1 /* $OpenBSD: kern_clock.c,v 1.29 2001/11/06 19:53:20 miod Exp $ */ 2 /* $NetBSD: kern_clock.c,v 1.34 1996/06/09 04:51:03 briggs Exp $ */ 3 4 /*- 5 * Copyright (c) 1982, 1986, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 42 */ 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/dkstat.h> 47 #include <sys/timeout.h> 48 #include <sys/kernel.h> 49 #include <sys/proc.h> 50 #include <sys/resourcevar.h> 51 #include <sys/signalvar.h> 52 #include <uvm/uvm_extern.h> 53 #include <sys/sysctl.h> 54 #include <sys/timex.h> 55 #include <sys/sched.h> 56 57 #include <machine/cpu.h> 58 #include <machine/limits.h> 59 60 #ifdef GPROF 61 #include <sys/gmon.h> 62 #endif 63 64 /* 65 * Clock handling routines. 66 * 67 * This code is written to operate with two timers that run independently of 68 * each other. The main clock, running hz times per second, is used to keep 69 * track of real time. The second timer handles kernel and user profiling, 70 * and does resource use estimation. If the second timer is programmable, 71 * it is randomized to avoid aliasing between the two clocks. For example, 72 * the randomization prevents an adversary from always giving up the cpu 73 * just before its quantum expires. Otherwise, it would never accumulate 74 * cpu ticks. The mean frequency of the second timer is stathz. 75 * 76 * If no second timer exists, stathz will be zero; in this case we drive 77 * profiling and statistics off the main clock. This WILL NOT be accurate; 78 * do not do it unless absolutely necessary. 79 * 80 * The statistics clock may (or may not) be run at a higher rate while 81 * profiling. This profile clock runs at profhz. We require that profhz 82 * be an integral multiple of stathz. 83 * 84 * If the statistics clock is running fast, it must be divided by the ratio 85 * profhz/stathz for statistics. (For profiling, every tick counts.) 86 */ 87 88 /* 89 * TODO: 90 * allocate more timeout table slots when table overflows. 91 */ 92 93 94 #ifdef NTP /* NTP phase-locked loop in kernel */ 95 /* 96 * Phase/frequency-lock loop (PLL/FLL) definitions 97 * 98 * The following variables are read and set by the ntp_adjtime() system 99 * call. 100 * 101 * time_state shows the state of the system clock, with values defined 102 * in the timex.h header file. 103 * 104 * time_status shows the status of the system clock, with bits defined 105 * in the timex.h header file. 106 * 107 * time_offset is used by the PLL/FLL to adjust the system time in small 108 * increments. 109 * 110 * time_constant determines the bandwidth or "stiffness" of the PLL. 111 * 112 * time_tolerance determines maximum frequency error or tolerance of the 113 * CPU clock oscillator and is a property of the architecture; however, 114 * in principle it could change as result of the presence of external 115 * discipline signals, for instance. 116 * 117 * time_precision is usually equal to the kernel tick variable; however, 118 * in cases where a precision clock counter or external clock is 119 * available, the resolution can be much less than this and depend on 120 * whether the external clock is working or not. 121 * 122 * time_maxerror is initialized by a ntp_adjtime() call and increased by 123 * the kernel once each second to reflect the maximum error bound 124 * growth. 125 * 126 * time_esterror is set and read by the ntp_adjtime() call, but 127 * otherwise not used by the kernel. 128 */ 129 int time_state = TIME_OK; /* clock state */ 130 int time_status = STA_UNSYNC; /* clock status bits */ 131 long time_offset = 0; /* time offset (us) */ 132 long time_constant = 0; /* pll time constant */ 133 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 134 long time_precision; /* clock precision (us) */ 135 long time_maxerror = MAXPHASE; /* maximum error (us) */ 136 long time_esterror = MAXPHASE; /* estimated error (us) */ 137 138 /* 139 * The following variables establish the state of the PLL/FLL and the 140 * residual time and frequency offset of the local clock. The scale 141 * factors are defined in the timex.h header file. 142 * 143 * time_phase and time_freq are the phase increment and the frequency 144 * increment, respectively, of the kernel time variable. 145 * 146 * time_freq is set via ntp_adjtime() from a value stored in a file when 147 * the synchronization daemon is first started. Its value is retrieved 148 * via ntp_adjtime() and written to the file about once per hour by the 149 * daemon. 150 * 151 * time_adj is the adjustment added to the value of tick at each timer 152 * interrupt and is recomputed from time_phase and time_freq at each 153 * seconds rollover. 154 * 155 * time_reftime is the second's portion of the system time at the last 156 * call to ntp_adjtime(). It is used to adjust the time_freq variable 157 * and to increase the time_maxerror as the time since last update 158 * increases. 159 */ 160 long time_phase = 0; /* phase offset (scaled us) */ 161 long time_freq = 0; /* frequency offset (scaled ppm) */ 162 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 163 long time_reftime = 0; /* time at last adjustment (s) */ 164 165 #ifdef PPS_SYNC 166 /* 167 * The following variables are used only if the kernel PPS discipline 168 * code is configured (PPS_SYNC). The scale factors are defined in the 169 * timex.h header file. 170 * 171 * pps_time contains the time at each calibration interval, as read by 172 * microtime(). pps_count counts the seconds of the calibration 173 * interval, the duration of which is nominally pps_shift in powers of 174 * two. 175 * 176 * pps_offset is the time offset produced by the time median filter 177 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 178 * this filter. 179 * 180 * pps_freq is the frequency offset produced by the frequency median 181 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 182 * by this filter. 183 * 184 * pps_usec is latched from a high resolution counter or external clock 185 * at pps_time. Here we want the hardware counter contents only, not the 186 * contents plus the time_tv.usec as usual. 187 * 188 * pps_valid counts the number of seconds since the last PPS update. It 189 * is used as a watchdog timer to disable the PPS discipline should the 190 * PPS signal be lost. 191 * 192 * pps_glitch counts the number of seconds since the beginning of an 193 * offset burst more than tick/2 from current nominal offset. It is used 194 * mainly to suppress error bursts due to priority conflicts between the 195 * PPS interrupt and timer interrupt. 196 * 197 * pps_intcnt counts the calibration intervals for use in the interval- 198 * adaptation algorithm. It's just too complicated for words. 199 */ 200 struct timeval pps_time; /* kernel time at last interval */ 201 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 202 long pps_offset = 0; /* pps time offset (us) */ 203 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 204 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 205 long pps_freq = 0; /* frequency offset (scaled ppm) */ 206 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 207 long pps_usec = 0; /* microsec counter at last interval */ 208 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 209 int pps_glitch = 0; /* pps signal glitch counter */ 210 int pps_count = 0; /* calibration interval counter (s) */ 211 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 212 int pps_intcnt = 0; /* intervals at current duration */ 213 214 /* 215 * PPS signal quality monitors 216 * 217 * pps_jitcnt counts the seconds that have been discarded because the 218 * jitter measured by the time median filter exceeds the limit MAXTIME 219 * (100 us). 220 * 221 * pps_calcnt counts the frequency calibration intervals, which are 222 * variable from 4 s to 256 s. 223 * 224 * pps_errcnt counts the calibration intervals which have been discarded 225 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 226 * calibration interval jitter exceeds two ticks. 227 * 228 * pps_stbcnt counts the calibration intervals that have been discarded 229 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 230 */ 231 long pps_jitcnt = 0; /* jitter limit exceeded */ 232 long pps_calcnt = 0; /* calibration intervals */ 233 long pps_errcnt = 0; /* calibration errors */ 234 long pps_stbcnt = 0; /* stability limit exceeded */ 235 #endif /* PPS_SYNC */ 236 237 #ifdef EXT_CLOCK 238 /* 239 * External clock definitions 240 * 241 * The following definitions and declarations are used only if an 242 * external clock is configured on the system. 243 */ 244 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 245 246 /* 247 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 248 * interrupt and decremented once each second. 249 */ 250 int clock_count = 0; /* CPU clock counter */ 251 252 #ifdef HIGHBALL 253 /* 254 * The clock_offset and clock_cpu variables are used by the HIGHBALL 255 * interface. The clock_offset variable defines the offset between 256 * system time and the HIGBALL counters. The clock_cpu variable contains 257 * the offset between the system clock and the HIGHBALL clock for use in 258 * disciplining the kernel time variable. 259 */ 260 extern struct timeval clock_offset; /* Highball clock offset */ 261 long clock_cpu = 0; /* CPU clock adjust */ 262 #endif /* HIGHBALL */ 263 #endif /* EXT_CLOCK */ 264 #endif /* NTP */ 265 266 267 /* 268 * Bump a timeval by a small number of usec's. 269 */ 270 #define BUMPTIME(t, usec) { \ 271 register volatile struct timeval *tp = (t); \ 272 register long us; \ 273 \ 274 tp->tv_usec = us = tp->tv_usec + (usec); \ 275 if (us >= 1000000) { \ 276 tp->tv_usec = us - 1000000; \ 277 tp->tv_sec++; \ 278 } \ 279 } 280 281 int stathz; 282 int schedhz; 283 int profhz; 284 int profprocs; 285 int ticks; 286 static int psdiv, pscnt; /* prof => stat divider */ 287 int psratio; /* ratio: prof / stat */ 288 int tickfix, tickfixinterval; /* used if tick not really integral */ 289 #ifndef NTP 290 static int tickfixcnt; /* accumulated fractional error */ 291 #else 292 int fixtick; /* used by NTP for same */ 293 int shifthz; 294 #endif 295 296 volatile struct timeval time; 297 volatile struct timeval mono_time; 298 299 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 300 void *softclock_si; 301 void generic_softclock(void *); 302 303 void 304 generic_softclock(void *ignore) 305 { 306 /* 307 * XXX - dont' commit, just a dummy wrapper until we learn everyone 308 * deal with a changed proto for softclock(). 309 */ 310 softclock(); 311 } 312 #endif 313 314 /* 315 * Initialize clock frequencies and start both clocks running. 316 */ 317 void 318 initclocks() 319 { 320 int i; 321 322 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 323 softclock_si = softintr_establish(IPL_SOFTCLOCK, generic_softclock, NULL); 324 if (softclock_si == NULL) 325 panic("initclocks: unable to register softclock intr"); 326 #endif 327 328 /* 329 * Set divisors to 1 (normal case) and let the machine-specific 330 * code do its bit. 331 */ 332 psdiv = pscnt = 1; 333 cpu_initclocks(); 334 335 /* 336 * Compute profhz/stathz, and fix profhz if needed. 337 */ 338 i = stathz ? stathz : hz; 339 if (profhz == 0) 340 profhz = i; 341 psratio = profhz / i; 342 343 #ifdef NTP 344 if (time_precision == 0) 345 time_precision = tick; 346 347 switch (hz) { 348 case 60: 349 case 64: 350 shifthz = SHIFT_SCALE - 6; 351 break; 352 case 96: 353 case 100: 354 case 128: 355 shifthz = SHIFT_SCALE - 7; 356 break; 357 case 256: 358 shifthz = SHIFT_SCALE - 8; 359 break; 360 case 1024: 361 shifthz = SHIFT_SCALE - 10; 362 break; 363 default: 364 panic("weird hz"); 365 } 366 #endif 367 } 368 369 /* 370 * The real-time timer, interrupting hz times per second. 371 */ 372 void 373 hardclock(frame) 374 register struct clockframe *frame; 375 { 376 register struct proc *p; 377 register int delta; 378 extern int tickdelta; 379 extern long timedelta; 380 #ifdef NTP 381 register int time_update; 382 struct timeval newtime; 383 register int ltemp; 384 #endif 385 386 p = curproc; 387 if (p) { 388 register struct pstats *pstats; 389 390 /* 391 * Run current process's virtual and profile time, as needed. 392 */ 393 pstats = p->p_stats; 394 if (CLKF_USERMODE(frame) && 395 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 396 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 397 psignal(p, SIGVTALRM); 398 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 399 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 400 psignal(p, SIGPROF); 401 } 402 403 /* 404 * If no separate statistics clock is available, run it from here. 405 */ 406 if (stathz == 0) 407 statclock(frame); 408 409 /* 410 * Increment the time-of-day. The increment is normally just 411 * ``tick''. If the machine is one which has a clock frequency 412 * such that ``hz'' would not divide the second evenly into 413 * milliseconds, a periodic adjustment must be applied. Finally, 414 * if we are still adjusting the time (see adjtime()), 415 * ``tickdelta'' may also be added in. 416 */ 417 ticks++; 418 delta = tick; 419 420 #ifndef NTP 421 if (tickfix) { 422 tickfixcnt += tickfix; 423 if (tickfixcnt >= tickfixinterval) { 424 delta++; 425 tickfixcnt -= tickfixinterval; 426 } 427 } 428 #else 429 newtime = time; 430 #endif /* !NTP */ 431 /* Imprecise 4bsd adjtime() handling */ 432 if (timedelta != 0) { 433 delta += tickdelta; 434 timedelta -= tickdelta; 435 } 436 437 #ifdef notyet 438 microset(); 439 #endif 440 441 #ifndef NTP 442 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 443 #endif 444 BUMPTIME(&mono_time, delta); 445 446 #ifdef NTP 447 time_update = delta; 448 449 /* 450 * Compute the phase adjustment. If the low-order bits 451 * (time_phase) of the update overflow, bump the high-order bits 452 * (time_update). 453 */ 454 time_phase += time_adj; 455 if (time_phase <= -FINEUSEC) { 456 ltemp = -time_phase >> SHIFT_SCALE; 457 time_phase += ltemp << SHIFT_SCALE; 458 time_update -= ltemp; 459 } else if (time_phase >= FINEUSEC) { 460 ltemp = time_phase >> SHIFT_SCALE; 461 time_phase -= ltemp << SHIFT_SCALE; 462 time_update += ltemp; 463 } 464 465 #ifdef HIGHBALL 466 /* 467 * If the HIGHBALL board is installed, we need to adjust the 468 * external clock offset in order to close the hardware feedback 469 * loop. This will adjust the external clock phase and frequency 470 * in small amounts. The additional phase noise and frequency 471 * wander this causes should be minimal. We also need to 472 * discipline the kernel time variable, since the PLL is used to 473 * discipline the external clock. If the Highball board is not 474 * present, we discipline kernel time with the PLL as usual. We 475 * assume that the external clock phase adjustment (time_update) 476 * and kernel phase adjustment (clock_cpu) are less than the 477 * value of tick. 478 */ 479 clock_offset.tv_usec += time_update; 480 if (clock_offset.tv_usec >= 1000000) { 481 clock_offset.tv_sec++; 482 clock_offset.tv_usec -= 1000000; 483 } 484 if (clock_offset.tv_usec < 0) { 485 clock_offset.tv_sec--; 486 clock_offset.tv_usec += 1000000; 487 } 488 newtime.tv_usec += clock_cpu; 489 clock_cpu = 0; 490 #else 491 newtime.tv_usec += time_update; 492 #endif /* HIGHBALL */ 493 494 /* 495 * On rollover of the second the phase adjustment to be used for 496 * the next second is calculated. Also, the maximum error is 497 * increased by the tolerance. If the PPS frequency discipline 498 * code is present, the phase is increased to compensate for the 499 * CPU clock oscillator frequency error. 500 * 501 * On a 32-bit machine and given parameters in the timex.h 502 * header file, the maximum phase adjustment is +-512 ms and 503 * maximum frequency offset is a tad less than) +-512 ppm. On a 504 * 64-bit machine, you shouldn't need to ask. 505 */ 506 if (newtime.tv_usec >= 1000000) { 507 newtime.tv_usec -= 1000000; 508 newtime.tv_sec++; 509 time_maxerror += time_tolerance >> SHIFT_USEC; 510 511 /* 512 * Leap second processing. If in leap-insert state at 513 * the end of the day, the system clock is set back one 514 * second; if in leap-delete state, the system clock is 515 * set ahead one second. The microtime() routine or 516 * external clock driver will insure that reported time 517 * is always monotonic. The ugly divides should be 518 * replaced. 519 */ 520 switch (time_state) { 521 case TIME_OK: 522 if (time_status & STA_INS) 523 time_state = TIME_INS; 524 else if (time_status & STA_DEL) 525 time_state = TIME_DEL; 526 break; 527 528 case TIME_INS: 529 if (newtime.tv_sec % 86400 == 0) { 530 newtime.tv_sec--; 531 time_state = TIME_OOP; 532 } 533 break; 534 535 case TIME_DEL: 536 if ((newtime.tv_sec + 1) % 86400 == 0) { 537 newtime.tv_sec++; 538 time_state = TIME_WAIT; 539 } 540 break; 541 542 case TIME_OOP: 543 time_state = TIME_WAIT; 544 break; 545 546 case TIME_WAIT: 547 if (!(time_status & (STA_INS | STA_DEL))) 548 time_state = TIME_OK; 549 break; 550 } 551 552 /* 553 * Compute the phase adjustment for the next second. In 554 * PLL mode, the offset is reduced by a fixed factor 555 * times the time constant. In FLL mode the offset is 556 * used directly. In either mode, the maximum phase 557 * adjustment for each second is clamped so as to spread 558 * the adjustment over not more than the number of 559 * seconds between updates. 560 */ 561 if (time_offset < 0) { 562 ltemp = -time_offset; 563 if (!(time_status & STA_FLL)) 564 ltemp >>= SHIFT_KG + time_constant; 565 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 566 ltemp = (MAXPHASE / MINSEC) << 567 SHIFT_UPDATE; 568 time_offset += ltemp; 569 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 570 } else if (time_offset > 0) { 571 ltemp = time_offset; 572 if (!(time_status & STA_FLL)) 573 ltemp >>= SHIFT_KG + time_constant; 574 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 575 ltemp = (MAXPHASE / MINSEC) << 576 SHIFT_UPDATE; 577 time_offset -= ltemp; 578 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 579 } else 580 time_adj = 0; 581 582 /* 583 * Compute the frequency estimate and additional phase 584 * adjustment due to frequency error for the next 585 * second. When the PPS signal is engaged, gnaw on the 586 * watchdog counter and update the frequency computed by 587 * the pll and the PPS signal. 588 */ 589 #ifdef PPS_SYNC 590 pps_valid++; 591 if (pps_valid >= PPS_VALID) { 592 pps_valid = PPS_VALID; /* Avoid possible overflow */ 593 pps_jitter = MAXTIME; 594 pps_stabil = MAXFREQ; 595 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 596 STA_PPSWANDER | STA_PPSERROR); 597 } 598 ltemp = time_freq + pps_freq; 599 #else 600 ltemp = time_freq; 601 #endif /* PPS_SYNC */ 602 603 if (ltemp < 0) 604 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 605 else 606 time_adj += ltemp >> (SHIFT_USEC - shifthz); 607 time_adj += (long)fixtick << shifthz; 608 609 /* 610 * When the CPU clock oscillator frequency is not a 611 * power of 2 in Hz, shifthz is only an approximate 612 * scale factor. 613 */ 614 switch (hz) { 615 case 96: 616 case 100: 617 /* 618 * In the following code the overall gain is increased 619 * by a factor of 1.25, which results in a residual 620 * error less than 3 percent. 621 */ 622 if (time_adj < 0) 623 time_adj -= -time_adj >> 2; 624 else 625 time_adj += time_adj >> 2; 626 break; 627 case 60: 628 /* 629 * 60 Hz m68k and vaxes have a PLL gain factor of of 630 * 60/64 (15/16) of what it should be. In the following code 631 * the overall gain is increased by a factor of 1.0625, 632 * (17/16) which results in a residual error of just less 633 * than 0.4 percent. 634 */ 635 if (time_adj < 0) 636 time_adj -= -time_adj >> 4; 637 else 638 time_adj += time_adj >> 4; 639 break; 640 } 641 642 #ifdef EXT_CLOCK 643 /* 644 * If an external clock is present, it is necessary to 645 * discipline the kernel time variable anyway, since not 646 * all system components use the microtime() interface. 647 * Here, the time offset between the external clock and 648 * kernel time variable is computed every so often. 649 */ 650 clock_count++; 651 if (clock_count > CLOCK_INTERVAL) { 652 clock_count = 0; 653 microtime(&clock_ext); 654 delta.tv_sec = clock_ext.tv_sec - newtime.tv_sec; 655 delta.tv_usec = clock_ext.tv_usec - newtime.tv_usec; 656 if (delta.tv_usec < 0) 657 delta.tv_sec--; 658 if (delta.tv_usec >= 500000) { 659 delta.tv_usec -= 1000000; 660 delta.tv_sec++; 661 } 662 if (delta.tv_usec < -500000) { 663 delta.tv_usec += 1000000; 664 delta.tv_sec--; 665 } 666 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 667 delta.tv_usec > MAXPHASE) || 668 delta.tv_sec < -1 || (delta.tv_sec == -1 && 669 delta.tv_usec < -MAXPHASE)) { 670 newtime = clock_ext; 671 delta.tv_sec = 0; 672 delta.tv_usec = 0; 673 } 674 #ifdef HIGHBALL 675 clock_cpu = delta.tv_usec; 676 #else /* HIGHBALL */ 677 hardupdate(delta.tv_usec); 678 #endif /* HIGHBALL */ 679 } 680 #endif /* EXT_CLOCK */ 681 } 682 683 #ifdef CPU_CLOCKUPDATE 684 CPU_CLOCKUPDATE(&time, &newtime); 685 #else 686 time = newtime; 687 #endif 688 689 #endif /* NTP */ 690 691 /* 692 * Update real-time timeout queue. 693 * Process callouts at a very low cpu priority, so we don't keep the 694 * relatively high clock interrupt priority any longer than necessary. 695 */ 696 if (timeout_hardclock_update()) { 697 if (CLKF_BASEPRI(frame)) { 698 /* 699 * Save the overhead of a software interrupt; 700 * it will happen as soon as we return, so do it now. 701 */ 702 spllowersoftclock(); 703 softclock(); 704 } else { 705 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 706 softintr_schedule(softclock_si); 707 #else 708 setsoftclock(); 709 #endif 710 } 711 } 712 } 713 714 /* 715 * Compute number of hz until specified time. Used to 716 * compute the second argument to timeout_add() from an absolute time. 717 */ 718 int 719 hzto(tv) 720 struct timeval *tv; 721 { 722 unsigned long ticks; 723 long sec, usec; 724 int s; 725 726 /* 727 * If the number of usecs in the whole seconds part of the time 728 * difference fits in a long, then the total number of usecs will 729 * fit in an unsigned long. Compute the total and convert it to 730 * ticks, rounding up and adding 1 to allow for the current tick 731 * to expire. Rounding also depends on unsigned long arithmetic 732 * to avoid overflow. 733 * 734 * Otherwise, if the number of ticks in the whole seconds part of 735 * the time difference fits in a long, then convert the parts to 736 * ticks separately and add, using similar rounding methods and 737 * overflow avoidance. This method would work in the previous 738 * case but it is slightly slower and assumes that hz is integral. 739 * 740 * Otherwise, round the time difference down to the maximum 741 * representable value. 742 * 743 * If ints have 32 bits, then the maximum value for any timeout in 744 * 10ms ticks is 248 days. 745 */ 746 s = splhigh(); 747 sec = tv->tv_sec - time.tv_sec; 748 usec = tv->tv_usec - time.tv_usec; 749 splx(s); 750 if (usec < 0) { 751 sec--; 752 usec += 1000000; 753 } 754 if (sec < 0 || (sec == 0 && usec <= 0)) { 755 ticks = 0; 756 } else if (sec <= LONG_MAX / 1000000) 757 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 758 / tick + 1; 759 else if (sec <= LONG_MAX / hz) 760 ticks = sec * hz 761 + ((unsigned long)usec + (tick - 1)) / tick + 1; 762 else 763 ticks = LONG_MAX; 764 if (ticks > INT_MAX) 765 ticks = INT_MAX; 766 return ((int)ticks); 767 } 768 769 /* 770 * Start profiling on a process. 771 * 772 * Kernel profiling passes proc0 which never exits and hence 773 * keeps the profile clock running constantly. 774 */ 775 void 776 startprofclock(p) 777 register struct proc *p; 778 { 779 int s; 780 781 if ((p->p_flag & P_PROFIL) == 0) { 782 p->p_flag |= P_PROFIL; 783 if (++profprocs == 1 && stathz != 0) { 784 s = splstatclock(); 785 psdiv = pscnt = psratio; 786 setstatclockrate(profhz); 787 splx(s); 788 } 789 } 790 } 791 792 /* 793 * Stop profiling on a process. 794 */ 795 void 796 stopprofclock(p) 797 register struct proc *p; 798 { 799 int s; 800 801 if (p->p_flag & P_PROFIL) { 802 p->p_flag &= ~P_PROFIL; 803 if (--profprocs == 0 && stathz != 0) { 804 s = splstatclock(); 805 psdiv = pscnt = 1; 806 setstatclockrate(stathz); 807 splx(s); 808 } 809 } 810 } 811 812 /* 813 * Statistics clock. Grab profile sample, and if divider reaches 0, 814 * do process and kernel statistics. 815 */ 816 void 817 statclock(frame) 818 register struct clockframe *frame; 819 { 820 #ifdef GPROF 821 register struct gmonparam *g; 822 register int i; 823 #endif 824 static int schedclk; 825 register struct proc *p; 826 827 if (CLKF_USERMODE(frame)) { 828 p = curproc; 829 if (p->p_flag & P_PROFIL) 830 addupc_intr(p, CLKF_PC(frame), 1); 831 if (--pscnt > 0) 832 return; 833 /* 834 * Came from user mode; CPU was in user state. 835 * If this process is being profiled record the tick. 836 */ 837 p->p_uticks++; 838 if (p->p_nice > NZERO) 839 cp_time[CP_NICE]++; 840 else 841 cp_time[CP_USER]++; 842 } else { 843 #ifdef GPROF 844 /* 845 * Kernel statistics are just like addupc_intr, only easier. 846 */ 847 g = &_gmonparam; 848 if (g->state == GMON_PROF_ON) { 849 i = CLKF_PC(frame) - g->lowpc; 850 if (i < g->textsize) { 851 i /= HISTFRACTION * sizeof(*g->kcount); 852 g->kcount[i]++; 853 } 854 } 855 #endif 856 if (--pscnt > 0) 857 return; 858 /* 859 * Came from kernel mode, so we were: 860 * - handling an interrupt, 861 * - doing syscall or trap work on behalf of the current 862 * user process, or 863 * - spinning in the idle loop. 864 * Whichever it is, charge the time as appropriate. 865 * Note that we charge interrupts to the current process, 866 * regardless of whether they are ``for'' that process, 867 * so that we know how much of its real time was spent 868 * in ``non-process'' (i.e., interrupt) work. 869 */ 870 p = curproc; 871 if (CLKF_INTR(frame)) { 872 if (p != NULL) 873 p->p_iticks++; 874 cp_time[CP_INTR]++; 875 } else if (p != NULL) { 876 p->p_sticks++; 877 cp_time[CP_SYS]++; 878 } else 879 cp_time[CP_IDLE]++; 880 } 881 pscnt = psdiv; 882 883 if (p != NULL) { 884 p->p_cpticks++; 885 /* 886 * If no schedclock is provided, call it here at ~~12-25 Hz; 887 * ~~16 Hz is best 888 */ 889 if (schedhz == 0) 890 if ((++schedclk & 3) == 0) 891 schedclock(p); 892 } 893 } 894 895 896 #ifdef NTP /* NTP phase-locked loop in kernel */ 897 898 /* 899 * hardupdate() - local clock update 900 * 901 * This routine is called by ntp_adjtime() to update the local clock 902 * phase and frequency. The implementation is of an adaptive-parameter, 903 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 904 * time and frequency offset estimates for each call. If the kernel PPS 905 * discipline code is configured (PPS_SYNC), the PPS signal itself 906 * determines the new time offset, instead of the calling argument. 907 * Presumably, calls to ntp_adjtime() occur only when the caller 908 * believes the local clock is valid within some bound (+-128 ms with 909 * NTP). If the caller's time is far different than the PPS time, an 910 * argument will ensue, and it's not clear who will lose. 911 * 912 * For uncompensated quartz crystal oscillatores and nominal update 913 * intervals less than 1024 s, operation should be in phase-lock mode 914 * (STA_FLL = 0), where the loop is disciplined to phase. For update 915 * intervals greater than thiss, operation should be in frequency-lock 916 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 917 * 918 * Note: splclock() is in effect. 919 */ 920 void 921 hardupdate(offset) 922 long offset; 923 { 924 long ltemp, mtemp; 925 926 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 927 return; 928 ltemp = offset; 929 #ifdef PPS_SYNC 930 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 931 ltemp = pps_offset; 932 #endif /* PPS_SYNC */ 933 934 /* 935 * Scale the phase adjustment and clamp to the operating range. 936 */ 937 if (ltemp > MAXPHASE) 938 time_offset = MAXPHASE << SHIFT_UPDATE; 939 else if (ltemp < -MAXPHASE) 940 time_offset = -(MAXPHASE << SHIFT_UPDATE); 941 else 942 time_offset = ltemp << SHIFT_UPDATE; 943 944 /* 945 * Select whether the frequency is to be controlled and in which 946 * mode (PLL or FLL). Clamp to the operating range. Ugly 947 * multiply/divide should be replaced someday. 948 */ 949 if (time_status & STA_FREQHOLD || time_reftime == 0) 950 time_reftime = time.tv_sec; 951 mtemp = time.tv_sec - time_reftime; 952 time_reftime = time.tv_sec; 953 if (time_status & STA_FLL) { 954 if (mtemp >= MINSEC) { 955 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 956 SHIFT_UPDATE)); 957 if (ltemp < 0) 958 time_freq -= -ltemp >> SHIFT_KH; 959 else 960 time_freq += ltemp >> SHIFT_KH; 961 } 962 } else { 963 if (mtemp < MAXSEC) { 964 ltemp *= mtemp; 965 if (ltemp < 0) 966 time_freq -= -ltemp >> (time_constant + 967 time_constant + SHIFT_KF - 968 SHIFT_USEC); 969 else 970 time_freq += ltemp >> (time_constant + 971 time_constant + SHIFT_KF - 972 SHIFT_USEC); 973 } 974 } 975 if (time_freq > time_tolerance) 976 time_freq = time_tolerance; 977 else if (time_freq < -time_tolerance) 978 time_freq = -time_tolerance; 979 } 980 981 #ifdef PPS_SYNC 982 /* 983 * hardpps() - discipline CPU clock oscillator to external PPS signal 984 * 985 * This routine is called at each PPS interrupt in order to discipline 986 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 987 * and leaves it in a handy spot for the hardclock() routine. It 988 * integrates successive PPS phase differences and calculates the 989 * frequency offset. This is used in hardclock() to discipline the CPU 990 * clock oscillator so that intrinsic frequency error is cancelled out. 991 * The code requires the caller to capture the time and hardware counter 992 * value at the on-time PPS signal transition. 993 * 994 * Note that, on some Unix systems, this routine runs at an interrupt 995 * priority level higher than the timer interrupt routine hardclock(). 996 * Therefore, the variables used are distinct from the hardclock() 997 * variables, except for certain exceptions: The PPS frequency pps_freq 998 * and phase pps_offset variables are determined by this routine and 999 * updated atomically. The time_tolerance variable can be considered a 1000 * constant, since it is infrequently changed, and then only when the 1001 * PPS signal is disabled. The watchdog counter pps_valid is updated 1002 * once per second by hardclock() and is atomically cleared in this 1003 * routine. 1004 */ 1005 void 1006 hardpps(tvp, usec) 1007 struct timeval *tvp; /* time at PPS */ 1008 long usec; /* hardware counter at PPS */ 1009 { 1010 long u_usec, v_usec, bigtick; 1011 long cal_sec, cal_usec; 1012 1013 /* 1014 * An occasional glitch can be produced when the PPS interrupt 1015 * occurs in the hardclock() routine before the time variable is 1016 * updated. Here the offset is discarded when the difference 1017 * between it and the last one is greater than tick/2, but not 1018 * if the interval since the first discard exceeds 30 s. 1019 */ 1020 time_status |= STA_PPSSIGNAL; 1021 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1022 pps_valid = 0; 1023 u_usec = -tvp->tv_usec; 1024 if (u_usec < -500000) 1025 u_usec += 1000000; 1026 v_usec = pps_offset - u_usec; 1027 if (v_usec < 0) 1028 v_usec = -v_usec; 1029 if (v_usec > (tick >> 1)) { 1030 if (pps_glitch > MAXGLITCH) { 1031 pps_glitch = 0; 1032 pps_tf[2] = u_usec; 1033 pps_tf[1] = u_usec; 1034 } else { 1035 pps_glitch++; 1036 u_usec = pps_offset; 1037 } 1038 } else 1039 pps_glitch = 0; 1040 1041 /* 1042 * A three-stage median filter is used to help deglitch the pps 1043 * time. The median sample becomes the time offset estimate; the 1044 * difference between the other two samples becomes the time 1045 * dispersion (jitter) estimate. 1046 */ 1047 pps_tf[2] = pps_tf[1]; 1048 pps_tf[1] = pps_tf[0]; 1049 pps_tf[0] = u_usec; 1050 if (pps_tf[0] > pps_tf[1]) { 1051 if (pps_tf[1] > pps_tf[2]) { 1052 pps_offset = pps_tf[1]; /* 0 1 2 */ 1053 v_usec = pps_tf[0] - pps_tf[2]; 1054 } else if (pps_tf[2] > pps_tf[0]) { 1055 pps_offset = pps_tf[0]; /* 2 0 1 */ 1056 v_usec = pps_tf[2] - pps_tf[1]; 1057 } else { 1058 pps_offset = pps_tf[2]; /* 0 2 1 */ 1059 v_usec = pps_tf[0] - pps_tf[1]; 1060 } 1061 } else { 1062 if (pps_tf[1] < pps_tf[2]) { 1063 pps_offset = pps_tf[1]; /* 2 1 0 */ 1064 v_usec = pps_tf[2] - pps_tf[0]; 1065 } else if (pps_tf[2] < pps_tf[0]) { 1066 pps_offset = pps_tf[0]; /* 1 0 2 */ 1067 v_usec = pps_tf[1] - pps_tf[2]; 1068 } else { 1069 pps_offset = pps_tf[2]; /* 1 2 0 */ 1070 v_usec = pps_tf[1] - pps_tf[0]; 1071 } 1072 } 1073 if (v_usec > MAXTIME) 1074 pps_jitcnt++; 1075 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1076 if (v_usec < 0) 1077 pps_jitter -= -v_usec >> PPS_AVG; 1078 else 1079 pps_jitter += v_usec >> PPS_AVG; 1080 if (pps_jitter > (MAXTIME >> 1)) 1081 time_status |= STA_PPSJITTER; 1082 1083 /* 1084 * During the calibration interval adjust the starting time when 1085 * the tick overflows. At the end of the interval compute the 1086 * duration of the interval and the difference of the hardware 1087 * counters at the beginning and end of the interval. This code 1088 * is deliciously complicated by the fact valid differences may 1089 * exceed the value of tick when using long calibration 1090 * intervals and small ticks. Note that the counter can be 1091 * greater than tick if caught at just the wrong instant, but 1092 * the values returned and used here are correct. 1093 */ 1094 bigtick = (long)tick << SHIFT_USEC; 1095 pps_usec -= pps_freq; 1096 if (pps_usec >= bigtick) 1097 pps_usec -= bigtick; 1098 if (pps_usec < 0) 1099 pps_usec += bigtick; 1100 pps_time.tv_sec++; 1101 pps_count++; 1102 if (pps_count < (1 << pps_shift)) 1103 return; 1104 pps_count = 0; 1105 pps_calcnt++; 1106 u_usec = usec << SHIFT_USEC; 1107 v_usec = pps_usec - u_usec; 1108 if (v_usec >= bigtick >> 1) 1109 v_usec -= bigtick; 1110 if (v_usec < -(bigtick >> 1)) 1111 v_usec += bigtick; 1112 if (v_usec < 0) 1113 v_usec = -(-v_usec >> pps_shift); 1114 else 1115 v_usec = v_usec >> pps_shift; 1116 pps_usec = u_usec; 1117 cal_sec = tvp->tv_sec; 1118 cal_usec = tvp->tv_usec; 1119 cal_sec -= pps_time.tv_sec; 1120 cal_usec -= pps_time.tv_usec; 1121 if (cal_usec < 0) { 1122 cal_usec += 1000000; 1123 cal_sec--; 1124 } 1125 pps_time = *tvp; 1126 1127 /* 1128 * Check for lost interrupts, noise, excessive jitter and 1129 * excessive frequency error. The number of timer ticks during 1130 * the interval may vary +-1 tick. Add to this a margin of one 1131 * tick for the PPS signal jitter and maximum frequency 1132 * deviation. If the limits are exceeded, the calibration 1133 * interval is reset to the minimum and we start over. 1134 */ 1135 u_usec = (long)tick << 1; 1136 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1137 || (cal_sec == 0 && cal_usec < u_usec)) 1138 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1139 pps_errcnt++; 1140 pps_shift = PPS_SHIFT; 1141 pps_intcnt = 0; 1142 time_status |= STA_PPSERROR; 1143 return; 1144 } 1145 1146 /* 1147 * A three-stage median filter is used to help deglitch the pps 1148 * frequency. The median sample becomes the frequency offset 1149 * estimate; the difference between the other two samples 1150 * becomes the frequency dispersion (stability) estimate. 1151 */ 1152 pps_ff[2] = pps_ff[1]; 1153 pps_ff[1] = pps_ff[0]; 1154 pps_ff[0] = v_usec; 1155 if (pps_ff[0] > pps_ff[1]) { 1156 if (pps_ff[1] > pps_ff[2]) { 1157 u_usec = pps_ff[1]; /* 0 1 2 */ 1158 v_usec = pps_ff[0] - pps_ff[2]; 1159 } else if (pps_ff[2] > pps_ff[0]) { 1160 u_usec = pps_ff[0]; /* 2 0 1 */ 1161 v_usec = pps_ff[2] - pps_ff[1]; 1162 } else { 1163 u_usec = pps_ff[2]; /* 0 2 1 */ 1164 v_usec = pps_ff[0] - pps_ff[1]; 1165 } 1166 } else { 1167 if (pps_ff[1] < pps_ff[2]) { 1168 u_usec = pps_ff[1]; /* 2 1 0 */ 1169 v_usec = pps_ff[2] - pps_ff[0]; 1170 } else if (pps_ff[2] < pps_ff[0]) { 1171 u_usec = pps_ff[0]; /* 1 0 2 */ 1172 v_usec = pps_ff[1] - pps_ff[2]; 1173 } else { 1174 u_usec = pps_ff[2]; /* 1 2 0 */ 1175 v_usec = pps_ff[1] - pps_ff[0]; 1176 } 1177 } 1178 1179 /* 1180 * Here the frequency dispersion (stability) is updated. If it 1181 * is less than one-fourth the maximum (MAXFREQ), the frequency 1182 * offset is updated as well, but clamped to the tolerance. It 1183 * will be processed later by the hardclock() routine. 1184 */ 1185 v_usec = (v_usec >> 1) - pps_stabil; 1186 if (v_usec < 0) 1187 pps_stabil -= -v_usec >> PPS_AVG; 1188 else 1189 pps_stabil += v_usec >> PPS_AVG; 1190 if (pps_stabil > MAXFREQ >> 2) { 1191 pps_stbcnt++; 1192 time_status |= STA_PPSWANDER; 1193 return; 1194 } 1195 if (time_status & STA_PPSFREQ) { 1196 if (u_usec < 0) { 1197 pps_freq -= -u_usec >> PPS_AVG; 1198 if (pps_freq < -time_tolerance) 1199 pps_freq = -time_tolerance; 1200 u_usec = -u_usec; 1201 } else { 1202 pps_freq += u_usec >> PPS_AVG; 1203 if (pps_freq > time_tolerance) 1204 pps_freq = time_tolerance; 1205 } 1206 } 1207 1208 /* 1209 * Here the calibration interval is adjusted. If the maximum 1210 * time difference is greater than tick / 4, reduce the interval 1211 * by half. If this is not the case for four consecutive 1212 * intervals, double the interval. 1213 */ 1214 if (u_usec << pps_shift > bigtick >> 2) { 1215 pps_intcnt = 0; 1216 if (pps_shift > PPS_SHIFT) 1217 pps_shift--; 1218 } else if (pps_intcnt >= 4) { 1219 pps_intcnt = 0; 1220 if (pps_shift < PPS_SHIFTMAX) 1221 pps_shift++; 1222 } else 1223 pps_intcnt++; 1224 } 1225 #endif /* PPS_SYNC */ 1226 #endif /* NTP */ 1227 1228 1229 /* 1230 * Return information about system clocks. 1231 */ 1232 int 1233 sysctl_clockrate(where, sizep) 1234 register char *where; 1235 size_t *sizep; 1236 { 1237 struct clockinfo clkinfo; 1238 1239 /* 1240 * Construct clockinfo structure. 1241 */ 1242 clkinfo.tick = tick; 1243 clkinfo.tickadj = tickadj; 1244 clkinfo.hz = hz; 1245 clkinfo.profhz = profhz; 1246 clkinfo.stathz = stathz ? stathz : hz; 1247 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1248 } 1249