1 /* $OpenBSD: kern_clock.c,v 1.30 2001/12/14 03:42:16 nate Exp $ */ 2 /* $NetBSD: kern_clock.c,v 1.34 1996/06/09 04:51:03 briggs Exp $ */ 3 4 /*- 5 * Copyright (c) 1982, 1986, 1991, 1993 6 * The Regents of the University of California. All rights reserved. 7 * (c) UNIX System Laboratories, Inc. 8 * All or some portions of this file are derived from material licensed 9 * to the University of California by American Telephone and Telegraph 10 * Co. or Unix System Laboratories, Inc. and are reproduced herein with 11 * the permission of UNIX System Laboratories, Inc. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 3. All advertising materials mentioning features or use of this software 22 * must display the following acknowledgement: 23 * This product includes software developed by the University of 24 * California, Berkeley and its contributors. 25 * 4. Neither the name of the University nor the names of its contributors 26 * may be used to endorse or promote products derived from this software 27 * without specific prior written permission. 28 * 29 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 30 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 31 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 32 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 33 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 34 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 35 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 36 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 37 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 38 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 39 * SUCH DAMAGE. 40 * 41 * @(#)kern_clock.c 8.5 (Berkeley) 1/21/94 42 */ 43 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/dkstat.h> 47 #include <sys/timeout.h> 48 #include <sys/kernel.h> 49 #include <sys/proc.h> 50 #include <sys/resourcevar.h> 51 #include <sys/signalvar.h> 52 #include <uvm/uvm_extern.h> 53 #include <sys/sysctl.h> 54 #include <sys/timex.h> 55 #include <sys/sched.h> 56 57 #include <machine/cpu.h> 58 #include <machine/limits.h> 59 60 #ifdef GPROF 61 #include <sys/gmon.h> 62 #endif 63 64 /* 65 * Clock handling routines. 66 * 67 * This code is written to operate with two timers that run independently of 68 * each other. The main clock, running hz times per second, is used to keep 69 * track of real time. The second timer handles kernel and user profiling, 70 * and does resource use estimation. If the second timer is programmable, 71 * it is randomized to avoid aliasing between the two clocks. For example, 72 * the randomization prevents an adversary from always giving up the cpu 73 * just before its quantum expires. Otherwise, it would never accumulate 74 * cpu ticks. The mean frequency of the second timer is stathz. 75 * 76 * If no second timer exists, stathz will be zero; in this case we drive 77 * profiling and statistics off the main clock. This WILL NOT be accurate; 78 * do not do it unless absolutely necessary. 79 * 80 * The statistics clock may (or may not) be run at a higher rate while 81 * profiling. This profile clock runs at profhz. We require that profhz 82 * be an integral multiple of stathz. 83 * 84 * If the statistics clock is running fast, it must be divided by the ratio 85 * profhz/stathz for statistics. (For profiling, every tick counts.) 86 */ 87 88 /* 89 * TODO: 90 * allocate more timeout table slots when table overflows. 91 */ 92 93 94 #ifdef NTP /* NTP phase-locked loop in kernel */ 95 /* 96 * Phase/frequency-lock loop (PLL/FLL) definitions 97 * 98 * The following variables are read and set by the ntp_adjtime() system 99 * call. 100 * 101 * time_state shows the state of the system clock, with values defined 102 * in the timex.h header file. 103 * 104 * time_status shows the status of the system clock, with bits defined 105 * in the timex.h header file. 106 * 107 * time_offset is used by the PLL/FLL to adjust the system time in small 108 * increments. 109 * 110 * time_constant determines the bandwidth or "stiffness" of the PLL. 111 * 112 * time_tolerance determines maximum frequency error or tolerance of the 113 * CPU clock oscillator and is a property of the architecture; however, 114 * in principle it could change as result of the presence of external 115 * discipline signals, for instance. 116 * 117 * time_precision is usually equal to the kernel tick variable; however, 118 * in cases where a precision clock counter or external clock is 119 * available, the resolution can be much less than this and depend on 120 * whether the external clock is working or not. 121 * 122 * time_maxerror is initialized by a ntp_adjtime() call and increased by 123 * the kernel once each second to reflect the maximum error bound 124 * growth. 125 * 126 * time_esterror is set and read by the ntp_adjtime() call, but 127 * otherwise not used by the kernel. 128 */ 129 int time_state = TIME_OK; /* clock state */ 130 int time_status = STA_UNSYNC; /* clock status bits */ 131 long time_offset = 0; /* time offset (us) */ 132 long time_constant = 0; /* pll time constant */ 133 long time_tolerance = MAXFREQ; /* frequency tolerance (scaled ppm) */ 134 long time_precision; /* clock precision (us) */ 135 long time_maxerror = MAXPHASE; /* maximum error (us) */ 136 long time_esterror = MAXPHASE; /* estimated error (us) */ 137 138 /* 139 * The following variables establish the state of the PLL/FLL and the 140 * residual time and frequency offset of the local clock. The scale 141 * factors are defined in the timex.h header file. 142 * 143 * time_phase and time_freq are the phase increment and the frequency 144 * increment, respectively, of the kernel time variable. 145 * 146 * time_freq is set via ntp_adjtime() from a value stored in a file when 147 * the synchronization daemon is first started. Its value is retrieved 148 * via ntp_adjtime() and written to the file about once per hour by the 149 * daemon. 150 * 151 * time_adj is the adjustment added to the value of tick at each timer 152 * interrupt and is recomputed from time_phase and time_freq at each 153 * seconds rollover. 154 * 155 * time_reftime is the second's portion of the system time at the last 156 * call to ntp_adjtime(). It is used to adjust the time_freq variable 157 * and to increase the time_maxerror as the time since last update 158 * increases. 159 */ 160 long time_phase = 0; /* phase offset (scaled us) */ 161 long time_freq = 0; /* frequency offset (scaled ppm) */ 162 long time_adj = 0; /* tick adjust (scaled 1 / hz) */ 163 long time_reftime = 0; /* time at last adjustment (s) */ 164 165 #ifdef PPS_SYNC 166 /* 167 * The following variables are used only if the kernel PPS discipline 168 * code is configured (PPS_SYNC). The scale factors are defined in the 169 * timex.h header file. 170 * 171 * pps_time contains the time at each calibration interval, as read by 172 * microtime(). pps_count counts the seconds of the calibration 173 * interval, the duration of which is nominally pps_shift in powers of 174 * two. 175 * 176 * pps_offset is the time offset produced by the time median filter 177 * pps_tf[], while pps_jitter is the dispersion (jitter) measured by 178 * this filter. 179 * 180 * pps_freq is the frequency offset produced by the frequency median 181 * filter pps_ff[], while pps_stabil is the dispersion (wander) measured 182 * by this filter. 183 * 184 * pps_usec is latched from a high resolution counter or external clock 185 * at pps_time. Here we want the hardware counter contents only, not the 186 * contents plus the time_tv.usec as usual. 187 * 188 * pps_valid counts the number of seconds since the last PPS update. It 189 * is used as a watchdog timer to disable the PPS discipline should the 190 * PPS signal be lost. 191 * 192 * pps_glitch counts the number of seconds since the beginning of an 193 * offset burst more than tick/2 from current nominal offset. It is used 194 * mainly to suppress error bursts due to priority conflicts between the 195 * PPS interrupt and timer interrupt. 196 * 197 * pps_intcnt counts the calibration intervals for use in the interval- 198 * adaptation algorithm. It's just too complicated for words. 199 */ 200 struct timeval pps_time; /* kernel time at last interval */ 201 long pps_tf[] = {0, 0, 0}; /* pps time offset median filter (us) */ 202 long pps_offset = 0; /* pps time offset (us) */ 203 long pps_jitter = MAXTIME; /* time dispersion (jitter) (us) */ 204 long pps_ff[] = {0, 0, 0}; /* pps frequency offset median filter */ 205 long pps_freq = 0; /* frequency offset (scaled ppm) */ 206 long pps_stabil = MAXFREQ; /* frequency dispersion (scaled ppm) */ 207 long pps_usec = 0; /* microsec counter at last interval */ 208 long pps_valid = PPS_VALID; /* pps signal watchdog counter */ 209 int pps_glitch = 0; /* pps signal glitch counter */ 210 int pps_count = 0; /* calibration interval counter (s) */ 211 int pps_shift = PPS_SHIFT; /* interval duration (s) (shift) */ 212 int pps_intcnt = 0; /* intervals at current duration */ 213 214 /* 215 * PPS signal quality monitors 216 * 217 * pps_jitcnt counts the seconds that have been discarded because the 218 * jitter measured by the time median filter exceeds the limit MAXTIME 219 * (100 us). 220 * 221 * pps_calcnt counts the frequency calibration intervals, which are 222 * variable from 4 s to 256 s. 223 * 224 * pps_errcnt counts the calibration intervals which have been discarded 225 * because the wander exceeds the limit MAXFREQ (100 ppm) or where the 226 * calibration interval jitter exceeds two ticks. 227 * 228 * pps_stbcnt counts the calibration intervals that have been discarded 229 * because the frequency wander exceeds the limit MAXFREQ / 4 (25 us). 230 */ 231 long pps_jitcnt = 0; /* jitter limit exceeded */ 232 long pps_calcnt = 0; /* calibration intervals */ 233 long pps_errcnt = 0; /* calibration errors */ 234 long pps_stbcnt = 0; /* stability limit exceeded */ 235 #endif /* PPS_SYNC */ 236 237 #ifdef EXT_CLOCK 238 /* 239 * External clock definitions 240 * 241 * The following definitions and declarations are used only if an 242 * external clock is configured on the system. 243 */ 244 #define CLOCK_INTERVAL 30 /* CPU clock update interval (s) */ 245 246 /* 247 * The clock_count variable is set to CLOCK_INTERVAL at each PPS 248 * interrupt and decremented once each second. 249 */ 250 int clock_count = 0; /* CPU clock counter */ 251 252 #ifdef HIGHBALL 253 /* 254 * The clock_offset and clock_cpu variables are used by the HIGHBALL 255 * interface. The clock_offset variable defines the offset between 256 * system time and the HIGBALL counters. The clock_cpu variable contains 257 * the offset between the system clock and the HIGHBALL clock for use in 258 * disciplining the kernel time variable. 259 */ 260 extern struct timeval clock_offset; /* Highball clock offset */ 261 long clock_cpu = 0; /* CPU clock adjust */ 262 #endif /* HIGHBALL */ 263 #endif /* EXT_CLOCK */ 264 #endif /* NTP */ 265 266 267 /* 268 * Bump a timeval by a small number of usec's. 269 */ 270 #define BUMPTIME(t, usec) { \ 271 register volatile struct timeval *tp = (t); \ 272 register long us; \ 273 \ 274 tp->tv_usec = us = tp->tv_usec + (usec); \ 275 if (us >= 1000000) { \ 276 tp->tv_usec = us - 1000000; \ 277 tp->tv_sec++; \ 278 } \ 279 } 280 281 int stathz; 282 int schedhz; 283 int profhz; 284 int profprocs; 285 int ticks; 286 static int psdiv, pscnt; /* prof => stat divider */ 287 int psratio; /* ratio: prof / stat */ 288 int tickfix, tickfixinterval; /* used if tick not really integral */ 289 #ifndef NTP 290 static int tickfixcnt; /* accumulated fractional error */ 291 #else 292 int fixtick; /* used by NTP for same */ 293 int shifthz; 294 #endif 295 296 volatile struct timeval time; 297 volatile struct timeval mono_time; 298 299 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 300 void *softclock_si; 301 void generic_softclock(void *); 302 303 void 304 generic_softclock(void *ignore) 305 { 306 /* 307 * XXX - dont' commit, just a dummy wrapper until we learn everyone 308 * deal with a changed proto for softclock(). 309 */ 310 softclock(); 311 } 312 #endif 313 314 /* 315 * Initialize clock frequencies and start both clocks running. 316 */ 317 void 318 initclocks() 319 { 320 int i; 321 322 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 323 softclock_si = softintr_establish(IPL_SOFTCLOCK, generic_softclock, NULL); 324 if (softclock_si == NULL) 325 panic("initclocks: unable to register softclock intr"); 326 #endif 327 328 /* 329 * Set divisors to 1 (normal case) and let the machine-specific 330 * code do its bit. 331 */ 332 psdiv = pscnt = 1; 333 cpu_initclocks(); 334 335 /* 336 * Compute profhz/stathz, and fix profhz if needed. 337 */ 338 i = stathz ? stathz : hz; 339 if (profhz == 0) 340 profhz = i; 341 psratio = profhz / i; 342 343 #ifdef NTP 344 if (time_precision == 0) 345 time_precision = tick; 346 347 switch (hz) { 348 case 60: 349 case 64: 350 shifthz = SHIFT_SCALE - 6; 351 break; 352 case 96: 353 case 100: 354 case 128: 355 shifthz = SHIFT_SCALE - 7; 356 break; 357 case 256: 358 shifthz = SHIFT_SCALE - 8; 359 break; 360 case 1024: 361 shifthz = SHIFT_SCALE - 10; 362 break; 363 case 1200: 364 shifthz = SHIFT_SCALE - 11; 365 break; 366 default: 367 panic("weird hz"); 368 } 369 #endif 370 } 371 372 /* 373 * The real-time timer, interrupting hz times per second. 374 */ 375 void 376 hardclock(frame) 377 register struct clockframe *frame; 378 { 379 register struct proc *p; 380 register int delta; 381 extern int tickdelta; 382 extern long timedelta; 383 #ifdef NTP 384 register int time_update; 385 struct timeval newtime; 386 register int ltemp; 387 #endif 388 389 p = curproc; 390 if (p) { 391 register struct pstats *pstats; 392 393 /* 394 * Run current process's virtual and profile time, as needed. 395 */ 396 pstats = p->p_stats; 397 if (CLKF_USERMODE(frame) && 398 timerisset(&pstats->p_timer[ITIMER_VIRTUAL].it_value) && 399 itimerdecr(&pstats->p_timer[ITIMER_VIRTUAL], tick) == 0) 400 psignal(p, SIGVTALRM); 401 if (timerisset(&pstats->p_timer[ITIMER_PROF].it_value) && 402 itimerdecr(&pstats->p_timer[ITIMER_PROF], tick) == 0) 403 psignal(p, SIGPROF); 404 } 405 406 /* 407 * If no separate statistics clock is available, run it from here. 408 */ 409 if (stathz == 0) 410 statclock(frame); 411 412 /* 413 * Increment the time-of-day. The increment is normally just 414 * ``tick''. If the machine is one which has a clock frequency 415 * such that ``hz'' would not divide the second evenly into 416 * milliseconds, a periodic adjustment must be applied. Finally, 417 * if we are still adjusting the time (see adjtime()), 418 * ``tickdelta'' may also be added in. 419 */ 420 ticks++; 421 delta = tick; 422 423 #ifndef NTP 424 if (tickfix) { 425 tickfixcnt += tickfix; 426 if (tickfixcnt >= tickfixinterval) { 427 delta++; 428 tickfixcnt -= tickfixinterval; 429 } 430 } 431 #else 432 newtime = time; 433 #endif /* !NTP */ 434 /* Imprecise 4bsd adjtime() handling */ 435 if (timedelta != 0) { 436 delta += tickdelta; 437 timedelta -= tickdelta; 438 } 439 440 #ifdef notyet 441 microset(); 442 #endif 443 444 #ifndef NTP 445 BUMPTIME(&time, delta); /* XXX Now done using NTP code below */ 446 #endif 447 BUMPTIME(&mono_time, delta); 448 449 #ifdef NTP 450 time_update = delta; 451 452 /* 453 * Compute the phase adjustment. If the low-order bits 454 * (time_phase) of the update overflow, bump the high-order bits 455 * (time_update). 456 */ 457 time_phase += time_adj; 458 if (time_phase <= -FINEUSEC) { 459 ltemp = -time_phase >> SHIFT_SCALE; 460 time_phase += ltemp << SHIFT_SCALE; 461 time_update -= ltemp; 462 } else if (time_phase >= FINEUSEC) { 463 ltemp = time_phase >> SHIFT_SCALE; 464 time_phase -= ltemp << SHIFT_SCALE; 465 time_update += ltemp; 466 } 467 468 #ifdef HIGHBALL 469 /* 470 * If the HIGHBALL board is installed, we need to adjust the 471 * external clock offset in order to close the hardware feedback 472 * loop. This will adjust the external clock phase and frequency 473 * in small amounts. The additional phase noise and frequency 474 * wander this causes should be minimal. We also need to 475 * discipline the kernel time variable, since the PLL is used to 476 * discipline the external clock. If the Highball board is not 477 * present, we discipline kernel time with the PLL as usual. We 478 * assume that the external clock phase adjustment (time_update) 479 * and kernel phase adjustment (clock_cpu) are less than the 480 * value of tick. 481 */ 482 clock_offset.tv_usec += time_update; 483 if (clock_offset.tv_usec >= 1000000) { 484 clock_offset.tv_sec++; 485 clock_offset.tv_usec -= 1000000; 486 } 487 if (clock_offset.tv_usec < 0) { 488 clock_offset.tv_sec--; 489 clock_offset.tv_usec += 1000000; 490 } 491 newtime.tv_usec += clock_cpu; 492 clock_cpu = 0; 493 #else 494 newtime.tv_usec += time_update; 495 #endif /* HIGHBALL */ 496 497 /* 498 * On rollover of the second the phase adjustment to be used for 499 * the next second is calculated. Also, the maximum error is 500 * increased by the tolerance. If the PPS frequency discipline 501 * code is present, the phase is increased to compensate for the 502 * CPU clock oscillator frequency error. 503 * 504 * On a 32-bit machine and given parameters in the timex.h 505 * header file, the maximum phase adjustment is +-512 ms and 506 * maximum frequency offset is a tad less than) +-512 ppm. On a 507 * 64-bit machine, you shouldn't need to ask. 508 */ 509 if (newtime.tv_usec >= 1000000) { 510 newtime.tv_usec -= 1000000; 511 newtime.tv_sec++; 512 time_maxerror += time_tolerance >> SHIFT_USEC; 513 514 /* 515 * Leap second processing. If in leap-insert state at 516 * the end of the day, the system clock is set back one 517 * second; if in leap-delete state, the system clock is 518 * set ahead one second. The microtime() routine or 519 * external clock driver will insure that reported time 520 * is always monotonic. The ugly divides should be 521 * replaced. 522 */ 523 switch (time_state) { 524 case TIME_OK: 525 if (time_status & STA_INS) 526 time_state = TIME_INS; 527 else if (time_status & STA_DEL) 528 time_state = TIME_DEL; 529 break; 530 531 case TIME_INS: 532 if (newtime.tv_sec % 86400 == 0) { 533 newtime.tv_sec--; 534 time_state = TIME_OOP; 535 } 536 break; 537 538 case TIME_DEL: 539 if ((newtime.tv_sec + 1) % 86400 == 0) { 540 newtime.tv_sec++; 541 time_state = TIME_WAIT; 542 } 543 break; 544 545 case TIME_OOP: 546 time_state = TIME_WAIT; 547 break; 548 549 case TIME_WAIT: 550 if (!(time_status & (STA_INS | STA_DEL))) 551 time_state = TIME_OK; 552 break; 553 } 554 555 /* 556 * Compute the phase adjustment for the next second. In 557 * PLL mode, the offset is reduced by a fixed factor 558 * times the time constant. In FLL mode the offset is 559 * used directly. In either mode, the maximum phase 560 * adjustment for each second is clamped so as to spread 561 * the adjustment over not more than the number of 562 * seconds between updates. 563 */ 564 if (time_offset < 0) { 565 ltemp = -time_offset; 566 if (!(time_status & STA_FLL)) 567 ltemp >>= SHIFT_KG + time_constant; 568 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 569 ltemp = (MAXPHASE / MINSEC) << 570 SHIFT_UPDATE; 571 time_offset += ltemp; 572 time_adj = -ltemp << (shifthz - SHIFT_UPDATE); 573 } else if (time_offset > 0) { 574 ltemp = time_offset; 575 if (!(time_status & STA_FLL)) 576 ltemp >>= SHIFT_KG + time_constant; 577 if (ltemp > (MAXPHASE / MINSEC) << SHIFT_UPDATE) 578 ltemp = (MAXPHASE / MINSEC) << 579 SHIFT_UPDATE; 580 time_offset -= ltemp; 581 time_adj = ltemp << (shifthz - SHIFT_UPDATE); 582 } else 583 time_adj = 0; 584 585 /* 586 * Compute the frequency estimate and additional phase 587 * adjustment due to frequency error for the next 588 * second. When the PPS signal is engaged, gnaw on the 589 * watchdog counter and update the frequency computed by 590 * the pll and the PPS signal. 591 */ 592 #ifdef PPS_SYNC 593 pps_valid++; 594 if (pps_valid >= PPS_VALID) { 595 pps_valid = PPS_VALID; /* Avoid possible overflow */ 596 pps_jitter = MAXTIME; 597 pps_stabil = MAXFREQ; 598 time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 599 STA_PPSWANDER | STA_PPSERROR); 600 } 601 ltemp = time_freq + pps_freq; 602 #else 603 ltemp = time_freq; 604 #endif /* PPS_SYNC */ 605 606 if (ltemp < 0) 607 time_adj -= -ltemp >> (SHIFT_USEC - shifthz); 608 else 609 time_adj += ltemp >> (SHIFT_USEC - shifthz); 610 time_adj += (long)fixtick << shifthz; 611 612 /* 613 * When the CPU clock oscillator frequency is not a 614 * power of 2 in Hz, shifthz is only an approximate 615 * scale factor. 616 */ 617 switch (hz) { 618 case 96: 619 case 100: 620 /* 621 * In the following code the overall gain is increased 622 * by a factor of 1.25, which results in a residual 623 * error less than 3 percent. 624 */ 625 if (time_adj < 0) 626 time_adj -= -time_adj >> 2; 627 else 628 time_adj += time_adj >> 2; 629 break; 630 case 60: 631 /* 632 * 60 Hz m68k and vaxes have a PLL gain factor of of 633 * 60/64 (15/16) of what it should be. In the following code 634 * the overall gain is increased by a factor of 1.0625, 635 * (17/16) which results in a residual error of just less 636 * than 0.4 percent. 637 */ 638 if (time_adj < 0) 639 time_adj -= -time_adj >> 4; 640 else 641 time_adj += time_adj >> 4; 642 break; 643 } 644 645 #ifdef EXT_CLOCK 646 /* 647 * If an external clock is present, it is necessary to 648 * discipline the kernel time variable anyway, since not 649 * all system components use the microtime() interface. 650 * Here, the time offset between the external clock and 651 * kernel time variable is computed every so often. 652 */ 653 clock_count++; 654 if (clock_count > CLOCK_INTERVAL) { 655 clock_count = 0; 656 microtime(&clock_ext); 657 delta.tv_sec = clock_ext.tv_sec - newtime.tv_sec; 658 delta.tv_usec = clock_ext.tv_usec - newtime.tv_usec; 659 if (delta.tv_usec < 0) 660 delta.tv_sec--; 661 if (delta.tv_usec >= 500000) { 662 delta.tv_usec -= 1000000; 663 delta.tv_sec++; 664 } 665 if (delta.tv_usec < -500000) { 666 delta.tv_usec += 1000000; 667 delta.tv_sec--; 668 } 669 if (delta.tv_sec > 0 || (delta.tv_sec == 0 && 670 delta.tv_usec > MAXPHASE) || 671 delta.tv_sec < -1 || (delta.tv_sec == -1 && 672 delta.tv_usec < -MAXPHASE)) { 673 newtime = clock_ext; 674 delta.tv_sec = 0; 675 delta.tv_usec = 0; 676 } 677 #ifdef HIGHBALL 678 clock_cpu = delta.tv_usec; 679 #else /* HIGHBALL */ 680 hardupdate(delta.tv_usec); 681 #endif /* HIGHBALL */ 682 } 683 #endif /* EXT_CLOCK */ 684 } 685 686 #ifdef CPU_CLOCKUPDATE 687 CPU_CLOCKUPDATE(&time, &newtime); 688 #else 689 time = newtime; 690 #endif 691 692 #endif /* NTP */ 693 694 /* 695 * Update real-time timeout queue. 696 * Process callouts at a very low cpu priority, so we don't keep the 697 * relatively high clock interrupt priority any longer than necessary. 698 */ 699 if (timeout_hardclock_update()) { 700 if (CLKF_BASEPRI(frame)) { 701 /* 702 * Save the overhead of a software interrupt; 703 * it will happen as soon as we return, so do it now. 704 */ 705 spllowersoftclock(); 706 softclock(); 707 } else { 708 #ifdef __HAVE_GENERIC_SOFT_INTERRUPTS 709 softintr_schedule(softclock_si); 710 #else 711 setsoftclock(); 712 #endif 713 } 714 } 715 } 716 717 /* 718 * Compute number of hz until specified time. Used to 719 * compute the second argument to timeout_add() from an absolute time. 720 */ 721 int 722 hzto(tv) 723 struct timeval *tv; 724 { 725 unsigned long ticks; 726 long sec, usec; 727 int s; 728 729 /* 730 * If the number of usecs in the whole seconds part of the time 731 * difference fits in a long, then the total number of usecs will 732 * fit in an unsigned long. Compute the total and convert it to 733 * ticks, rounding up and adding 1 to allow for the current tick 734 * to expire. Rounding also depends on unsigned long arithmetic 735 * to avoid overflow. 736 * 737 * Otherwise, if the number of ticks in the whole seconds part of 738 * the time difference fits in a long, then convert the parts to 739 * ticks separately and add, using similar rounding methods and 740 * overflow avoidance. This method would work in the previous 741 * case but it is slightly slower and assumes that hz is integral. 742 * 743 * Otherwise, round the time difference down to the maximum 744 * representable value. 745 * 746 * If ints have 32 bits, then the maximum value for any timeout in 747 * 10ms ticks is 248 days. 748 */ 749 s = splhigh(); 750 sec = tv->tv_sec - time.tv_sec; 751 usec = tv->tv_usec - time.tv_usec; 752 splx(s); 753 if (usec < 0) { 754 sec--; 755 usec += 1000000; 756 } 757 if (sec < 0 || (sec == 0 && usec <= 0)) { 758 ticks = 0; 759 } else if (sec <= LONG_MAX / 1000000) 760 ticks = (sec * 1000000 + (unsigned long)usec + (tick - 1)) 761 / tick + 1; 762 else if (sec <= LONG_MAX / hz) 763 ticks = sec * hz 764 + ((unsigned long)usec + (tick - 1)) / tick + 1; 765 else 766 ticks = LONG_MAX; 767 if (ticks > INT_MAX) 768 ticks = INT_MAX; 769 return ((int)ticks); 770 } 771 772 /* 773 * Start profiling on a process. 774 * 775 * Kernel profiling passes proc0 which never exits and hence 776 * keeps the profile clock running constantly. 777 */ 778 void 779 startprofclock(p) 780 register struct proc *p; 781 { 782 int s; 783 784 if ((p->p_flag & P_PROFIL) == 0) { 785 p->p_flag |= P_PROFIL; 786 if (++profprocs == 1 && stathz != 0) { 787 s = splstatclock(); 788 psdiv = pscnt = psratio; 789 setstatclockrate(profhz); 790 splx(s); 791 } 792 } 793 } 794 795 /* 796 * Stop profiling on a process. 797 */ 798 void 799 stopprofclock(p) 800 register struct proc *p; 801 { 802 int s; 803 804 if (p->p_flag & P_PROFIL) { 805 p->p_flag &= ~P_PROFIL; 806 if (--profprocs == 0 && stathz != 0) { 807 s = splstatclock(); 808 psdiv = pscnt = 1; 809 setstatclockrate(stathz); 810 splx(s); 811 } 812 } 813 } 814 815 /* 816 * Statistics clock. Grab profile sample, and if divider reaches 0, 817 * do process and kernel statistics. 818 */ 819 void 820 statclock(frame) 821 register struct clockframe *frame; 822 { 823 #ifdef GPROF 824 register struct gmonparam *g; 825 register int i; 826 #endif 827 static int schedclk; 828 register struct proc *p; 829 830 if (CLKF_USERMODE(frame)) { 831 p = curproc; 832 if (p->p_flag & P_PROFIL) 833 addupc_intr(p, CLKF_PC(frame), 1); 834 if (--pscnt > 0) 835 return; 836 /* 837 * Came from user mode; CPU was in user state. 838 * If this process is being profiled record the tick. 839 */ 840 p->p_uticks++; 841 if (p->p_nice > NZERO) 842 cp_time[CP_NICE]++; 843 else 844 cp_time[CP_USER]++; 845 } else { 846 #ifdef GPROF 847 /* 848 * Kernel statistics are just like addupc_intr, only easier. 849 */ 850 g = &_gmonparam; 851 if (g->state == GMON_PROF_ON) { 852 i = CLKF_PC(frame) - g->lowpc; 853 if (i < g->textsize) { 854 i /= HISTFRACTION * sizeof(*g->kcount); 855 g->kcount[i]++; 856 } 857 } 858 #endif 859 if (--pscnt > 0) 860 return; 861 /* 862 * Came from kernel mode, so we were: 863 * - handling an interrupt, 864 * - doing syscall or trap work on behalf of the current 865 * user process, or 866 * - spinning in the idle loop. 867 * Whichever it is, charge the time as appropriate. 868 * Note that we charge interrupts to the current process, 869 * regardless of whether they are ``for'' that process, 870 * so that we know how much of its real time was spent 871 * in ``non-process'' (i.e., interrupt) work. 872 */ 873 p = curproc; 874 if (CLKF_INTR(frame)) { 875 if (p != NULL) 876 p->p_iticks++; 877 cp_time[CP_INTR]++; 878 } else if (p != NULL) { 879 p->p_sticks++; 880 cp_time[CP_SYS]++; 881 } else 882 cp_time[CP_IDLE]++; 883 } 884 pscnt = psdiv; 885 886 if (p != NULL) { 887 p->p_cpticks++; 888 /* 889 * If no schedclock is provided, call it here at ~~12-25 Hz; 890 * ~~16 Hz is best 891 */ 892 if (schedhz == 0) 893 if ((++schedclk & 3) == 0) 894 schedclock(p); 895 } 896 } 897 898 899 #ifdef NTP /* NTP phase-locked loop in kernel */ 900 901 /* 902 * hardupdate() - local clock update 903 * 904 * This routine is called by ntp_adjtime() to update the local clock 905 * phase and frequency. The implementation is of an adaptive-parameter, 906 * hybrid phase/frequency-lock loop (PLL/FLL). The routine computes new 907 * time and frequency offset estimates for each call. If the kernel PPS 908 * discipline code is configured (PPS_SYNC), the PPS signal itself 909 * determines the new time offset, instead of the calling argument. 910 * Presumably, calls to ntp_adjtime() occur only when the caller 911 * believes the local clock is valid within some bound (+-128 ms with 912 * NTP). If the caller's time is far different than the PPS time, an 913 * argument will ensue, and it's not clear who will lose. 914 * 915 * For uncompensated quartz crystal oscillatores and nominal update 916 * intervals less than 1024 s, operation should be in phase-lock mode 917 * (STA_FLL = 0), where the loop is disciplined to phase. For update 918 * intervals greater than thiss, operation should be in frequency-lock 919 * mode (STA_FLL = 1), where the loop is disciplined to frequency. 920 * 921 * Note: splclock() is in effect. 922 */ 923 void 924 hardupdate(offset) 925 long offset; 926 { 927 long ltemp, mtemp; 928 929 if (!(time_status & STA_PLL) && !(time_status & STA_PPSTIME)) 930 return; 931 ltemp = offset; 932 #ifdef PPS_SYNC 933 if ((time_status & STA_PPSTIME) && (time_status & STA_PPSSIGNAL)) 934 ltemp = pps_offset; 935 #endif /* PPS_SYNC */ 936 937 /* 938 * Scale the phase adjustment and clamp to the operating range. 939 */ 940 if (ltemp > MAXPHASE) 941 time_offset = MAXPHASE << SHIFT_UPDATE; 942 else if (ltemp < -MAXPHASE) 943 time_offset = -(MAXPHASE << SHIFT_UPDATE); 944 else 945 time_offset = ltemp << SHIFT_UPDATE; 946 947 /* 948 * Select whether the frequency is to be controlled and in which 949 * mode (PLL or FLL). Clamp to the operating range. Ugly 950 * multiply/divide should be replaced someday. 951 */ 952 if (time_status & STA_FREQHOLD || time_reftime == 0) 953 time_reftime = time.tv_sec; 954 mtemp = time.tv_sec - time_reftime; 955 time_reftime = time.tv_sec; 956 if (time_status & STA_FLL) { 957 if (mtemp >= MINSEC) { 958 ltemp = ((time_offset / mtemp) << (SHIFT_USEC - 959 SHIFT_UPDATE)); 960 if (ltemp < 0) 961 time_freq -= -ltemp >> SHIFT_KH; 962 else 963 time_freq += ltemp >> SHIFT_KH; 964 } 965 } else { 966 if (mtemp < MAXSEC) { 967 ltemp *= mtemp; 968 if (ltemp < 0) 969 time_freq -= -ltemp >> (time_constant + 970 time_constant + SHIFT_KF - 971 SHIFT_USEC); 972 else 973 time_freq += ltemp >> (time_constant + 974 time_constant + SHIFT_KF - 975 SHIFT_USEC); 976 } 977 } 978 if (time_freq > time_tolerance) 979 time_freq = time_tolerance; 980 else if (time_freq < -time_tolerance) 981 time_freq = -time_tolerance; 982 } 983 984 #ifdef PPS_SYNC 985 /* 986 * hardpps() - discipline CPU clock oscillator to external PPS signal 987 * 988 * This routine is called at each PPS interrupt in order to discipline 989 * the CPU clock oscillator to the PPS signal. It measures the PPS phase 990 * and leaves it in a handy spot for the hardclock() routine. It 991 * integrates successive PPS phase differences and calculates the 992 * frequency offset. This is used in hardclock() to discipline the CPU 993 * clock oscillator so that intrinsic frequency error is cancelled out. 994 * The code requires the caller to capture the time and hardware counter 995 * value at the on-time PPS signal transition. 996 * 997 * Note that, on some Unix systems, this routine runs at an interrupt 998 * priority level higher than the timer interrupt routine hardclock(). 999 * Therefore, the variables used are distinct from the hardclock() 1000 * variables, except for certain exceptions: The PPS frequency pps_freq 1001 * and phase pps_offset variables are determined by this routine and 1002 * updated atomically. The time_tolerance variable can be considered a 1003 * constant, since it is infrequently changed, and then only when the 1004 * PPS signal is disabled. The watchdog counter pps_valid is updated 1005 * once per second by hardclock() and is atomically cleared in this 1006 * routine. 1007 */ 1008 void 1009 hardpps(tvp, usec) 1010 struct timeval *tvp; /* time at PPS */ 1011 long usec; /* hardware counter at PPS */ 1012 { 1013 long u_usec, v_usec, bigtick; 1014 long cal_sec, cal_usec; 1015 1016 /* 1017 * An occasional glitch can be produced when the PPS interrupt 1018 * occurs in the hardclock() routine before the time variable is 1019 * updated. Here the offset is discarded when the difference 1020 * between it and the last one is greater than tick/2, but not 1021 * if the interval since the first discard exceeds 30 s. 1022 */ 1023 time_status |= STA_PPSSIGNAL; 1024 time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1025 pps_valid = 0; 1026 u_usec = -tvp->tv_usec; 1027 if (u_usec < -500000) 1028 u_usec += 1000000; 1029 v_usec = pps_offset - u_usec; 1030 if (v_usec < 0) 1031 v_usec = -v_usec; 1032 if (v_usec > (tick >> 1)) { 1033 if (pps_glitch > MAXGLITCH) { 1034 pps_glitch = 0; 1035 pps_tf[2] = u_usec; 1036 pps_tf[1] = u_usec; 1037 } else { 1038 pps_glitch++; 1039 u_usec = pps_offset; 1040 } 1041 } else 1042 pps_glitch = 0; 1043 1044 /* 1045 * A three-stage median filter is used to help deglitch the pps 1046 * time. The median sample becomes the time offset estimate; the 1047 * difference between the other two samples becomes the time 1048 * dispersion (jitter) estimate. 1049 */ 1050 pps_tf[2] = pps_tf[1]; 1051 pps_tf[1] = pps_tf[0]; 1052 pps_tf[0] = u_usec; 1053 if (pps_tf[0] > pps_tf[1]) { 1054 if (pps_tf[1] > pps_tf[2]) { 1055 pps_offset = pps_tf[1]; /* 0 1 2 */ 1056 v_usec = pps_tf[0] - pps_tf[2]; 1057 } else if (pps_tf[2] > pps_tf[0]) { 1058 pps_offset = pps_tf[0]; /* 2 0 1 */ 1059 v_usec = pps_tf[2] - pps_tf[1]; 1060 } else { 1061 pps_offset = pps_tf[2]; /* 0 2 1 */ 1062 v_usec = pps_tf[0] - pps_tf[1]; 1063 } 1064 } else { 1065 if (pps_tf[1] < pps_tf[2]) { 1066 pps_offset = pps_tf[1]; /* 2 1 0 */ 1067 v_usec = pps_tf[2] - pps_tf[0]; 1068 } else if (pps_tf[2] < pps_tf[0]) { 1069 pps_offset = pps_tf[0]; /* 1 0 2 */ 1070 v_usec = pps_tf[1] - pps_tf[2]; 1071 } else { 1072 pps_offset = pps_tf[2]; /* 1 2 0 */ 1073 v_usec = pps_tf[1] - pps_tf[0]; 1074 } 1075 } 1076 if (v_usec > MAXTIME) 1077 pps_jitcnt++; 1078 v_usec = (v_usec << PPS_AVG) - pps_jitter; 1079 if (v_usec < 0) 1080 pps_jitter -= -v_usec >> PPS_AVG; 1081 else 1082 pps_jitter += v_usec >> PPS_AVG; 1083 if (pps_jitter > (MAXTIME >> 1)) 1084 time_status |= STA_PPSJITTER; 1085 1086 /* 1087 * During the calibration interval adjust the starting time when 1088 * the tick overflows. At the end of the interval compute the 1089 * duration of the interval and the difference of the hardware 1090 * counters at the beginning and end of the interval. This code 1091 * is deliciously complicated by the fact valid differences may 1092 * exceed the value of tick when using long calibration 1093 * intervals and small ticks. Note that the counter can be 1094 * greater than tick if caught at just the wrong instant, but 1095 * the values returned and used here are correct. 1096 */ 1097 bigtick = (long)tick << SHIFT_USEC; 1098 pps_usec -= pps_freq; 1099 if (pps_usec >= bigtick) 1100 pps_usec -= bigtick; 1101 if (pps_usec < 0) 1102 pps_usec += bigtick; 1103 pps_time.tv_sec++; 1104 pps_count++; 1105 if (pps_count < (1 << pps_shift)) 1106 return; 1107 pps_count = 0; 1108 pps_calcnt++; 1109 u_usec = usec << SHIFT_USEC; 1110 v_usec = pps_usec - u_usec; 1111 if (v_usec >= bigtick >> 1) 1112 v_usec -= bigtick; 1113 if (v_usec < -(bigtick >> 1)) 1114 v_usec += bigtick; 1115 if (v_usec < 0) 1116 v_usec = -(-v_usec >> pps_shift); 1117 else 1118 v_usec = v_usec >> pps_shift; 1119 pps_usec = u_usec; 1120 cal_sec = tvp->tv_sec; 1121 cal_usec = tvp->tv_usec; 1122 cal_sec -= pps_time.tv_sec; 1123 cal_usec -= pps_time.tv_usec; 1124 if (cal_usec < 0) { 1125 cal_usec += 1000000; 1126 cal_sec--; 1127 } 1128 pps_time = *tvp; 1129 1130 /* 1131 * Check for lost interrupts, noise, excessive jitter and 1132 * excessive frequency error. The number of timer ticks during 1133 * the interval may vary +-1 tick. Add to this a margin of one 1134 * tick for the PPS signal jitter and maximum frequency 1135 * deviation. If the limits are exceeded, the calibration 1136 * interval is reset to the minimum and we start over. 1137 */ 1138 u_usec = (long)tick << 1; 1139 if (!((cal_sec == -1 && cal_usec > (1000000 - u_usec)) 1140 || (cal_sec == 0 && cal_usec < u_usec)) 1141 || v_usec > time_tolerance || v_usec < -time_tolerance) { 1142 pps_errcnt++; 1143 pps_shift = PPS_SHIFT; 1144 pps_intcnt = 0; 1145 time_status |= STA_PPSERROR; 1146 return; 1147 } 1148 1149 /* 1150 * A three-stage median filter is used to help deglitch the pps 1151 * frequency. The median sample becomes the frequency offset 1152 * estimate; the difference between the other two samples 1153 * becomes the frequency dispersion (stability) estimate. 1154 */ 1155 pps_ff[2] = pps_ff[1]; 1156 pps_ff[1] = pps_ff[0]; 1157 pps_ff[0] = v_usec; 1158 if (pps_ff[0] > pps_ff[1]) { 1159 if (pps_ff[1] > pps_ff[2]) { 1160 u_usec = pps_ff[1]; /* 0 1 2 */ 1161 v_usec = pps_ff[0] - pps_ff[2]; 1162 } else if (pps_ff[2] > pps_ff[0]) { 1163 u_usec = pps_ff[0]; /* 2 0 1 */ 1164 v_usec = pps_ff[2] - pps_ff[1]; 1165 } else { 1166 u_usec = pps_ff[2]; /* 0 2 1 */ 1167 v_usec = pps_ff[0] - pps_ff[1]; 1168 } 1169 } else { 1170 if (pps_ff[1] < pps_ff[2]) { 1171 u_usec = pps_ff[1]; /* 2 1 0 */ 1172 v_usec = pps_ff[2] - pps_ff[0]; 1173 } else if (pps_ff[2] < pps_ff[0]) { 1174 u_usec = pps_ff[0]; /* 1 0 2 */ 1175 v_usec = pps_ff[1] - pps_ff[2]; 1176 } else { 1177 u_usec = pps_ff[2]; /* 1 2 0 */ 1178 v_usec = pps_ff[1] - pps_ff[0]; 1179 } 1180 } 1181 1182 /* 1183 * Here the frequency dispersion (stability) is updated. If it 1184 * is less than one-fourth the maximum (MAXFREQ), the frequency 1185 * offset is updated as well, but clamped to the tolerance. It 1186 * will be processed later by the hardclock() routine. 1187 */ 1188 v_usec = (v_usec >> 1) - pps_stabil; 1189 if (v_usec < 0) 1190 pps_stabil -= -v_usec >> PPS_AVG; 1191 else 1192 pps_stabil += v_usec >> PPS_AVG; 1193 if (pps_stabil > MAXFREQ >> 2) { 1194 pps_stbcnt++; 1195 time_status |= STA_PPSWANDER; 1196 return; 1197 } 1198 if (time_status & STA_PPSFREQ) { 1199 if (u_usec < 0) { 1200 pps_freq -= -u_usec >> PPS_AVG; 1201 if (pps_freq < -time_tolerance) 1202 pps_freq = -time_tolerance; 1203 u_usec = -u_usec; 1204 } else { 1205 pps_freq += u_usec >> PPS_AVG; 1206 if (pps_freq > time_tolerance) 1207 pps_freq = time_tolerance; 1208 } 1209 } 1210 1211 /* 1212 * Here the calibration interval is adjusted. If the maximum 1213 * time difference is greater than tick / 4, reduce the interval 1214 * by half. If this is not the case for four consecutive 1215 * intervals, double the interval. 1216 */ 1217 if (u_usec << pps_shift > bigtick >> 2) { 1218 pps_intcnt = 0; 1219 if (pps_shift > PPS_SHIFT) 1220 pps_shift--; 1221 } else if (pps_intcnt >= 4) { 1222 pps_intcnt = 0; 1223 if (pps_shift < PPS_SHIFTMAX) 1224 pps_shift++; 1225 } else 1226 pps_intcnt++; 1227 } 1228 #endif /* PPS_SYNC */ 1229 #endif /* NTP */ 1230 1231 1232 /* 1233 * Return information about system clocks. 1234 */ 1235 int 1236 sysctl_clockrate(where, sizep) 1237 register char *where; 1238 size_t *sizep; 1239 { 1240 struct clockinfo clkinfo; 1241 1242 /* 1243 * Construct clockinfo structure. 1244 */ 1245 clkinfo.tick = tick; 1246 clkinfo.tickadj = tickadj; 1247 clkinfo.hz = hz; 1248 clkinfo.profhz = profhz; 1249 clkinfo.stathz = stathz ? stathz : hz; 1250 return (sysctl_rdstruct(where, sizep, NULL, &clkinfo, sizeof(clkinfo))); 1251 } 1252