unless absolutely necessary.
79  *
80  * The statistics clock may (or may not) be run at a higher rate while
81  * profiling.  This profile clock runs at profhz.  We require that profhz
82  * be an integral multiple of stathz.
83  *
84  * If the statistics clock is running fast, it must be divided by the ratio
85  * profhz/stathz for statistics.  (For profiling, every tick counts.)
86  */
87 
88 #ifdef NTP	/* NTP phase-locked loop in kernel */
89 /*
90  * Phase/frequency-lock loop (PLL/FLL) definitions
91  *
92  * The following variables are read and set by the ntp_adjtime() system
93  * call.
94  *
95  * time_state shows the state of the system clock, with values defined
96  * in the timex.h header file.
97  *
98  * time_status shows the status of the system clock, with bits defined
99  * in the timex.h header file.
100  *
101  * time_offset is used by the PLL/FLL to adjust the system time in small
102  * increments.
103  *
104  * time_constant determines the bandwidth or "stiffness" of the PLL.
105  *
106  * time_tolerance determines maximum frequency error or tolerance of the
107  * CPU clock oscillator and is a property of the architecture; however,
108  * in principle it could change as result of the presence of external
109  * discipline signals, for instance.
110  *
111  * time_precision is usually equal to the kernel tick variable; however,
112  * in cases where a precision clock counter or external clock is
113  * available, the resolution can be much less than this and depend on
114  * whether the external clock is working or not.
115  *
116  * time_maxerror is initialized by a ntp_adjtime() call and increased by
117  * the kernel once each second to reflect the maximum error bound
118  * growth.
119  *
120  * time_esterror is set and read by the ntp_adjtime() call, but
121  * otherwise not used by the kernel.
122  */
123 int time_state = TIME_OK;	/* clock state */
124 int time_status = STA_UNSYNC;	/* clock status bits */
125 long time_offset = 0;		/* time offset (us) */
126 long time_constant = 0;		/* pll time constant */
127 long time_tolerance = MAXFREQ;	/* frequency tolerance (scaled ppm) */
128 long time_precision;		/* clock precision (us) */
129 long time_maxerror = MAXPHASE;	/* maximum error (us) */
130 long time_esterror = MAXPHASE;	/* estimated error (us) */
131 
132 /*
133  * The following variables establish the state of the PLL/FLL and the
134  * residual time and frequency offset of the local clock. The scale
135  * factors are defined in the timex.h header file.
136  *
137  * time_phase and time_freq are the phase increment and the frequency
138  * increment, respectively, of the kernel time variable.
139  *
140  * time_freq is set via ntp_adjtime() from a value stored in a file when
141  * the synchronization daemon is first started. Its value is retrieved
142  * via ntp_adjtime() and written to the file about once per hour by the
143  * daemon.
144  *
145  * time_adj is the adjustment added to the value of tick at each timer
146  * interrupt and is recomputed from time_phase and time_freq at each
147  * seconds rollover.
148  *
149  * time_reftime is the second's portion of the system time at the last
150  * call to ntp_adjtime(). It is used to adjust the time_freq variable
151  * and to increase the time_maxerror as the time since last update
152  * increases.
153  */
154 long time_phase = 0;		/* phase offset (scaled us) */
155 long time_freq = 0;		/* frequency offset (scaled ppm) */
156 long time_adj = 0;		/* tick adjust (scaled 1 / hz) */
157 long time_reftime = 0;		/* time at last adjustment (s) */
158 
159 #ifdef PPS_SYNC
160 /*
161  * The following variables are used only if the kernel PPS discipline
162  * code is configured (PPS_SYNC). The scale factors are defined in the
163  * timex.h header file.
164  *
165  * pps_time contains the time at each calibration interval, as read by
166  * microtime(). pps_count counts the seconds of the calibration
167  * interval, the duration of which is nominally pps_shift in powers of
168  * two.
169  *
170  * pps_offset is the time offset produced by the time median filter
171  * pps_tf[], while pps_jitter is the dispersion (jitter) measured by
172  * this filter.
173  *
174  * pps_freq is the frequency offset produced by the frequency median
175  * filter pps_ff[], while pps_stabil is the dispersion (wander) measured
176  * by this filter.
177  *
178  * pps_usec is latched from a high resolution counter or external clock
179  * at pps_time. Here we want the hardware counter contents only, not the
180  * contents plus the time_tv.usec as usual.
181  *
182  * pps_valid counts the number of seconds since the last PPS update. It
183  * is used as a watchdog timer to disable the PPS discipline should the
184  * PPS signal be lost.
185  *
186  * pps_glitch counts the number of seconds since the beginning of an
187  * offset burst more than tick/2 from current nominal offset. It is used
188  * mainly to suppress error bursts due to priority conflicts between the
189  * PPS interrupt and timer interrupt.
190  *
191  * pps_intcnt counts the calibration intervals for use in the interval-
192  * adaptation algorithm. It's just too complicated for words.
193  */
194 struct timeval pps_time;	/* kernel time at last interval */
195 long pps_tf[] = {0, 0, 0};	/* pps time offset median filter (us) */
196 long pps_offset = 0;		/* pps time offset (us) */
197 long pps_jitter = MAXTIME;	/* time dispersion (jitter) (us) */
198 long pps_ff[] = {0, 0, 0};	/* pps frequency offset median filter */
199 long pps_freq = 0;		/* frequency offset (scaled ppm) */
200 long pps_stabil = MAXFREQ;	/* frequency dispersion (scaled ppm) */
201 long pps_usec = 0;		/* microsec counter at last interval */
202 long pps_valid = PPS_VALID;	/* pps signal watchdog counter */
203 int pps_glitch = 0;		/* pps signal glitch counter */
204 int pps_count = 0;		/* calibration interval counter (s) */
205 int pps_shift = PPS_SHIFT;	/* interval duration (s) (shift) */
206 int pps_intcnt = 0;		/* intervals at current duration */
207 
208 /*
209  * PPS signal quality monitors
210  *
211  * pps_jitcnt counts the seconds that have been discarded because the
212  * jitter measured by the time median filter exceeds the limit MAXTIME
213  * (100 us).
214  *
215  * pps_calcnt counts the frequency calibration intervals, which are
216  * variable from 4 s to 256 s.
217  *
218  * pps_errcnt counts the calibration intervals which have been discarded
219  * because the wander exceeds the limit MAXFREQ (100 ppm) or where the
220  * calibration interval jitter exceeds two ticks.
221  *
222  * pps_stbcnt counts the calibration intervals that have been discarded
223  * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us).
224  */
225 long pps_jitcnt = 0;		/* jitter limit exceeded */
226 long pps_calcnt = 0;		/* calibration intervals */
227 long pps_errcnt = 0;		/* calibration errors */
228 long pps_stbcnt = 0;		/* stability limit exceeded */
229 #endif /* PPS_SYNC */
230 
231 #ifdef EXT_CLOCK
232 /*
233  * External clock definitions
234  *
235  * The following definitions and declarations are used only if an
236  * external clock is configured on the system.
237  */
238 #define CLOCK_INTERVAL 30	/* CPU clock update interval (s) */
239 
240 /*
241  * The clock_count variable is set to CLOCK_INTERVAL at each PPS
242  * interrupt and decremented once each second.
243  */
244 int clock_count = 0;		/* CPU clock counter */
245 
246 #ifdef HIGHBALL
247 /*
248  * The clock_offset and clock_cpu variables are used by the HIGHBALL
249  * interface. The clock_offset variable defines the offset between
250  * system time and the HIGBALL counters. The clock_cpu variable contains
251  * the offset between the system clock and the HIGHBALL clock for use in
252  * disciplining the kernel time variable.
253  */
254 extern struct timeval clock_offset; /* Highball clock offset */
255 long clock_cpu = 0;		/* CPU clock adjust */
256 #endif /* HIGHBALL */
257 #endif /* EXT_CLOCK */
258 #endif /* NTP */
259 
260 
261 /*
262  * Bump a timeval by a small number of usec's.
263  */
264 #define BUMPTIME(t, usec) { \
265 	register volatile struct timeval *tp = (t); \
266 	register long us; \
267  \
268 	tp->tv_usec = us = tp->tv_usec + (usec); \
269 	if (us >= 1000000) { \
270 		tp->tv_usec = us - 1000000; \
271 		tp->tv_sec++; \
272 	} \
273 }
274 
275 int	stathz;
276 int	schedhz;
277 int	profhz;
278 int	profprocs;
279 int	ticks;
280 static int psdiv, pscnt;		/* prof => stat divider */
281 int	psratio;			/* ratio: prof / stat */
282 int	tickfix, tickfixinterval;	/* used if tick not really integral */
283 #ifndef NTP
284 static int tickfixcnt;			/* accumulated fractional error */
285 #else
286 int	fixtick;			/* used by NTP for same */
287 int	shifthz;
288 #endif
289 
290 long cp_time[CPUSTATES];
291 
292 volatile struct	timeval time;
293 volatile struct	timeval mono_time;
294 
295 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
296 void	*softclock_si;
297 void	generic_softclock(void *);
298 
299 void
300 generic_softclock(void *ignore)
301 {
302 	/*
303 	 * XXX - dont' commit, just a dummy wrapper until we learn everyone
304 	 *       deal with a changed proto for softclock().
305 	 */
306 	softclock();
307 }
308 #endif
309 
310 /*
311  * Initialize clock frequencies and start both clocks running.
312  */
313 void
314 initclocks()
315 {
316 	int i;
317 
318 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
319 	softclock_si = softintr_establish(IPL_SOFTCLOCK, generic_softclock, NULL);
320 	if (softclock_si == NULL)
321 		panic("initclocks: unable to register softclock intr");
322 #endif
323 
324 	/*
325 	 * Set divisors to 1 (normal case) and let the machine-specific
326 	 * code do its bit.
327 	 */
328 	psdiv = pscnt = 1;
329 	cpu_initclocks();
330 
331 	/*
332 	 * Compute profhz/stathz, and fix profhz if needed.
333 	 */
334 	i = stathz ? stathz : hz;
335 	if (profhz == 0)
336 		profhz = i;
337 	psratio = profhz / i;
338 
339 #ifdef NTP
340 	if (time_precision == 0)
341 		time_precision = tick;
342 
343 	switch (hz) {
344 	case 60:
345 	case 64:
346 		shifthz = SHIFT_SCALE - 6;
347 		break;
348 	case 96:
349 	case 100:
350 	case 128:
351 		shifthz = SHIFT_SCALE - 7;
352 		break;
353 	case 256:
354 		shifthz = SHIFT_SCALE - 8;
355 		break;
356 	case 1024:
357 		shifthz = SHIFT_SCALE - 10;
358 		break;
359 	case 1200:
360 		shifthz = SHIFT_SCALE - 11;
361 		break;
362 	default:
363 		panic("weird hz");
364 	}
365 #endif
366 }
367 
368 /*
369  * The real-time timer, interrupting hz times per second.
370  */
371 void
372 hardclock(frame)
373 	register struct clockframe *frame;
374 {
375 	register struct proc *p;
376 	register int delta;
377 	extern int tickdelta;
378 	extern long timedelta;
379 #ifdef NTP
380 	register int time_update;
381 	struct timeval newtime;
382 	register int ltemp;
383 #endif
384 
385 	p = curproc;
386 	if (p) {
387 		register struct pstats *pstats;
388 
389 		/*
390 		 * Run current process's virtual and profile time, as needed.
391 		 */
392 		pstats = p->p_stats;
393 		if (CLKF_USERMODE(frame) &&
394 		    timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) &&
395 		    itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0)
396 			psignal(p, SIGVTALRM);
397 		if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) &&
398 		    itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0)
399 			psignal(p, SIGPROF);
400 	}
401 
402 	/*
403 	 * If no separate statistics clock is available, run it from here.
404 	 */
405 	if (stathz == 0)
406 		statclock(frame);
407 
408 	/*
409 	 * Increment the time-of-day.  The increment is normally just
410 	 * ``tick''.  If the machine is one which has a clock frequency
411 	 * such that ``hz'' would not divide the second evenly into
412 	 * milliseconds, a periodic adjustment must be applied.  Finally,
413 	 * if we are still adjusting the time (see adjtime()),
414 	 * ``tickdelta'' may also be added in.
415 	 */
416 	ticks++;
417 	delta = tick;
418 
419 #ifndef NTP
420 	if (tickfix) {
421 		tickfixcnt += tickfix;
422 		if (tickfixcnt >= tickfixinterval) {
423 			delta++;
424 			tickfixcnt -= tickfixinterval;
425 		}
426 	}
427 #else
428 	newtime = time;
429 #endif /* !NTP */
430 	/* Imprecise 4bsd adjtime() handling */
431 	if (timedelta != 0) {
432 		delta += tickdelta;
433 		timedelta -= tickdelta;
434 	}
435 
436 #ifdef notyet
437 	microset();
438 #endif
439 
440 #ifndef NTP
441 	BUMPTIME(&time, delta);		/* XXX Now done using NTP code below */
442 #endif
443 	BUMPTIME(&mono_time, delta);
444 
445 #ifdef NTP
446 	time_update = delta;
447 
448 	/*
449 	 * Compute the phase adjustment. If the low-order bits
450 	 * (time_phase) of the update overflow, bump the high-order bits
451 	 * (time_update).
452 	 */
453 	time_phase += time_adj;
454 	if (time_phase <= -FINEUSEC) {
455 		ltemp = -time_phase >> SHIFT_SCALE;
456 		time_phase += ltemp << SHIFT_SCALE;
457 		time_update -= ltemp;
458 	} else if (time_phase >= FINEUSEC) {
459 		ltemp = time_phase >> SHIFT_SCALE;
460 		time_phase -= ltemp << SHIFT_SCALE;
461 		time_update += ltemp;
462 	}
463 
464 #ifdef HIGHBALL
465 	/*
466 	 * If the HIGHBALL board is installed, we need to adjust the
467 	 * external clock offset in order to close the hardware feedback
468 	 * loop. This will adjust the external clock phase and frequency
469 	 * in small amounts. The additional phase noise and frequency
470 	 * wander this causes should be minimal. We also need to
471 	 * discipline the kernel time variable, since the PLL is used to
472 	 * discipline the external clock. If the Highball board is not
473 	 * present, we discipline kernel time with the PLL as usual. We
474 	 * assume that the external clock phase adjustment (time_update)
475 	 * and kernel phase adjustment (clock_cpu) are less than the
476 	 * value of tick.
477 	 */
478 	clock_offset.tv_usec += time_update;
479 	if (clock_offset.tv_usec >= 1000000) {
480 		clock_offset.tv_sec++;
481 		clock_offset.tv_usec -= 1000000;
482 	}
483 	if (clock_offset.tv_usec < 0) {
484 		clock_offset.tv_sec--;
485 		clock_offset.tv_usec += 1000000;
486 	}
487 	newtime.tv_usec += clock_cpu;
488 	clock_cpu = 0;
489 #else
490 	newtime.tv_usec += time_update;
491 #endif /* HIGHBALL */
492 
493 	/*
494 	 * On rollover of the second the phase adjustment to be used for
495 	 * the next second is calculated. Also, the maximum error is
496 	 * increased by the tolerance. If the PPS frequency discipline
497 	 * code is present, the phase is increased to compensate for the
498 	 * CPU clock oscillator frequency error.
499 	 *
500  	 * On a 32-bit machine and given parameters in the timex.h
501 	 * header file, the maximum phase adjustment is +-512 ms and
502 	 * maximum frequency offset is a tad less than) +-512 ppm. On a
503 	 * 64-bit machine, you shouldn't need to ask.
504 	 */
505 	if (newtime.tv_usec >= 1000000) {
506 		newtime.tv_usec -= 1000000;
507 		newtime.tv_sec++;
508 		time_maxerror += time_tolerance >> SHIFT_USEC;
509 
510 		/*
511 		 * Leap second processing. If in leap-insert state at
512 		 * the end of the day, the system clock is set back one
513 		 * second; if in leap-delete state, the system clock is
514 		 * set ahead one second. The microtime() routine or
515 		 * external clock driver will insure that reported time
516 		 * is always monotonic. The ugly divides should be
517 		 * replaced.
518 		 */
519 		switch (time_state) {
520 		case TIME_OK:
521 			if (time_status & STA_INS)
522 				time_state = TIME_INS;
523 			else if (time_status & STA_DEL)
524 				time_state = TIME_DEL;
525 			break;
526 
527 		case TIME_INS:
528 			if (newtime.tv_sec % 86400 == 0) {
529 				newtime.tv_sec--;
530 				time_state = TIME_OOP;
531 			}
532 			break;
533 
534 		case TIME_DEL:
535 			if ((newtime.tv_sec + 1) % 86400 == 0) {
536 				newtime.tv_sec++;
537 				time_state = TIME_WAIT;
538 			}
539 			break;
540 
541 		case TIME_OOP:
542 			time_state = TIME_WAIT;
543 			break;
544 
545 		case TIME_WAIT:
546 			if (!(time_status & (STA_INS | STA_DEL)))
547 				time_state = TIME_OK;
548 			break;
549 		}
550 
551 		/*
552 		 * Compute the phase adjustment for the next second. In
553 		 * PLL mode, the offset is reduced by a fixed factor
554 		 * times the time constant. In FLL mode the offset is
555 		 * used directly. In either mode, the maximum phase
556 		 * adjustment for each second is clamped so as to spread
557 		 * the adjustment over not more than the number of
558 		 * seconds between updates.
559 		 */
560 		if (time_offset < 0) {
561 			ltemp = -time_offset;
562 			if (!(time_status & STA_FLL))
563 				ltemp >>= SHIFT_KG + time_constant;
564 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
565 				ltemp = (MAXPHASE / MINSEC) <<
566 				    SHIFT_UPDATE;
567 			time_offset += ltemp;
568 			time_adj = -ltemp << (shifthz - SHIFT_UPDATE);
569 		} else if (time_offset > 0) {
570 			ltemp = time_offset;
571 			if (!(time_status & STA_FLL))
572 				ltemp >>= SHIFT_KG + time_constant;
573 			if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE)
574 				ltemp = (MAXPHASE / MINSEC) <<
575 				    SHIFT_UPDATE;
576 			time_offset -= ltemp;
577 			time_adj = ltemp << (shifthz - SHIFT_UPDATE);
578 		} else
579 			time_adj = 0;
580 
581 		/*
582 		 * Compute the frequency estimate and additional phase
583 		 * adjustment due to frequency error for the next
584 		 * second. When the PPS signal is engaged, gnaw on the
585 		 * watchdog counter and update the frequency computed by
586 		 * the pll and the PPS signal.
587 		 */
588 #ifdef PPS_SYNC
589 		pps_valid++;
590 		if (pps_valid >= PPS_VALID) {
591 			pps_valid = PPS_VALID;	/* Avoid possible overflow */
592 			pps_jitter = MAXTIME;
593 			pps_stabil = MAXFREQ;
594 			time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER |
595 			    STA_PPSWANDER | STA_PPSERROR);
596 		}
597 		ltemp = time_freq + pps_freq;
598 #else
599 		ltemp = time_freq;
600 #endif /* PPS_SYNC */
601 
602 		if (ltemp < 0)
603 			time_adj -= -ltemp >> (SHIFT_USEC - shifthz);
604 		else
605 			time_adj += ltemp >> (SHIFT_USEC - shifthz);
606 		time_adj += (long)fixtick << shifthz;
607 
608 		/*
609 		 * When the CPU clock oscillator frequency is not a
610 		 * power of 2 in Hz, shifthz is only an approximate
611 		 * scale factor.
612 		 */
613 		switch (hz) {
614 		case 96:
615 		case 100:
616 			/*
617 			 * In the following code the overall gain is increased
618 			 * by a factor of 1.25, which results in a residual
619 			 * error less than 3 percent.
620 			 */
621 			if (time_adj < 0)
622 				time_adj -= -time_adj >> 2;
623 			else
624 				time_adj += time_adj >> 2;
625 			break;
626 		case 60:
627 			/*
628 			 * 60 Hz m68k and vaxes have a PLL gain factor of of
629 			 * 60/64 (15/16) of what it should be.  In the following code
630 			 * the overall gain is increased by a factor of 1.0625,
631 			 * (17/16) which results in a residual error of just less
632 			 * than 0.4 percent.
633 			 */
634 			if (time_adj < 0)
635 				time_adj -= -time_adj >> 4;
636 			else
637 				time_adj += time_adj >> 4;
638 			break;
639 		}
640 
641 #ifdef EXT_CLOCK
642 		/*
643 		 * If an external clock is present, it is necessary to
644 		 * discipline the kernel time variable anyway, since not
645 		 * all system components use the microtime() interface.
646 		 * Here, the time offset between the external clock and
647 		 * kernel time variable is computed every so often.
648 		 */
649 		clock_count++;
650 		if (clock_count > CLOCK_INTERVAL) {
651 			clock_count = 0;
652 			microtime(&clock_ext);
653 			delta.tv_sec = clock_ext.tv_sec - newtime.tv_sec;
654 			delta.tv_usec = clock_ext.tv_usec - newtime.tv_usec;
655 			if (delta.tv_usec < 0)
656 				delta.tv_sec--;
657 			if (delta.tv_usec >= 500000) {
658 				delta.tv_usec -= 1000000;
659 				delta.tv_sec++;
660 			}
661 			if (delta.tv_usec < -500000) {
662 				delta.tv_usec += 1000000;
663 				delta.tv_sec--;
664 			}
665 			if (delta.tv_sec > 0 || (delta.tv_sec == 0 &&
666 			    delta.tv_usec > MAXPHASE) ||
667 			    delta.tv_sec < -1 || (delta.tv_sec == -1 &&
668 			    delta.tv_usec < -MAXPHASE)) {
669 				newtime = clock_ext;
670 				delta.tv_sec = 0;
671 				delta.tv_usec = 0;
672 			}
673 #ifdef HIGHBALL
674 			clock_cpu = delta.tv_usec;
675 #else /* HIGHBALL */
676 			hardupdate(delta.tv_usec);
677 #endif /* HIGHBALL */
678 		}
679 #endif /* EXT_CLOCK */
680 	}
681 
682 #ifdef CPU_CLOCKUPDATE
683 	CPU_CLOCKUPDATE(&time, &newtime);
684 #else
685 	time = newtime;
686 #endif
687 
688 #endif /* NTP */
689 
690 	/*
691 	 * Update real-time timeout queue.
692 	 * Process callouts at a very low cpu priority, so we don't keep the
693 	 * relatively high clock interrupt priority any longer than necessary.
694 	 */
695 	if (timeout_hardclock_update()) {
696 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS
697 		softintr_schedule(softclock_si);
698 #else
699 		setsoftclock();
700 #endif
701 	}
702 }
703 
704 /*
705  * Compute number of hz until specified time.  Used to
706  * compute the second argument to timeout_add() from an absolute time.
707  */
708 int
709 hzto(tv)
710 	struct timeval *tv;
711 {
712 	unsigned long ticks;
713 	long sec, usec;
714 	int s;
715 
716 	/*
717 	 * If the number of usecs in the whole seconds part of the time
718 	 * difference fits in a long, then the total number of usecs will
719 	 * fit in an unsigned long.  Compute the total and convert it to
720 	 * ticks, rounding up and adding 1 to allow for the current tick
721 	 * to expire.  Rounding also depends on unsigned long arithmetic
722 	 * to avoid overflow.
723 	 *
724 	 * Otherwise, if the number of ticks in the whole seconds part of
725 	 * the time difference fits in a long, then convert the parts to
726 	 * ticks separately and add, using similar rounding methods and
727 	 * overflow avoidance.  This method would work in the previous
728 	 * case but it is slightly slower and assumes that hz is integral.
729 	 *
730 	 * Otherwise, round the time difference down to the maximum
731 	 * representable value.
732 	 *
733 	 * If ints have 32 bits, then the maximum value for any timeout in
734 	 * 10ms ticks is 248 days.
735 	 */
736 	s = splhigh();
737 	sec = tv->tv_sec - time.tv_sec;
738 	usec = tv->tv_usec - time.tv_usec;
739 	splx(s);
740 	if (usec < 0) {
741 		sec--;
742 		usec += 1000000;
743 	}
744 	if (sec < 0 || (sec == 0 && usec <= 0)) {
745 		ticks = 0;
746 	} else if (sec <= LONG_MAX / 1000000)
747 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
748 		    / tick + 1;
749 	else if (sec <= LONG_MAX / hz)
750 		ticks = sec * hz
751 		    + ((unsigned long)usec + (tick - 1)) / tick + 1;
752 	else
753 		ticks = LONG_MAX;
754 	if (ticks > INT_MAX)
755 		ticks = INT_MAX;
756 	return ((int)ticks);
757 }
758 
759 /*
760  * Compute number of hz in the specified amount of time.
761  */
762 int
763 tvtohz(struct timeval *tv)
764 {
765 	unsigned long ticks;
766 	long sec, usec;
767 
768 	/*
769 	 * If the number of usecs in the whole seconds part of the time
770 	 * fits in a long, then the total number of usecs will
771 	 * fit in an unsigned long.  Compute the total and convert it to
772 	 * ticks, rounding up and adding 1 to allow for the current tick
773 	 * to expire.  Rounding also depends on unsigned long arithmetic
774 	 * to avoid overflow.
775 	 *
776 	 * Otherwise, if the number of ticks in the whole seconds part of
777 	 * the time fits in a long, then convert the parts to
778 	 * ticks separately and add, using similar rounding methods and
779 	 * overflow avoidance.  This method would work in the previous
780 	 * case but it is slightly slower and assumes that hz is integral.
781 	 *
782 	 * Otherwise, round the time down to the maximum
783 	 * representable value.
784 	 *
785 	 * If ints have 32 bits, then the maximum value for any timeout in
786 	 * 10ms ticks is 248 days.
787 	 */
788 	sec = tv->tv_sec;
789 	usec = tv->tv_usec;
790 	if (sec < 0 || (sec == 0 && usec <= 0))
791 		ticks = 0;
792 	else if (sec <= LONG_MAX / 1000000)
793 		ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1))
794 		    / tick + 1;
795 	else if (sec <= LONG_MAX / hz)
796 		ticks = sec * hz
797 		    + ((unsigned long)usec + (tick - 1)) / tick + 1;
798 	else
799 		ticks = LONG_MAX;
800 	if (ticks > INT_MAX)
801 		ticks = INT_MAX;
802 	return ((int)ticks);
803 }
804 
805 /*
806  * Start profiling on a process.
807  *
808  * Kernel profiling passes proc0 which never exits and hence
809  * keeps the profile clock running constantly.
810  */
811 void
812 startprofclock(p)
813 	register struct proc *p;
814 {
815 	int s;
816 
817 	if ((p->p_flag & P_PROFIL) == 0) {
818 		p->p_flag |= P_PROFIL;
819 		if (++profprocs == 1 && stathz != 0) {
820 			s = splstatclock();
821 			psdiv = pscnt = psratio;
822 			setstatclockrate(profhz);
823 			splx(s);
824 		}
825 	}
826 }
827 
828 /*
829  * Stop profiling on a process.
830  */
831 void
832 stopprofclock(p)
833 	register struct proc *p;
834 {
835 	int s;
836 
837 	if (p->p_flag & P_PROFIL) {
838 		p->p_flag &= ~P_PROFIL;
839 		if (--profprocs == 0 && stathz != 0) {
840 			s = splstatclock();
841 			psdiv = pscnt = 1;
842 			setstatclockrate(stathz);
843 			splx(s);
844 		}
845 	}
846 }
847 
848 /*
849  * Statistics clock.  Grab profile sample, and if divider reaches 0,
850  * do process and kernel statistics.
851  */
852 void
853 statclock(frame)
854 	register struct clockframe *frame;
855 {
856 #ifdef GPROF
857 	register struct gmonparam *g;
858 	register int i;
859 #endif
860 	static int schedclk;
861 	register struct proc *p;
862 
863 	if (CLKF_USERMODE(frame)) {
864 		p = curproc;
865 		if (p->p_flag & P_PROFIL)
866 			addupc_intr(p, CLKF_PC(frame));
867 		if (--pscnt > 0)
868 			return;
869 		/*
870 		 * Came from user mode; CPU was in user state.
871 		 * If this process is being profiled record the tick.
872 		 */
873 		p->p_uticks++;
874 		if (p->p_nice > NZERO)
875 			cp_time[CP_NICE]++;
876 		else
877 			cp_time[CP_USER]++;
878 	} else {
879 #ifdef GPROF
880 		/*
881 		 * Kernel statistics are just like addupc_intr, only easier.
882 		 */
883 		g = &_gmonparam;
884 		if (g->state == GMON_PROF_ON) {
885 			i = CLKF_PC(frame) - g->lowpc;
886 			if (i < g->textsize) {
887 				i /= HISTFRACTION * sizeof(*g->kcount);
888 				g->kcount[i]++;
889 			}
890 		}
891 #endif
892 		if (--pscnt > 0)
893 			return;
894 		/*
895 		 * Came from kernel mode, so we were:
896 		 * - handling an interrupt,
897 		 * - doing syscall or trap work on behalf of the current
898 		 *   user process, or
899 		 * - spinning in the idle loop.
900 		 * Whichever it is, charge the time as appropriate.
901 		 * Note that we charge interrupts to the current process,
902 		 * regardless of whether they are ``for'' that process,
903 		 * so that we know how much of its real time was spent
904 		 * in ``non-process'' (i.e., interrupt) work.
905 		 */
906 		p = curproc;
907 		if (CLKF_INTR(frame)) {
908 			if (p != NULL)
909 				p->p_iticks++;
910 			cp_time[CP_INTR]++;
911 		} else if (p != NULL) {
912 			p->p_sticks++;
913 			cp_time[CP_SYS]++;
914 		} else
915 			cp_time[CP_IDLE]++;
916 	}
917 	pscnt = psdiv;
918 
919 	if (p != NULL) {
920 		p->p_cpticks++;
921 		/*
922 		 * If no schedclock is provided, call it here at ~~12-25 Hz;
923 		 * ~~16 Hz is best
924 		 */
925 		if (schedhz == 0)
926 			if ((++schedclk & 3) == 0)
927 				schedclock(p);
928 	}
929 }
930 
931 
932 #ifdef NTP	/* NTP phase-locked loop in kernel */
933 
934 /*
935  * hardupdate() - local clock update
936  *
937  * This routine is called by ntp_adjtime() to update the local clock
938  * phase and frequency. The implementation is of an adaptive-parameter,
939  * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new
940  * time and frequency offset estimates for each call. If the kernel PPS
941  * discipline code is configured (PPS_SYNC), the PPS signal itself
942  * determines the new time offset, instead of the calling argument.
943  * Presumably, calls to ntp_adjtime() occur only when the caller
944  * believes the local clock is valid within some bound (+-128 ms with
945  * NTP). If the caller's time is far different than the PPS time, an
946  * argument will ensue, and it's not clear who will lose.
947  *
948  * For uncompensated quartz crystal oscillatores and nominal update
949  * intervals less than 1024 s, operation should be in phase-lock mode
950  * (STA_FLL = 0), where the loop is disciplined to phase. For update
951  * intervals greater than this, operation should be in frequency-lock
952  * mode (STA_FLL = 1), where the loop is disciplined to frequency.
953  *
954  * Note: splclock() is in effect.
955  */
956 void
957 hardupdate(offset)
958 	long offset;
959 {
960 	long ltemp, mtemp;
961 
962 	if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME))
963 		return;
964 	ltemp = offset;
965 #ifdef PPS_SYNC
966 	if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL))
967 		ltemp = pps_offset;
968 #endif /* PPS_SYNC */
969 
970 	/*
971 	 * Scale the phase adjustment and clamp to the operating range.
972 	 */
973 	if (ltemp > MAXPHASE)
974 		time_offset = MAXPHASE << SHIFT_UPDATE;
975 	else if (ltemp < -MAXPHASE)
976 		time_offset = -(MAXPHASE << SHIFT_UPDATE);
977 	else
978 		time_offset = ltemp << SHIFT_UPDATE;
979 
980 	/*
981 	 * Select whether the frequency is to be controlled and in which
982 	 * mode (PLL or FLL). Clamp to the operating range. Ugly
983 	 * multiply/divide should be replaced someday.
984 	 */
985 	if (time_status & STA_FREQHOLD || time_reftime == 0)
986 		time_reftime = time.tv_sec;
987 	mtemp = time.tv_sec - time_reftime;
988 	time_reftime = time.tv_sec;
989 	if (time_status & STA_FLL) {
990 		if (mtemp >= MINSEC) {
991 			ltemp = ((time_offset / mtemp) << (SHIFT_USEC -
992 			    SHIFT_UPDATE));
993 			if (ltemp < 0)
994 				time_freq -= -ltemp >> SHIFT_KH;
995 			else
996 				time_freq += ltemp >> SHIFT_KH;
997 		}
998 	} else {
999 		if (mtemp < MAXSEC) {
1000 			ltemp *= mtemp;
1001 			if (ltemp < 0)
1002 				time_freq -= -ltemp >> (time_constant +
1003 				    time_constant + SHIFT_KF -
1004 				    SHIFT_USEC);
1005 			else
1006 				time_freq += ltemp >> (time_constant +
1007 				    time_constant + SHIFT_KF -
1008 				    SHIFT_USEC);
1009 		}
1010 	}
1011 	if (time_freq > time_tolerance)
1012 		time_freq = time_tolerance;
1013 	else if (time_freq < -time_tolerance)
1014 		time_freq = -time_tolerance;
1015 }
1016 
1017 #ifdef PPS_SYNC
1018 /*
1019  * hardpps() - discipline CPU clock oscillator to external PPS signal
1020  *
1021  * This routine is called at each PPS interrupt in order to discipline
1022  * the CPU clock oscillator to the PPS signal. It measures the PPS phase
1023  * and leaves it in a handy spot for the hardclock() routine. It
1024  * integrates successive PPS phase differences and calculates the
1025  * frequency offset. This is used in hardclock() to discipline the CPU
1026  * clock oscillator so that intrinsic frequency error is cancelled out.
1027  * The code requires the caller to capture the time and hardware counter
1028  * value at the on-time PPS signal transition.
1029  *
1030  * Note that, on some Unix systems, this routine runs at an interrupt
1031  * priority level higher than the timer interrupt routine hardclock().
1032  * Therefore, the variables used are distinct from the hardclock()
1033  * variables, except for certain exceptions: The PPS frequency pps_freq
1034  * and phase pps_offset variables are determined by this routine and
1035  * updated atomically. The time_tolerance variable can be considered a
1036  * constant, since it is infrequently changed, and then only when the
1037  * PPS signal is disabled. The watchdog counter pps_valid is updated
1038  * once per second by hardclock() and is atomically cleared in this
1039  * routine.
1040  */
1041 void
1042 hardpps(tvp, usec)
1043 	struct timeval *tvp;		/* time at PPS */
1044 	long usec;			/* hardware counter at PPS */
1045 {
1046 	long u_usec, v_usec, bigtick;
1047 	long cal_sec, cal_usec;
1048 
1049 	/*
1050 	 * An occasional glitch can be produced when the PPS interrupt
1051 	 * occurs in the hardclock() routine before the time variable is
1052 	 * updated. Here the offset is discarded when the difference
1053 	 * between it and the last one is greater than tick/2, but not
1054 	 * if the interval since the first discard exceeds 30 s.
1055 	 */
1056 	time_status |= STA_PPSSIGNAL;
1057 	time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR);
1058 	pps_valid = 0;
1059 	u_usec = -tvp->tv_usec;
1060 	if (u_usec < -500000)
1061 		u_usec += 1000000;
1062 	v_usec = pps_offset - u_usec;
1063 	if (v_usec < 0)
1064 		v_usec = -v_usec;
1065 	if (v_usec > (tick >> 1)) {
1066 		if (pps_glitch > MAXGLITCH) {
1067 			pps_glitch = 0;
1068 			pps_tf[2] = u_usec;
1069 			pps_tf[1] = u_usec;
1070 		} else {
1071 			pps_glitch++;
1072 			u_usec = pps_offset;
1073 		}
1074 	} else
1075 		pps_glitch = 0;
1076 
1077 	/*
1078 	 * A three-stage median filter is used to help deglitch the pps
1079 	 * time. The median sample becomes the time offset estimate; the
1080 	 * difference between the other two samples becomes the time
1081 	 * dispersion (jitter) estimate.
1082 	 */
1083 	pps_tf[2] = pps_tf[1];
1084 	pps_tf[1] = pps_tf[0];
1085 	pps_tf[0] = u_usec;
1086 	if (pps_tf[0] > pps_tf[1]) {
1087 		if (pps_tf[1] > pps_tf[2]) {
1088 			pps_offset = pps_tf[1];		/* 0 1 2 */
1089 			v_usec = pps_tf[0] - pps_tf[2];
1090 		} else if (pps_tf[2] > pps_tf[0]) {
1091 			pps_offset = pps_tf[0];		/* 2 0 1 */
1092 			v_usec = pps_tf[2] - pps_tf[1];
1093 		} else {
1094 			pps_offset = pps_tf[2];		/* 0 2 1 */
1095 			v_usec = pps_tf[0] - pps_tf[1];
1096 		}
1097 	} else {
1098 		if (pps_tf[1] < pps_tf[2]) {
1099 			pps_offset = pps_tf[1];		/* 2 1 0 */
1100 			v_usec = pps_tf[2] - pps_tf[0];
1101 		} else  if (pps_tf[2] < pps_tf[0]) {
1102 			pps_offset = pps_tf[0];		/* 1 0 2 */
1103 			v_usec = pps_tf[1] - pps_tf[2];
1104 		} else {
1105 			pps_offset = pps_tf[2];		/* 1 2 0 */
1106 			v_usec = pps_tf[1] - pps_tf[0];
1107 		}
1108 	}
1109 	if (v_usec > MAXTIME)
1110 		pps_jitcnt++;
1111 	v_usec = (v_usec << PPS_AVG) - pps_jitter;
1112 	if (v_usec < 0)
1113 		pps_jitter -= -v_usec >> PPS_AVG;
1114 	else
1115 		pps_jitter += v_usec >> PPS_AVG;
1116 	if (pps_jitter > (MAXTIME >> 1))
1117 		time_status |= STA_PPSJITTER;
1118 
1119 	/*
1120 	 * During the calibration interval adjust the starting time when
1121 	 * the tick overflows. At the end of the interval compute the
1122 	 * duration of the interval and the difference of the hardware
1123 	 * counters at the beginning and end of the interval. This code
1124 	 * is deliciously complicated by the fact valid differences may
1125 	 * exceed the value of tick when using long calibration
1126 	 * intervals and small ticks. Note that the counter can be
1127 	 * greater than tick if caught at just the wrong instant, but
1128 	 * the values returned and used here are correct.
1129 	 */
1130 	bigtick = (long)tick << SHIFT_USEC;
1131 	pps_usec -= pps_freq;
1132 	if (pps_usec >= bigtick)
1133 		pps_usec -= bigtick;
1134 	if (pps_usec < 0)
1135 		pps_usec += bigtick;
1136 	pps_time.tv_sec++;
1137 	pps_count++;
1138 	if (pps_count < (1 << pps_shift))
1139 		return;
1140 	pps_count = 0;
1141 	pps_calcnt++;
1142 	u_usec = usec << SHIFT_USEC;
1143 	v_usec = pps_usec - u_usec;
1144 	if (v_usec >= bigtick >> 1)
1145 		v_usec -= bigtick;
1146 	if (v_usec < -(bigtick >> 1))
1147 		v_usec += bigtick;
1148 	if (v_usec < 0)
1149 		v_usec = -(-v_usec >> pps_shift);
1150 	else
1151 		v_usec = v_usec >> pps_shift;
1152 	pps_usec = u_usec;
1153 	cal_sec = tvp->tv_sec;
1154 	cal_usec = tvp->tv_usec;
1155 	cal_sec -= pps_time.tv_sec;
1156 	cal_usec -= pps_time.tv_usec;
1157 	if (cal_usec < 0) {
1158 		cal_usec += 1000000;
1159 		cal_sec--;
1160 	}
1161 	pps_time = *tvp;
1162 
1163 	/*
1164 	 * Check for lost interrupts, noise, excessive jitter and
1165 	 * excessive frequency error. The number of timer ticks during
1166 	 * the interval may vary +-1 tick. Add to this a margin of one
1167 	 * tick for the PPS signal jitter and maximum frequency
1168 	 * deviation. If the limits are exceeded, the calibration
1169 	 * interval is reset to the minimum and we start over.
1170 	 */
1171 	u_usec = (long)tick << 1;
1172 	if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec))
1173 	    || (cal_sec == 0 && cal_usec < u_usec))
1174 	    || v_usec > time_tolerance || v_usec < -time_tolerance) {
1175 		pps_errcnt++;
1176 		pps_shift = PPS_SHIFT;
1177 		pps_intcnt = 0;
1178 		time_status |= STA_PPSERROR;
1179 		return;
1180 	}
1181 
1182 	/*
1183 	 * A three-stage median filter is used to help deglitch the pps
1184 	 * frequency. The median sample becomes the frequency offset
1185 	 * estimate; the difference between the other two samples
1186 	 * becomes the frequency dispersion (stability) estimate.
1187 	 */
1188 	pps_ff[2] = pps_ff[1];
1189 	pps_ff[1] = pps_ff[0];
1190 	pps_ff[0] = v_usec;
1191 	if (pps_ff[0] > pps_ff[1]) {
1192 		if (pps_ff[1] > pps_ff[2]) {
1193 			u_usec = pps_ff[1];		/* 0 1 2 */
1194 			v_usec = pps_ff[0] - pps_ff[2];
1195 		} else if (pps_ff[2] > pps_ff[0]) {
1196 			u_usec = pps_ff[0];		/* 2 0 1 */
1197 			v_usec = pps_ff[2] - pps_ff[1];
1198 		} else {
1199 			u_usec = pps_ff[2];		/* 0 2 1 */
1200 			v_usec = pps_ff[0] - pps_ff[1];
1201 		}
1202 	} else {
1203 		if (pps_ff[1] < pps_ff[2]) {
1204 			u_usec = pps_ff[1];		/* 2 1 0 */
1205 			v_usec = pps_ff[2] - pps_ff[0];
1206 		} else  if (pps_ff[2] < pps_ff[0]) {
1207 			u_usec = pps_ff[0];		/* 1 0 2 */
1208 			v_usec = pps_ff[1] - pps_ff[2];
1209 		} else {
1210 			u_usec = pps_ff[2];		/* 1 2 0 */
1211 			v_usec = pps_ff[1] - pps_ff[0];
1212 		}
1213 	}
1214 
1215 	/*
1216 	 * Here the frequency dispersion (stability) is updated. If it
1217 	 * is less than one-fourth the maximum (MAXFREQ), the frequency
1218 	 * offset is updated as well, but clamped to the tolerance. It
1219 	 * will be processed later by the hardclock() routine.
1220 	 */
1221 	v_usec = (v_usec >> 1) - pps_stabil;
1222 	if (v_usec < 0)
1223 		pps_stabil -= -v_usec >> PPS_AVG;
1224 	else
1225 		pps_stabil += v_usec >> PPS_AVG;
1226 	if (pps_stabil > MAXFREQ >> 2) {
1227 		pps_stbcnt++;
1228 		time_status |= STA_PPSWANDER;
1229 		return;
1230 	}
1231 	if (time_status & STA_PPSFREQ) {
1232 		if (u_usec < 0) {
1233 			pps_freq -= -u_usec >> PPS_AVG;
1234 			if (pps_freq < -time_tolerance)
1235 				pps_freq = -time_tolerance;
1236 			u_usec = -u_usec;
1237 		} else {
1238 			pps_freq += u_usec >> PPS_AVG;
1239 			if (pps_freq > time_tolerance)
1240 				pps_freq = time_tolerance;
1241 		}
1242 	}
1243 
1244 	/*
1245 	 * Here the calibration interval is adjusted. If the maximum
1246 	 * time difference is greater than tick / 4, reduce the interval
1247 	 * by half. If this is not the case for four consecutive
1248 	 * intervals, double the interval.
1249 	 */
1250 	if (u_usec << pps_shift > bigtick >> 2) {
1251 		pps_intcnt = 0;
1252 		if (pps_shift > PPS_SHIFT)
1253 			pps_shift--;
1254 	} else if (pps_intcnt >= 4) {
1255 		pps_intcnt = 0;
1256 		if (pps_shift < PPS_SHIFTMAX)
1257 			pps_shift++;
1258 	} else
1259 		pps_intcnt++;
1260 }
1261 #endif /* PPS_SYNC */
1262 #endif /* NTP  */
1263 
1264 
1265 /*
1266  * Return information about system clocks.
1267  */
1268 int
1269 sysctl_clockrate(where, sizep)
1270 	register char *where;
1271 	size_t *sizep;
1272 {
1273 	struct clockinfo clkinfo;
1274 
1275 	/*
1276 	 * Construct clockinfo structure.
1277 	 */
1278 	clkinfo.tick = tick;
1279 	clkinfo.tickadj = tickadj;
1280 	clkinfo.hz = hz;
1281 	clkinfo.profhz = profhz;
1282 	clkinfo.stathz = stathz ? stathz : hz;
1283 	return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo)));
1284 }
1285