1 /* $OpenBSD: if_zyd.c,v 1.115 2016/04/13 11:03:37 mpi Exp $ */ 2 3 /*- 4 * Copyright (c) 2006 by Damien Bergamini <damien.bergamini@free.fr> 5 * Copyright (c) 2006 by Florian Stoehr <ich@florian-stoehr.de> 6 * 7 * Permission to use, copy, modify, and distribute this software for any 8 * purpose with or without fee is hereby granted, provided that the above 9 * copyright notice and this permission notice appear in all copies. 10 * 11 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 12 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 13 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 14 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 15 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 16 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 17 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 18 */ 19 20 /* 21 * ZyDAS ZD1211/ZD1211B USB WLAN driver. 22 */ 23 24 #include "bpfilter.h" 25 26 #include <sys/param.h> 27 #include <sys/sockio.h> 28 #include <sys/mbuf.h> 29 #include <sys/kernel.h> 30 #include <sys/socket.h> 31 #include <sys/systm.h> 32 #include <sys/malloc.h> 33 #include <sys/timeout.h> 34 #include <sys/conf.h> 35 #include <sys/device.h> 36 #include <sys/endian.h> 37 38 #if NBPFILTER > 0 39 #include <net/bpf.h> 40 #endif 41 #include <net/if.h> 42 #include <net/if_dl.h> 43 #include <net/if_media.h> 44 45 #include <netinet/in.h> 46 #include <netinet/if_ether.h> 47 48 #include <net80211/ieee80211_var.h> 49 #include <net80211/ieee80211_amrr.h> 50 #include <net80211/ieee80211_radiotap.h> 51 52 #include <dev/usb/usb.h> 53 #include <dev/usb/usbdi.h> 54 #include <dev/usb/usbdi_util.h> 55 #include <dev/usb/usbdevs.h> 56 57 #include <dev/usb/if_zydreg.h> 58 59 #ifdef ZYD_DEBUG 60 #define DPRINTF(x) do { if (zyddebug > 0) printf x; } while (0) 61 #define DPRINTFN(n, x) do { if (zyddebug > (n)) printf x; } while (0) 62 int zyddebug = 0; 63 #else 64 #define DPRINTF(x) 65 #define DPRINTFN(n, x) 66 #endif 67 68 static const struct zyd_phy_pair zyd_def_phy[] = ZYD_DEF_PHY; 69 static const struct zyd_phy_pair zyd_def_phyB[] = ZYD_DEF_PHYB; 70 71 /* various supported device vendors/products */ 72 #define ZYD_ZD1211_DEV(v, p) \ 73 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211 } 74 #define ZYD_ZD1211B_DEV(v, p) \ 75 { { USB_VENDOR_##v, USB_PRODUCT_##v##_##p }, ZYD_ZD1211B } 76 static const struct zyd_type { 77 struct usb_devno dev; 78 uint8_t rev; 79 #define ZYD_ZD1211 0 80 #define ZYD_ZD1211B 1 81 } zyd_devs[] = { 82 ZYD_ZD1211_DEV(3COM2, 3CRUSB10075), 83 ZYD_ZD1211_DEV(ABOCOM, WL54), 84 ZYD_ZD1211_DEV(ASUS, WL159G), 85 ZYD_ZD1211_DEV(CYBERTAN, TG54USB), 86 ZYD_ZD1211_DEV(DRAYTEK, VIGOR550), 87 ZYD_ZD1211_DEV(PLANEX2, GWUS54GD), 88 ZYD_ZD1211_DEV(PLANEX2, GWUS54GZL), 89 ZYD_ZD1211_DEV(PLANEX3, GWUS54GZ), 90 ZYD_ZD1211_DEV(PLANEX3, GWUS54MINI), 91 ZYD_ZD1211_DEV(SAGEM, XG760A), 92 ZYD_ZD1211_DEV(SENAO, NUB8301), 93 ZYD_ZD1211_DEV(SITECOMEU, WL113), 94 ZYD_ZD1211_DEV(SWEEX, ZD1211), 95 ZYD_ZD1211_DEV(TEKRAM, QUICKWLAN), 96 ZYD_ZD1211_DEV(TEKRAM, ZD1211_1), 97 ZYD_ZD1211_DEV(TEKRAM, ZD1211_2), 98 ZYD_ZD1211_DEV(TWINMOS, G240), 99 ZYD_ZD1211_DEV(UMEDIA, ALL0298V2), 100 ZYD_ZD1211_DEV(UMEDIA, TEW429UB_A), 101 ZYD_ZD1211_DEV(UMEDIA, TEW429UB), 102 ZYD_ZD1211_DEV(UNKNOWN2, NW3100), 103 ZYD_ZD1211_DEV(WISTRONNEWEB, UR055G), 104 ZYD_ZD1211_DEV(ZCOM, ZD1211), 105 ZYD_ZD1211_DEV(ZYDAS, ALL0298), 106 ZYD_ZD1211_DEV(ZYDAS, ZD1211), 107 ZYD_ZD1211_DEV(ZYXEL, AG225H), 108 ZYD_ZD1211_DEV(ZYXEL, G200V2), 109 ZYD_ZD1211_DEV(ZYXEL, G202), 110 ZYD_ZD1211_DEV(ZYXEL, G220), 111 ZYD_ZD1211_DEV(ZYXEL, G220F), 112 113 ZYD_ZD1211B_DEV(ACCTON, SMCWUSBG), 114 ZYD_ZD1211B_DEV(ACCTON, WN4501H_LF_IR), 115 ZYD_ZD1211B_DEV(ACCTON, WUS201), 116 ZYD_ZD1211B_DEV(ACCTON, ZD1211B), 117 ZYD_ZD1211B_DEV(ASUS, A9T_WIFI), 118 ZYD_ZD1211B_DEV(BELKIN, F5D7050C), 119 ZYD_ZD1211B_DEV(BELKIN, ZD1211B), 120 ZYD_ZD1211B_DEV(BEWAN, BWIFI_USB54AR), 121 ZYD_ZD1211B_DEV(CISCOLINKSYS, WUSBF54G), 122 ZYD_ZD1211B_DEV(CYBERTAN, ZD1211B), 123 ZYD_ZD1211B_DEV(FIBERLINE, WL430U), 124 ZYD_ZD1211B_DEV(MELCO, KG54L), 125 ZYD_ZD1211B_DEV(PHILIPS, SNU5600), 126 ZYD_ZD1211B_DEV(PHILIPS, SNU5630NS05), 127 ZYD_ZD1211B_DEV(PLANEX2, GW_US54GXS), 128 ZYD_ZD1211B_DEV(PLANEX4, GWUS54ZGL), 129 ZYD_ZD1211B_DEV(PLANEX4, ZD1211B), 130 ZYD_ZD1211B_DEV(SAGEM, XG76NA), 131 ZYD_ZD1211B_DEV(SITECOMEU, WL603), 132 ZYD_ZD1211B_DEV(SITECOMEU, ZD1211B), 133 ZYD_ZD1211B_DEV(UMEDIA, TEW429UBC1), 134 ZYD_ZD1211B_DEV(UNKNOWN2, ZD1211B), 135 ZYD_ZD1211B_DEV(UNKNOWN3, ZD1211B), 136 ZYD_ZD1211B_DEV(SONY, IFU_WLM2), 137 ZYD_ZD1211B_DEV(USR, USR5423), 138 ZYD_ZD1211B_DEV(VTECH, ZD1211B), 139 ZYD_ZD1211B_DEV(ZCOM, ZD1211B), 140 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B), 141 ZYD_ZD1211B_DEV(ZYDAS, ZD1211B_2), 142 ZYD_ZD1211B_DEV(ZYXEL, AG220), 143 ZYD_ZD1211B_DEV(ZYXEL, AG225HV2), 144 ZYD_ZD1211B_DEV(ZYXEL, G220V2), 145 ZYD_ZD1211B_DEV(ZYXEL, M202) 146 }; 147 #define zyd_lookup(v, p) \ 148 ((const struct zyd_type *)usb_lookup(zyd_devs, v, p)) 149 150 int zyd_match(struct device *, void *, void *); 151 void zyd_attach(struct device *, struct device *, void *); 152 int zyd_detach(struct device *, int); 153 154 struct cfdriver zyd_cd = { 155 NULL, "zyd", DV_IFNET 156 }; 157 158 const struct cfattach zyd_ca = { 159 sizeof(struct zyd_softc), zyd_match, zyd_attach, zyd_detach 160 }; 161 162 void zyd_attachhook(struct device *); 163 int zyd_complete_attach(struct zyd_softc *); 164 int zyd_open_pipes(struct zyd_softc *); 165 void zyd_close_pipes(struct zyd_softc *); 166 int zyd_alloc_tx_list(struct zyd_softc *); 167 void zyd_free_tx_list(struct zyd_softc *); 168 int zyd_alloc_rx_list(struct zyd_softc *); 169 void zyd_free_rx_list(struct zyd_softc *); 170 struct ieee80211_node *zyd_node_alloc(struct ieee80211com *); 171 int zyd_media_change(struct ifnet *); 172 void zyd_next_scan(void *); 173 void zyd_task(void *); 174 int zyd_newstate(struct ieee80211com *, enum ieee80211_state, int); 175 int zyd_cmd_read(struct zyd_softc *, const void *, size_t, int); 176 int zyd_read16(struct zyd_softc *, uint16_t, uint16_t *); 177 int zyd_read32(struct zyd_softc *, uint16_t, uint32_t *); 178 int zyd_cmd_write(struct zyd_softc *, u_int16_t, const void *, int); 179 int zyd_write16(struct zyd_softc *, uint16_t, uint16_t); 180 int zyd_write32(struct zyd_softc *, uint16_t, uint32_t); 181 int zyd_rfwrite(struct zyd_softc *, uint32_t); 182 void zyd_lock_phy(struct zyd_softc *); 183 void zyd_unlock_phy(struct zyd_softc *); 184 int zyd_rfmd_init(struct zyd_rf *); 185 int zyd_rfmd_switch_radio(struct zyd_rf *, int); 186 int zyd_rfmd_set_channel(struct zyd_rf *, uint8_t); 187 int zyd_al2230_init(struct zyd_rf *); 188 int zyd_al2230_switch_radio(struct zyd_rf *, int); 189 int zyd_al2230_set_channel(struct zyd_rf *, uint8_t); 190 int zyd_al2230_init_b(struct zyd_rf *); 191 int zyd_al7230B_init(struct zyd_rf *); 192 int zyd_al7230B_switch_radio(struct zyd_rf *, int); 193 int zyd_al7230B_set_channel(struct zyd_rf *, uint8_t); 194 int zyd_al2210_init(struct zyd_rf *); 195 int zyd_al2210_switch_radio(struct zyd_rf *, int); 196 int zyd_al2210_set_channel(struct zyd_rf *, uint8_t); 197 int zyd_gct_init(struct zyd_rf *); 198 int zyd_gct_switch_radio(struct zyd_rf *, int); 199 int zyd_gct_set_channel(struct zyd_rf *, uint8_t); 200 int zyd_maxim_init(struct zyd_rf *); 201 int zyd_maxim_switch_radio(struct zyd_rf *, int); 202 int zyd_maxim_set_channel(struct zyd_rf *, uint8_t); 203 int zyd_maxim2_init(struct zyd_rf *); 204 int zyd_maxim2_switch_radio(struct zyd_rf *, int); 205 int zyd_maxim2_set_channel(struct zyd_rf *, uint8_t); 206 int zyd_rf_attach(struct zyd_softc *, uint8_t); 207 const char *zyd_rf_name(uint8_t); 208 int zyd_hw_init(struct zyd_softc *); 209 int zyd_read_eeprom(struct zyd_softc *); 210 void zyd_set_multi(struct zyd_softc *); 211 void zyd_set_macaddr(struct zyd_softc *, const uint8_t *); 212 void zyd_set_bssid(struct zyd_softc *, const uint8_t *); 213 int zyd_switch_radio(struct zyd_softc *, int); 214 void zyd_set_led(struct zyd_softc *, int, int); 215 int zyd_set_rxfilter(struct zyd_softc *); 216 void zyd_set_chan(struct zyd_softc *, struct ieee80211_channel *); 217 int zyd_set_beacon_interval(struct zyd_softc *, int); 218 uint8_t zyd_plcp_signal(int); 219 void zyd_intr(struct usbd_xfer *, void *, usbd_status); 220 void zyd_rx_data(struct zyd_softc *, const uint8_t *, uint16_t); 221 void zyd_rxeof(struct usbd_xfer *, void *, usbd_status); 222 void zyd_txeof(struct usbd_xfer *, void *, usbd_status); 223 int zyd_tx(struct zyd_softc *, struct mbuf *, 224 struct ieee80211_node *); 225 void zyd_start(struct ifnet *); 226 void zyd_watchdog(struct ifnet *); 227 int zyd_ioctl(struct ifnet *, u_long, caddr_t); 228 int zyd_init(struct ifnet *); 229 void zyd_stop(struct ifnet *, int); 230 int zyd_loadfirmware(struct zyd_softc *, u_char *, size_t); 231 void zyd_iter_func(void *, struct ieee80211_node *); 232 void zyd_amrr_timeout(void *); 233 void zyd_newassoc(struct ieee80211com *, struct ieee80211_node *, 234 int); 235 236 int 237 zyd_match(struct device *parent, void *match, void *aux) 238 { 239 struct usb_attach_arg *uaa = aux; 240 241 if (!uaa->iface) 242 return UMATCH_NONE; 243 244 return (zyd_lookup(uaa->vendor, uaa->product) != NULL) ? 245 UMATCH_VENDOR_PRODUCT : UMATCH_NONE; 246 } 247 248 void 249 zyd_attachhook(struct device *self) 250 { 251 struct zyd_softc *sc = (struct zyd_softc *)self; 252 const char *fwname; 253 u_char *fw; 254 size_t size; 255 int error; 256 257 fwname = (sc->mac_rev == ZYD_ZD1211) ? "zd1211" : "zd1211b"; 258 if ((error = loadfirmware(fwname, &fw, &size)) != 0) { 259 printf("%s: error %d, could not read firmware file %s\n", 260 sc->sc_dev.dv_xname, error, fwname); 261 return; 262 } 263 264 error = zyd_loadfirmware(sc, fw, size); 265 free(fw, M_DEVBUF, 0); 266 if (error != 0) { 267 printf("%s: could not load firmware (error=%d)\n", 268 sc->sc_dev.dv_xname, error); 269 return; 270 } 271 272 /* complete the attach process */ 273 if (zyd_complete_attach(sc) == 0) 274 sc->attached = 1; 275 } 276 277 void 278 zyd_attach(struct device *parent, struct device *self, void *aux) 279 { 280 struct zyd_softc *sc = (struct zyd_softc *)self; 281 struct usb_attach_arg *uaa = aux; 282 usb_device_descriptor_t* ddesc; 283 284 sc->sc_udev = uaa->device; 285 286 sc->mac_rev = zyd_lookup(uaa->vendor, uaa->product)->rev; 287 288 ddesc = usbd_get_device_descriptor(sc->sc_udev); 289 if (UGETW(ddesc->bcdDevice) < 0x4330) { 290 printf("%s: device version mismatch: 0x%x " 291 "(only >= 43.30 supported)\n", sc->sc_dev.dv_xname, 292 UGETW(ddesc->bcdDevice)); 293 return; 294 } 295 296 config_mountroot(self, zyd_attachhook); 297 } 298 299 int 300 zyd_complete_attach(struct zyd_softc *sc) 301 { 302 struct ieee80211com *ic = &sc->sc_ic; 303 struct ifnet *ifp = &ic->ic_if; 304 usbd_status error; 305 int i; 306 307 usb_init_task(&sc->sc_task, zyd_task, sc, USB_TASK_TYPE_GENERIC); 308 timeout_set(&sc->scan_to, zyd_next_scan, sc); 309 310 sc->amrr.amrr_min_success_threshold = 1; 311 sc->amrr.amrr_max_success_threshold = 10; 312 timeout_set(&sc->amrr_to, zyd_amrr_timeout, sc); 313 314 error = usbd_set_config_no(sc->sc_udev, ZYD_CONFIG_NO, 1); 315 if (error != 0) { 316 printf("%s: setting config no failed\n", 317 sc->sc_dev.dv_xname); 318 goto fail; 319 } 320 321 error = usbd_device2interface_handle(sc->sc_udev, ZYD_IFACE_INDEX, 322 &sc->sc_iface); 323 if (error != 0) { 324 printf("%s: getting interface handle failed\n", 325 sc->sc_dev.dv_xname); 326 goto fail; 327 } 328 329 if ((error = zyd_open_pipes(sc)) != 0) { 330 printf("%s: could not open pipes\n", sc->sc_dev.dv_xname); 331 goto fail; 332 } 333 334 if ((error = zyd_read_eeprom(sc)) != 0) { 335 printf("%s: could not read EEPROM\n", sc->sc_dev.dv_xname); 336 goto fail; 337 } 338 339 if ((error = zyd_rf_attach(sc, sc->rf_rev)) != 0) { 340 printf("%s: could not attach RF\n", sc->sc_dev.dv_xname); 341 goto fail; 342 } 343 344 if ((error = zyd_hw_init(sc)) != 0) { 345 printf("%s: hardware initialization failed\n", 346 sc->sc_dev.dv_xname); 347 goto fail; 348 } 349 350 printf("%s: HMAC ZD1211%s, FW %02x.%02x, RF %s, PA %x, address %s\n", 351 sc->sc_dev.dv_xname, (sc->mac_rev == ZYD_ZD1211) ? "": "B", 352 sc->fw_rev >> 8, sc->fw_rev & 0xff, zyd_rf_name(sc->rf_rev), 353 sc->pa_rev, ether_sprintf(ic->ic_myaddr)); 354 355 ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */ 356 ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */ 357 ic->ic_state = IEEE80211_S_INIT; 358 359 /* set device capabilities */ 360 ic->ic_caps = 361 IEEE80211_C_MONITOR | /* monitor mode supported */ 362 IEEE80211_C_TXPMGT | /* tx power management */ 363 IEEE80211_C_SHPREAMBLE | /* short preamble supported */ 364 IEEE80211_C_WEP | /* s/w WEP */ 365 IEEE80211_C_RSN; /* WPA/RSN */ 366 367 /* set supported .11b and .11g rates */ 368 ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b; 369 ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g; 370 371 /* set supported .11b and .11g channels (1 through 14) */ 372 for (i = 1; i <= 14; i++) { 373 ic->ic_channels[i].ic_freq = 374 ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ); 375 ic->ic_channels[i].ic_flags = 376 IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM | 377 IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ; 378 } 379 380 ifp->if_softc = sc; 381 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; 382 ifp->if_ioctl = zyd_ioctl; 383 ifp->if_start = zyd_start; 384 ifp->if_watchdog = zyd_watchdog; 385 memcpy(ifp->if_xname, sc->sc_dev.dv_xname, IFNAMSIZ); 386 387 if_attach(ifp); 388 ieee80211_ifattach(ifp); 389 ic->ic_node_alloc = zyd_node_alloc; 390 ic->ic_newassoc = zyd_newassoc; 391 392 /* override state transition machine */ 393 sc->sc_newstate = ic->ic_newstate; 394 ic->ic_newstate = zyd_newstate; 395 ieee80211_media_init(ifp, zyd_media_change, ieee80211_media_status); 396 397 #if NBPFILTER > 0 398 bpfattach(&sc->sc_drvbpf, ifp, DLT_IEEE802_11_RADIO, 399 sizeof (struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN); 400 401 sc->sc_rxtap_len = sizeof sc->sc_rxtapu; 402 sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len); 403 sc->sc_rxtap.wr_ihdr.it_present = htole32(ZYD_RX_RADIOTAP_PRESENT); 404 405 sc->sc_txtap_len = sizeof sc->sc_txtapu; 406 sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len); 407 sc->sc_txtap.wt_ihdr.it_present = htole32(ZYD_TX_RADIOTAP_PRESENT); 408 #endif 409 410 fail: return error; 411 } 412 413 int 414 zyd_detach(struct device *self, int flags) 415 { 416 struct zyd_softc *sc = (struct zyd_softc *)self; 417 struct ifnet *ifp = &sc->sc_ic.ic_if; 418 int s; 419 420 s = splusb(); 421 422 usb_rem_task(sc->sc_udev, &sc->sc_task); 423 if (timeout_initialized(&sc->scan_to)) 424 timeout_del(&sc->scan_to); 425 if (timeout_initialized(&sc->amrr_to)) 426 timeout_del(&sc->amrr_to); 427 428 zyd_close_pipes(sc); 429 430 if (!sc->attached) { 431 splx(s); 432 return 0; 433 } 434 435 if (ifp->if_softc != NULL) { 436 ieee80211_ifdetach(ifp); 437 if_detach(ifp); 438 } 439 440 zyd_free_rx_list(sc); 441 zyd_free_tx_list(sc); 442 443 sc->attached = 0; 444 445 splx(s); 446 447 return 0; 448 } 449 450 int 451 zyd_open_pipes(struct zyd_softc *sc) 452 { 453 usb_endpoint_descriptor_t *edesc; 454 int isize; 455 usbd_status error; 456 457 /* interrupt in */ 458 edesc = usbd_get_endpoint_descriptor(sc->sc_iface, 0x83); 459 if (edesc == NULL) 460 return EINVAL; 461 462 isize = UGETW(edesc->wMaxPacketSize); 463 if (isize == 0) /* should not happen */ 464 return EINVAL; 465 466 sc->ibuf = malloc(isize, M_USBDEV, M_NOWAIT); 467 if (sc->ibuf == NULL) 468 return ENOMEM; 469 470 error = usbd_open_pipe_intr(sc->sc_iface, 0x83, USBD_SHORT_XFER_OK, 471 &sc->zyd_ep[ZYD_ENDPT_IIN], sc, sc->ibuf, isize, zyd_intr, 472 USBD_DEFAULT_INTERVAL); 473 if (error != 0) { 474 printf("%s: open rx intr pipe failed: %s\n", 475 sc->sc_dev.dv_xname, usbd_errstr(error)); 476 goto fail; 477 } 478 479 /* interrupt out (not necessarily an interrupt pipe) */ 480 error = usbd_open_pipe(sc->sc_iface, 0x04, USBD_EXCLUSIVE_USE, 481 &sc->zyd_ep[ZYD_ENDPT_IOUT]); 482 if (error != 0) { 483 printf("%s: open tx intr pipe failed: %s\n", 484 sc->sc_dev.dv_xname, usbd_errstr(error)); 485 goto fail; 486 } 487 488 /* bulk in */ 489 error = usbd_open_pipe(sc->sc_iface, 0x82, USBD_EXCLUSIVE_USE, 490 &sc->zyd_ep[ZYD_ENDPT_BIN]); 491 if (error != 0) { 492 printf("%s: open rx pipe failed: %s\n", 493 sc->sc_dev.dv_xname, usbd_errstr(error)); 494 goto fail; 495 } 496 497 /* bulk out */ 498 error = usbd_open_pipe(sc->sc_iface, 0x01, USBD_EXCLUSIVE_USE, 499 &sc->zyd_ep[ZYD_ENDPT_BOUT]); 500 if (error != 0) { 501 printf("%s: open tx pipe failed: %s\n", 502 sc->sc_dev.dv_xname, usbd_errstr(error)); 503 goto fail; 504 } 505 506 return 0; 507 508 fail: zyd_close_pipes(sc); 509 return error; 510 } 511 512 void 513 zyd_close_pipes(struct zyd_softc *sc) 514 { 515 int i; 516 517 for (i = 0; i < ZYD_ENDPT_CNT; i++) { 518 if (sc->zyd_ep[i] != NULL) { 519 usbd_abort_pipe(sc->zyd_ep[i]); 520 usbd_close_pipe(sc->zyd_ep[i]); 521 sc->zyd_ep[i] = NULL; 522 } 523 } 524 if (sc->ibuf != NULL) { 525 free(sc->ibuf, M_USBDEV, 0); 526 sc->ibuf = NULL; 527 } 528 } 529 530 int 531 zyd_alloc_tx_list(struct zyd_softc *sc) 532 { 533 int i, error; 534 535 sc->tx_queued = 0; 536 537 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 538 struct zyd_tx_data *data = &sc->tx_data[i]; 539 540 data->sc = sc; /* backpointer for callbacks */ 541 542 data->xfer = usbd_alloc_xfer(sc->sc_udev); 543 if (data->xfer == NULL) { 544 printf("%s: could not allocate tx xfer\n", 545 sc->sc_dev.dv_xname); 546 error = ENOMEM; 547 goto fail; 548 } 549 data->buf = usbd_alloc_buffer(data->xfer, ZYD_MAX_TXBUFSZ); 550 if (data->buf == NULL) { 551 printf("%s: could not allocate tx buffer\n", 552 sc->sc_dev.dv_xname); 553 error = ENOMEM; 554 goto fail; 555 } 556 557 /* clear Tx descriptor */ 558 bzero(data->buf, sizeof (struct zyd_tx_desc)); 559 } 560 return 0; 561 562 fail: zyd_free_tx_list(sc); 563 return error; 564 } 565 566 void 567 zyd_free_tx_list(struct zyd_softc *sc) 568 { 569 struct ieee80211com *ic = &sc->sc_ic; 570 int i; 571 572 for (i = 0; i < ZYD_TX_LIST_CNT; i++) { 573 struct zyd_tx_data *data = &sc->tx_data[i]; 574 575 if (data->xfer != NULL) { 576 usbd_free_xfer(data->xfer); 577 data->xfer = NULL; 578 } 579 if (data->ni != NULL) { 580 ieee80211_release_node(ic, data->ni); 581 data->ni = NULL; 582 } 583 } 584 } 585 586 int 587 zyd_alloc_rx_list(struct zyd_softc *sc) 588 { 589 int i, error; 590 591 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 592 struct zyd_rx_data *data = &sc->rx_data[i]; 593 594 data->sc = sc; /* backpointer for callbacks */ 595 596 data->xfer = usbd_alloc_xfer(sc->sc_udev); 597 if (data->xfer == NULL) { 598 printf("%s: could not allocate rx xfer\n", 599 sc->sc_dev.dv_xname); 600 error = ENOMEM; 601 goto fail; 602 } 603 data->buf = usbd_alloc_buffer(data->xfer, ZYX_MAX_RXBUFSZ); 604 if (data->buf == NULL) { 605 printf("%s: could not allocate rx buffer\n", 606 sc->sc_dev.dv_xname); 607 error = ENOMEM; 608 goto fail; 609 } 610 } 611 return 0; 612 613 fail: zyd_free_rx_list(sc); 614 return error; 615 } 616 617 void 618 zyd_free_rx_list(struct zyd_softc *sc) 619 { 620 int i; 621 622 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 623 struct zyd_rx_data *data = &sc->rx_data[i]; 624 625 if (data->xfer != NULL) { 626 usbd_free_xfer(data->xfer); 627 data->xfer = NULL; 628 } 629 } 630 } 631 632 struct ieee80211_node * 633 zyd_node_alloc(struct ieee80211com *ic) 634 { 635 return malloc(sizeof (struct zyd_node), M_DEVBUF, M_NOWAIT | M_ZERO); 636 } 637 638 int 639 zyd_media_change(struct ifnet *ifp) 640 { 641 int error; 642 643 error = ieee80211_media_change(ifp); 644 if (error != ENETRESET) 645 return error; 646 647 if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING)) 648 zyd_init(ifp); 649 650 return 0; 651 } 652 653 /* 654 * This function is called periodically (every 200ms) during scanning to 655 * switch from one channel to another. 656 */ 657 void 658 zyd_next_scan(void *arg) 659 { 660 struct zyd_softc *sc = arg; 661 struct ieee80211com *ic = &sc->sc_ic; 662 struct ifnet *ifp = &ic->ic_if; 663 664 if (ic->ic_state == IEEE80211_S_SCAN) 665 ieee80211_next_scan(ifp); 666 } 667 668 void 669 zyd_task(void *arg) 670 { 671 struct zyd_softc *sc = arg; 672 struct ieee80211com *ic = &sc->sc_ic; 673 enum ieee80211_state ostate; 674 675 ostate = ic->ic_state; 676 677 switch (sc->sc_state) { 678 case IEEE80211_S_INIT: 679 if (ostate == IEEE80211_S_RUN) { 680 /* turn link LED off */ 681 zyd_set_led(sc, ZYD_LED1, 0); 682 683 /* stop data LED from blinking */ 684 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 0); 685 } 686 break; 687 688 case IEEE80211_S_SCAN: 689 zyd_set_chan(sc, ic->ic_bss->ni_chan); 690 timeout_add_msec(&sc->scan_to, 200); 691 break; 692 693 case IEEE80211_S_AUTH: 694 case IEEE80211_S_ASSOC: 695 zyd_set_chan(sc, ic->ic_bss->ni_chan); 696 break; 697 698 case IEEE80211_S_RUN: 699 { 700 struct ieee80211_node *ni = ic->ic_bss; 701 702 zyd_set_chan(sc, ni->ni_chan); 703 704 if (ic->ic_opmode != IEEE80211_M_MONITOR) { 705 /* turn link LED on */ 706 zyd_set_led(sc, ZYD_LED1, 1); 707 708 /* make data LED blink upon Tx */ 709 zyd_write32(sc, sc->fwbase + ZYD_FW_LINK_STATUS, 1); 710 711 zyd_set_bssid(sc, ni->ni_bssid); 712 } 713 714 if (ic->ic_opmode == IEEE80211_M_STA) { 715 /* fake a join to init the tx rate */ 716 zyd_newassoc(ic, ni, 1); 717 } 718 719 /* start automatic rate control timer */ 720 if (ic->ic_fixed_rate == -1) 721 timeout_add_sec(&sc->amrr_to, 1); 722 723 break; 724 } 725 } 726 727 sc->sc_newstate(ic, sc->sc_state, sc->sc_arg); 728 } 729 730 int 731 zyd_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg) 732 { 733 struct zyd_softc *sc = ic->ic_softc; 734 735 usb_rem_task(sc->sc_udev, &sc->sc_task); 736 timeout_del(&sc->scan_to); 737 timeout_del(&sc->amrr_to); 738 739 /* do it in a process context */ 740 sc->sc_state = nstate; 741 sc->sc_arg = arg; 742 usb_add_task(sc->sc_udev, &sc->sc_task); 743 744 return 0; 745 } 746 747 /* 748 * Issue a read command for the specificed register (of size regsize) 749 * and await a reply of olen bytes in sc->odata. 750 */ 751 int 752 zyd_cmd_read(struct zyd_softc *sc, const void *reg, size_t regsize, int olen) 753 { 754 struct usbd_xfer *xfer; 755 struct zyd_cmd cmd; 756 usbd_status error; 757 int s; 758 759 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) 760 return ENOMEM; 761 762 bzero(&cmd, sizeof(cmd)); 763 cmd.code = htole16(ZYD_CMD_IORD); 764 bcopy(reg, cmd.data, regsize); 765 766 bzero(sc->odata, sizeof(sc->odata)); 767 sc->olen = olen; 768 769 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, 770 &cmd, sizeof(cmd.code) + regsize, 771 USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS, 772 ZYD_INTR_TIMEOUT, NULL); 773 s = splusb(); 774 sc->odone = 0; 775 error = usbd_transfer(xfer); 776 splx(s); 777 if (error) { 778 printf("%s: could not send command: %s\n", 779 sc->sc_dev.dv_xname, usbd_errstr(error)); 780 usbd_free_xfer(xfer); 781 return EIO; 782 } 783 784 if (!sc->odone) { 785 /* wait for ZYD_NOTIF_IORD interrupt */ 786 if (tsleep(sc, PWAIT, "zydcmd", ZYD_INTR_TIMEOUT) != 0) 787 printf("%s: read command failed\n", 788 sc->sc_dev.dv_xname); 789 } 790 usbd_free_xfer(xfer); 791 792 return error; 793 } 794 795 int 796 zyd_read16(struct zyd_softc *sc, uint16_t reg, uint16_t *val) 797 { 798 struct zyd_io *odata; 799 int error; 800 801 reg = htole16(reg); 802 error = zyd_cmd_read(sc, ®, sizeof(reg), sizeof(*odata)); 803 if (error == 0) { 804 odata = (struct zyd_io *)sc->odata; 805 *val = letoh16(odata[0].val); 806 } 807 return error; 808 } 809 810 int 811 zyd_read32(struct zyd_softc *sc, uint16_t reg, uint32_t *val) 812 { 813 struct zyd_io *odata; 814 uint16_t regs[2]; 815 int error; 816 817 regs[0] = htole16(ZYD_REG32_HI(reg)); 818 regs[1] = htole16(ZYD_REG32_LO(reg)); 819 error = zyd_cmd_read(sc, regs, sizeof(regs), sizeof(*odata) * 2); 820 if (error == 0) { 821 odata = (struct zyd_io *)sc->odata; 822 *val = letoh16(odata[0].val) << 16 | letoh16(odata[1].val); 823 } 824 return error; 825 } 826 827 int 828 zyd_cmd_write(struct zyd_softc *sc, u_int16_t code, const void *data, int len) 829 { 830 struct usbd_xfer *xfer; 831 struct zyd_cmd cmd; 832 usbd_status error; 833 834 if ((xfer = usbd_alloc_xfer(sc->sc_udev)) == NULL) 835 return ENOMEM; 836 837 bzero(&cmd, sizeof(cmd)); 838 cmd.code = htole16(code); 839 bcopy(data, cmd.data, len); 840 841 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_IOUT], 0, 842 &cmd, sizeof(cmd.code) + len, 843 USBD_FORCE_SHORT_XFER | USBD_SYNCHRONOUS, 844 ZYD_INTR_TIMEOUT, NULL); 845 error = usbd_transfer(xfer); 846 if (error) 847 printf("%s: could not send command: %s\n", 848 sc->sc_dev.dv_xname, usbd_errstr(error)); 849 850 usbd_free_xfer(xfer); 851 return error; 852 } 853 854 int 855 zyd_write16(struct zyd_softc *sc, uint16_t reg, uint16_t val) 856 { 857 struct zyd_io io; 858 859 io.reg = htole16(reg); 860 io.val = htole16(val); 861 return zyd_cmd_write(sc, ZYD_CMD_IOWR, &io, sizeof(io)); 862 } 863 864 int 865 zyd_write32(struct zyd_softc *sc, uint16_t reg, uint32_t val) 866 { 867 struct zyd_io io[2]; 868 869 io[0].reg = htole16(ZYD_REG32_HI(reg)); 870 io[0].val = htole16(val >> 16); 871 io[1].reg = htole16(ZYD_REG32_LO(reg)); 872 io[1].val = htole16(val & 0xffff); 873 874 return zyd_cmd_write(sc, ZYD_CMD_IOWR, io, sizeof(io)); 875 } 876 877 int 878 zyd_rfwrite(struct zyd_softc *sc, uint32_t val) 879 { 880 struct zyd_rf *rf = &sc->sc_rf; 881 struct zyd_rfwrite req; 882 uint16_t cr203; 883 int i; 884 885 (void)zyd_read16(sc, ZYD_CR203, &cr203); 886 cr203 &= ~(ZYD_RF_IF_LE | ZYD_RF_CLK | ZYD_RF_DATA); 887 888 req.code = htole16(2); 889 req.width = htole16(rf->width); 890 for (i = 0; i < rf->width; i++) { 891 req.bit[i] = htole16(cr203); 892 if (val & (1 << (rf->width - 1 - i))) 893 req.bit[i] |= htole16(ZYD_RF_DATA); 894 } 895 return zyd_cmd_write(sc, ZYD_CMD_RFCFG, &req, 4 + 2 * rf->width); 896 } 897 898 void 899 zyd_lock_phy(struct zyd_softc *sc) 900 { 901 uint32_t tmp; 902 903 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 904 tmp &= ~ZYD_UNLOCK_PHY_REGS; 905 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 906 } 907 908 void 909 zyd_unlock_phy(struct zyd_softc *sc) 910 { 911 uint32_t tmp; 912 913 (void)zyd_read32(sc, ZYD_MAC_MISC, &tmp); 914 tmp |= ZYD_UNLOCK_PHY_REGS; 915 (void)zyd_write32(sc, ZYD_MAC_MISC, tmp); 916 } 917 918 /* 919 * RFMD RF methods. 920 */ 921 int 922 zyd_rfmd_init(struct zyd_rf *rf) 923 { 924 struct zyd_softc *sc = rf->rf_sc; 925 static const struct zyd_phy_pair phyini[] = ZYD_RFMD_PHY; 926 static const uint32_t rfini[] = ZYD_RFMD_RF; 927 int i, error; 928 929 /* init RF-dependent PHY registers */ 930 for (i = 0; i < nitems(phyini); i++) { 931 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 932 if (error != 0) 933 return error; 934 } 935 936 /* init RFMD radio */ 937 for (i = 0; i < nitems(rfini); i++) { 938 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 939 return error; 940 } 941 return 0; 942 } 943 944 int 945 zyd_rfmd_switch_radio(struct zyd_rf *rf, int on) 946 { 947 struct zyd_softc *sc = rf->rf_sc; 948 949 (void)zyd_write16(sc, ZYD_CR10, on ? 0x89 : 0x15); 950 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x81); 951 952 return 0; 953 } 954 955 int 956 zyd_rfmd_set_channel(struct zyd_rf *rf, uint8_t chan) 957 { 958 struct zyd_softc *sc = rf->rf_sc; 959 static const struct { 960 uint32_t r1, r2; 961 } rfprog[] = ZYD_RFMD_CHANTABLE; 962 963 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 964 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 965 966 return 0; 967 } 968 969 /* 970 * AL2230 RF methods. 971 */ 972 int 973 zyd_al2230_init(struct zyd_rf *rf) 974 { 975 struct zyd_softc *sc = rf->rf_sc; 976 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY; 977 static const struct zyd_phy_pair phy2230s[] = ZYD_AL2230S_PHY_INIT; 978 static const uint32_t rfini[] = ZYD_AL2230_RF; 979 int i, error; 980 981 /* init RF-dependent PHY registers */ 982 for (i = 0; i < nitems(phyini); i++) { 983 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 984 if (error != 0) 985 return error; 986 } 987 if (sc->rf_rev == ZYD_RF_AL2230S) { 988 for (i = 0; i < nitems(phy2230s); i++) { 989 error = zyd_write16(sc, phy2230s[i].reg, 990 phy2230s[i].val); 991 if (error != 0) 992 return error; 993 } 994 } 995 /* init AL2230 radio */ 996 for (i = 0; i < nitems(rfini); i++) { 997 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 998 return error; 999 } 1000 return 0; 1001 } 1002 1003 int 1004 zyd_al2230_init_b(struct zyd_rf *rf) 1005 { 1006 struct zyd_softc *sc = rf->rf_sc; 1007 static const struct zyd_phy_pair phyini[] = ZYD_AL2230_PHY_B; 1008 static const uint32_t rfini[] = ZYD_AL2230_RF_B; 1009 int i, error; 1010 1011 /* init RF-dependent PHY registers */ 1012 for (i = 0; i < nitems(phyini); i++) { 1013 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1014 if (error != 0) 1015 return error; 1016 } 1017 1018 /* init AL2230 radio */ 1019 for (i = 0; i < nitems(rfini); i++) { 1020 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1021 return error; 1022 } 1023 return 0; 1024 } 1025 1026 int 1027 zyd_al2230_switch_radio(struct zyd_rf *rf, int on) 1028 { 1029 struct zyd_softc *sc = rf->rf_sc; 1030 int on251 = (sc->mac_rev == ZYD_ZD1211) ? 0x3f : 0x7f; 1031 1032 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1033 (void)zyd_write16(sc, ZYD_CR251, on ? on251 : 0x2f); 1034 1035 return 0; 1036 } 1037 1038 int 1039 zyd_al2230_set_channel(struct zyd_rf *rf, uint8_t chan) 1040 { 1041 struct zyd_softc *sc = rf->rf_sc; 1042 static const struct { 1043 uint32_t r1, r2, r3; 1044 } rfprog[] = ZYD_AL2230_CHANTABLE; 1045 1046 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1047 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1048 (void)zyd_rfwrite(sc, rfprog[chan - 1].r3); 1049 1050 (void)zyd_write16(sc, ZYD_CR138, 0x28); 1051 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1052 1053 return 0; 1054 } 1055 1056 /* 1057 * AL7230B RF methods. 1058 */ 1059 int 1060 zyd_al7230B_init(struct zyd_rf *rf) 1061 { 1062 struct zyd_softc *sc = rf->rf_sc; 1063 static const struct zyd_phy_pair phyini_1[] = ZYD_AL7230B_PHY_1; 1064 static const struct zyd_phy_pair phyini_2[] = ZYD_AL7230B_PHY_2; 1065 static const struct zyd_phy_pair phyini_3[] = ZYD_AL7230B_PHY_3; 1066 static const uint32_t rfini_1[] = ZYD_AL7230B_RF_1; 1067 static const uint32_t rfini_2[] = ZYD_AL7230B_RF_2; 1068 int i, error; 1069 1070 /* for AL7230B, PHY and RF need to be initialized in "phases" */ 1071 1072 /* init RF-dependent PHY registers, part one */ 1073 for (i = 0; i < nitems(phyini_1); i++) { 1074 error = zyd_write16(sc, phyini_1[i].reg, phyini_1[i].val); 1075 if (error != 0) 1076 return error; 1077 } 1078 /* init AL7230B radio, part one */ 1079 for (i = 0; i < nitems(rfini_1); i++) { 1080 if ((error = zyd_rfwrite(sc, rfini_1[i])) != 0) 1081 return error; 1082 } 1083 /* init RF-dependent PHY registers, part two */ 1084 for (i = 0; i < nitems(phyini_2); i++) { 1085 error = zyd_write16(sc, phyini_2[i].reg, phyini_2[i].val); 1086 if (error != 0) 1087 return error; 1088 } 1089 /* init AL7230B radio, part two */ 1090 for (i = 0; i < nitems(rfini_2); i++) { 1091 if ((error = zyd_rfwrite(sc, rfini_2[i])) != 0) 1092 return error; 1093 } 1094 /* init RF-dependent PHY registers, part three */ 1095 for (i = 0; i < nitems(phyini_3); i++) { 1096 error = zyd_write16(sc, phyini_3[i].reg, phyini_3[i].val); 1097 if (error != 0) 1098 return error; 1099 } 1100 1101 return 0; 1102 } 1103 1104 int 1105 zyd_al7230B_switch_radio(struct zyd_rf *rf, int on) 1106 { 1107 struct zyd_softc *sc = rf->rf_sc; 1108 1109 (void)zyd_write16(sc, ZYD_CR11, on ? 0x00 : 0x04); 1110 (void)zyd_write16(sc, ZYD_CR251, on ? 0x3f : 0x2f); 1111 1112 return 0; 1113 } 1114 1115 int 1116 zyd_al7230B_set_channel(struct zyd_rf *rf, uint8_t chan) 1117 { 1118 struct zyd_softc *sc = rf->rf_sc; 1119 static const struct { 1120 uint32_t r1, r2; 1121 } rfprog[] = ZYD_AL7230B_CHANTABLE; 1122 static const uint32_t rfsc[] = ZYD_AL7230B_RF_SETCHANNEL; 1123 int i, error; 1124 1125 (void)zyd_write16(sc, ZYD_CR240, 0x57); 1126 (void)zyd_write16(sc, ZYD_CR251, 0x2f); 1127 1128 for (i = 0; i < nitems(rfsc); i++) { 1129 if ((error = zyd_rfwrite(sc, rfsc[i])) != 0) 1130 return error; 1131 } 1132 1133 (void)zyd_write16(sc, ZYD_CR128, 0x14); 1134 (void)zyd_write16(sc, ZYD_CR129, 0x12); 1135 (void)zyd_write16(sc, ZYD_CR130, 0x10); 1136 (void)zyd_write16(sc, ZYD_CR38, 0x38); 1137 (void)zyd_write16(sc, ZYD_CR136, 0xdf); 1138 1139 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1140 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1141 (void)zyd_rfwrite(sc, 0x3c9000); 1142 1143 (void)zyd_write16(sc, ZYD_CR251, 0x3f); 1144 (void)zyd_write16(sc, ZYD_CR203, 0x06); 1145 (void)zyd_write16(sc, ZYD_CR240, 0x08); 1146 1147 return 0; 1148 } 1149 1150 /* 1151 * AL2210 RF methods. 1152 */ 1153 int 1154 zyd_al2210_init(struct zyd_rf *rf) 1155 { 1156 struct zyd_softc *sc = rf->rf_sc; 1157 static const struct zyd_phy_pair phyini[] = ZYD_AL2210_PHY; 1158 static const uint32_t rfini[] = ZYD_AL2210_RF; 1159 uint32_t tmp; 1160 int i, error; 1161 1162 (void)zyd_write32(sc, ZYD_CR18, 2); 1163 1164 /* init RF-dependent PHY registers */ 1165 for (i = 0; i < nitems(phyini); i++) { 1166 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1167 if (error != 0) 1168 return error; 1169 } 1170 /* init AL2210 radio */ 1171 for (i = 0; i < nitems(rfini); i++) { 1172 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1173 return error; 1174 } 1175 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1176 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1177 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1178 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1179 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1180 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1181 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1182 (void)zyd_write32(sc, ZYD_CR18, 3); 1183 1184 return 0; 1185 } 1186 1187 int 1188 zyd_al2210_switch_radio(struct zyd_rf *rf, int on) 1189 { 1190 /* vendor driver does nothing for this RF chip */ 1191 1192 return 0; 1193 } 1194 1195 int 1196 zyd_al2210_set_channel(struct zyd_rf *rf, uint8_t chan) 1197 { 1198 struct zyd_softc *sc = rf->rf_sc; 1199 static const uint32_t rfprog[] = ZYD_AL2210_CHANTABLE; 1200 uint32_t tmp; 1201 1202 (void)zyd_write32(sc, ZYD_CR18, 2); 1203 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1204 (void)zyd_read32(sc, ZYD_CR_RADIO_PD, &tmp); 1205 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp & ~1); 1206 (void)zyd_write32(sc, ZYD_CR_RADIO_PD, tmp | 1); 1207 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x05); 1208 1209 (void)zyd_write32(sc, ZYD_CR_RFCFG, 0x00); 1210 (void)zyd_write16(sc, ZYD_CR47, 0x1e); 1211 1212 /* actually set the channel */ 1213 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1214 1215 (void)zyd_write32(sc, ZYD_CR18, 3); 1216 1217 return 0; 1218 } 1219 1220 /* 1221 * GCT RF methods. 1222 */ 1223 int 1224 zyd_gct_init(struct zyd_rf *rf) 1225 { 1226 struct zyd_softc *sc = rf->rf_sc; 1227 static const struct zyd_phy_pair phyini[] = ZYD_GCT_PHY; 1228 static const uint32_t rfini[] = ZYD_GCT_RF; 1229 int i, error; 1230 1231 /* init RF-dependent PHY registers */ 1232 for (i = 0; i < nitems(phyini); i++) { 1233 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1234 if (error != 0) 1235 return error; 1236 } 1237 /* init cgt radio */ 1238 for (i = 0; i < nitems(rfini); i++) { 1239 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1240 return error; 1241 } 1242 return 0; 1243 } 1244 1245 int 1246 zyd_gct_switch_radio(struct zyd_rf *rf, int on) 1247 { 1248 /* vendor driver does nothing for this RF chip */ 1249 1250 return 0; 1251 } 1252 1253 int 1254 zyd_gct_set_channel(struct zyd_rf *rf, uint8_t chan) 1255 { 1256 struct zyd_softc *sc = rf->rf_sc; 1257 static const uint32_t rfprog[] = ZYD_GCT_CHANTABLE; 1258 1259 (void)zyd_rfwrite(sc, 0x1c0000); 1260 (void)zyd_rfwrite(sc, rfprog[chan - 1]); 1261 (void)zyd_rfwrite(sc, 0x1c0008); 1262 1263 return 0; 1264 } 1265 1266 /* 1267 * Maxim RF methods. 1268 */ 1269 int 1270 zyd_maxim_init(struct zyd_rf *rf) 1271 { 1272 struct zyd_softc *sc = rf->rf_sc; 1273 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1274 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1275 uint16_t tmp; 1276 int i, error; 1277 1278 /* init RF-dependent PHY registers */ 1279 for (i = 0; i < nitems(phyini); i++) { 1280 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1281 if (error != 0) 1282 return error; 1283 } 1284 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1285 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1286 1287 /* init maxim radio */ 1288 for (i = 0; i < nitems(rfini); i++) { 1289 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1290 return error; 1291 } 1292 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1293 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1294 1295 return 0; 1296 } 1297 1298 int 1299 zyd_maxim_switch_radio(struct zyd_rf *rf, int on) 1300 { 1301 /* vendor driver does nothing for this RF chip */ 1302 1303 return 0; 1304 } 1305 1306 int 1307 zyd_maxim_set_channel(struct zyd_rf *rf, uint8_t chan) 1308 { 1309 struct zyd_softc *sc = rf->rf_sc; 1310 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM_PHY; 1311 static const uint32_t rfini[] = ZYD_MAXIM_RF; 1312 static const struct { 1313 uint32_t r1, r2; 1314 } rfprog[] = ZYD_MAXIM_CHANTABLE; 1315 uint16_t tmp; 1316 int i, error; 1317 1318 /* 1319 * Do the same as we do when initializing it, except for the channel 1320 * values coming from the two channel tables. 1321 */ 1322 1323 /* init RF-dependent PHY registers */ 1324 for (i = 0; i < nitems(phyini); i++) { 1325 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1326 if (error != 0) 1327 return error; 1328 } 1329 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1330 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1331 1332 /* first two values taken from the chantables */ 1333 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1334 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1335 1336 /* init maxim radio - skipping the two first values */ 1337 for (i = 2; i < nitems(rfini); i++) { 1338 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1339 return error; 1340 } 1341 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1342 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1343 1344 return 0; 1345 } 1346 1347 /* 1348 * Maxim2 RF methods. 1349 */ 1350 int 1351 zyd_maxim2_init(struct zyd_rf *rf) 1352 { 1353 struct zyd_softc *sc = rf->rf_sc; 1354 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1355 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1356 uint16_t tmp; 1357 int i, error; 1358 1359 /* init RF-dependent PHY registers */ 1360 for (i = 0; i < nitems(phyini); i++) { 1361 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1362 if (error != 0) 1363 return error; 1364 } 1365 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1366 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1367 1368 /* init maxim2 radio */ 1369 for (i = 0; i < nitems(rfini); i++) { 1370 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1371 return error; 1372 } 1373 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1374 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1375 1376 return 0; 1377 } 1378 1379 int 1380 zyd_maxim2_switch_radio(struct zyd_rf *rf, int on) 1381 { 1382 /* vendor driver does nothing for this RF chip */ 1383 1384 return 0; 1385 } 1386 1387 int 1388 zyd_maxim2_set_channel(struct zyd_rf *rf, uint8_t chan) 1389 { 1390 struct zyd_softc *sc = rf->rf_sc; 1391 static const struct zyd_phy_pair phyini[] = ZYD_MAXIM2_PHY; 1392 static const uint32_t rfini[] = ZYD_MAXIM2_RF; 1393 static const struct { 1394 uint32_t r1, r2; 1395 } rfprog[] = ZYD_MAXIM2_CHANTABLE; 1396 uint16_t tmp; 1397 int i, error; 1398 1399 /* 1400 * Do the same as we do when initializing it, except for the channel 1401 * values coming from the two channel tables. 1402 */ 1403 1404 /* init RF-dependent PHY registers */ 1405 for (i = 0; i < nitems(phyini); i++) { 1406 error = zyd_write16(sc, phyini[i].reg, phyini[i].val); 1407 if (error != 0) 1408 return error; 1409 } 1410 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1411 (void)zyd_write16(sc, ZYD_CR203, tmp & ~(1 << 4)); 1412 1413 /* first two values taken from the chantables */ 1414 (void)zyd_rfwrite(sc, rfprog[chan - 1].r1); 1415 (void)zyd_rfwrite(sc, rfprog[chan - 1].r2); 1416 1417 /* init maxim2 radio - skipping the two first values */ 1418 for (i = 2; i < nitems(rfini); i++) { 1419 if ((error = zyd_rfwrite(sc, rfini[i])) != 0) 1420 return error; 1421 } 1422 (void)zyd_read16(sc, ZYD_CR203, &tmp); 1423 (void)zyd_write16(sc, ZYD_CR203, tmp | (1 << 4)); 1424 1425 return 0; 1426 } 1427 1428 int 1429 zyd_rf_attach(struct zyd_softc *sc, uint8_t type) 1430 { 1431 struct zyd_rf *rf = &sc->sc_rf; 1432 1433 rf->rf_sc = sc; 1434 1435 switch (type) { 1436 case ZYD_RF_RFMD: 1437 rf->init = zyd_rfmd_init; 1438 rf->switch_radio = zyd_rfmd_switch_radio; 1439 rf->set_channel = zyd_rfmd_set_channel; 1440 rf->width = 24; /* 24-bit RF values */ 1441 break; 1442 case ZYD_RF_AL2230: 1443 case ZYD_RF_AL2230S: 1444 if (sc->mac_rev == ZYD_ZD1211B) 1445 rf->init = zyd_al2230_init_b; 1446 else 1447 rf->init = zyd_al2230_init; 1448 rf->switch_radio = zyd_al2230_switch_radio; 1449 rf->set_channel = zyd_al2230_set_channel; 1450 rf->width = 24; /* 24-bit RF values */ 1451 break; 1452 case ZYD_RF_AL7230B: 1453 rf->init = zyd_al7230B_init; 1454 rf->switch_radio = zyd_al7230B_switch_radio; 1455 rf->set_channel = zyd_al7230B_set_channel; 1456 rf->width = 24; /* 24-bit RF values */ 1457 break; 1458 case ZYD_RF_AL2210: 1459 rf->init = zyd_al2210_init; 1460 rf->switch_radio = zyd_al2210_switch_radio; 1461 rf->set_channel = zyd_al2210_set_channel; 1462 rf->width = 24; /* 24-bit RF values */ 1463 break; 1464 case ZYD_RF_GCT: 1465 rf->init = zyd_gct_init; 1466 rf->switch_radio = zyd_gct_switch_radio; 1467 rf->set_channel = zyd_gct_set_channel; 1468 rf->width = 21; /* 21-bit RF values */ 1469 break; 1470 case ZYD_RF_MAXIM_NEW: 1471 rf->init = zyd_maxim_init; 1472 rf->switch_radio = zyd_maxim_switch_radio; 1473 rf->set_channel = zyd_maxim_set_channel; 1474 rf->width = 18; /* 18-bit RF values */ 1475 break; 1476 case ZYD_RF_MAXIM_NEW2: 1477 rf->init = zyd_maxim2_init; 1478 rf->switch_radio = zyd_maxim2_switch_radio; 1479 rf->set_channel = zyd_maxim2_set_channel; 1480 rf->width = 18; /* 18-bit RF values */ 1481 break; 1482 default: 1483 printf("%s: sorry, radio \"%s\" is not supported yet\n", 1484 sc->sc_dev.dv_xname, zyd_rf_name(type)); 1485 return EINVAL; 1486 } 1487 return 0; 1488 } 1489 1490 const char * 1491 zyd_rf_name(uint8_t type) 1492 { 1493 static const char * const zyd_rfs[] = { 1494 "unknown", "unknown", "UW2451", "UCHIP", "AL2230", 1495 "AL7230B", "THETA", "AL2210", "MAXIM_NEW", "GCT", 1496 "AL2230S", "RALINK", "INTERSIL", "RFMD", "MAXIM_NEW2", 1497 "PHILIPS" 1498 }; 1499 return zyd_rfs[(type > 15) ? 0 : type]; 1500 } 1501 1502 int 1503 zyd_hw_init(struct zyd_softc *sc) 1504 { 1505 struct zyd_rf *rf = &sc->sc_rf; 1506 const struct zyd_phy_pair *phyp; 1507 uint32_t tmp; 1508 int error; 1509 1510 /* specify that the plug and play is finished */ 1511 (void)zyd_write32(sc, ZYD_MAC_AFTER_PNP, 1); 1512 1513 (void)zyd_read16(sc, ZYD_FIRMWARE_BASE_ADDR, &sc->fwbase); 1514 DPRINTF(("firmware base address=0x%04x\n", sc->fwbase)); 1515 1516 /* retrieve firmware revision number */ 1517 (void)zyd_read16(sc, sc->fwbase + ZYD_FW_FIRMWARE_REV, &sc->fw_rev); 1518 1519 (void)zyd_write32(sc, ZYD_CR_GPI_EN, 0); 1520 (void)zyd_write32(sc, ZYD_MAC_CONT_WIN_LIMIT, 0x7f043f); 1521 1522 /* disable interrupts */ 1523 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 1524 1525 /* PHY init */ 1526 zyd_lock_phy(sc); 1527 phyp = (sc->mac_rev == ZYD_ZD1211B) ? zyd_def_phyB : zyd_def_phy; 1528 for (; phyp->reg != 0; phyp++) { 1529 if ((error = zyd_write16(sc, phyp->reg, phyp->val)) != 0) 1530 goto fail; 1531 } 1532 if (sc->fix_cr157) { 1533 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 1534 (void)zyd_write32(sc, ZYD_CR157, tmp >> 8); 1535 } 1536 zyd_unlock_phy(sc); 1537 1538 /* HMAC init */ 1539 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000020); 1540 zyd_write32(sc, ZYD_CR_ADDA_MBIAS_WT, 0x30000808); 1541 1542 if (sc->mac_rev == ZYD_ZD1211) { 1543 zyd_write32(sc, ZYD_MAC_RETRY, 0x00000002); 1544 } else { 1545 zyd_write32(sc, ZYD_MACB_MAX_RETRY, 0x02020202); 1546 zyd_write32(sc, ZYD_MACB_TXPWR_CTL4, 0x007f003f); 1547 zyd_write32(sc, ZYD_MACB_TXPWR_CTL3, 0x007f003f); 1548 zyd_write32(sc, ZYD_MACB_TXPWR_CTL2, 0x003f001f); 1549 zyd_write32(sc, ZYD_MACB_TXPWR_CTL1, 0x001f000f); 1550 zyd_write32(sc, ZYD_MACB_AIFS_CTL1, 0x00280028); 1551 zyd_write32(sc, ZYD_MACB_AIFS_CTL2, 0x008C003c); 1552 zyd_write32(sc, ZYD_MACB_TXOP, 0x01800824); 1553 } 1554 1555 zyd_write32(sc, ZYD_MAC_SNIFFER, 0x00000000); 1556 zyd_write32(sc, ZYD_MAC_RXFILTER, 0x00000000); 1557 zyd_write32(sc, ZYD_MAC_GHTBL, 0x00000000); 1558 zyd_write32(sc, ZYD_MAC_GHTBH, 0x80000000); 1559 zyd_write32(sc, ZYD_MAC_MISC, 0x000000a4); 1560 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x0000007f); 1561 zyd_write32(sc, ZYD_MAC_BCNCFG, 0x00f00401); 1562 zyd_write32(sc, ZYD_MAC_PHY_DELAY2, 0x00000000); 1563 zyd_write32(sc, ZYD_MAC_ACK_EXT, 0x00000080); 1564 zyd_write32(sc, ZYD_CR_ADDA_PWR_DWN, 0x00000000); 1565 zyd_write32(sc, ZYD_MAC_SIFS_ACK_TIME, 0x00000100); 1566 zyd_write32(sc, ZYD_MAC_DIFS_EIFS_SIFS, 0x0547c032); 1567 zyd_write32(sc, ZYD_CR_RX_PE_DELAY, 0x00000070); 1568 zyd_write32(sc, ZYD_CR_PS_CTRL, 0x10000000); 1569 zyd_write32(sc, ZYD_MAC_RTSCTSRATE, 0x02030203); 1570 zyd_write32(sc, ZYD_MAC_RX_THRESHOLD, 0x000c0640); 1571 zyd_write32(sc, ZYD_MAC_BACKOFF_PROTECT, 0x00000114); 1572 1573 /* RF chip init */ 1574 zyd_lock_phy(sc); 1575 error = (*rf->init)(rf); 1576 zyd_unlock_phy(sc); 1577 if (error != 0) { 1578 printf("%s: radio initialization failed\n", 1579 sc->sc_dev.dv_xname); 1580 goto fail; 1581 } 1582 1583 /* init beacon interval to 100ms */ 1584 if ((error = zyd_set_beacon_interval(sc, 100)) != 0) 1585 goto fail; 1586 1587 fail: return error; 1588 } 1589 1590 int 1591 zyd_read_eeprom(struct zyd_softc *sc) 1592 { 1593 struct ieee80211com *ic = &sc->sc_ic; 1594 uint32_t tmp; 1595 uint16_t val; 1596 int i; 1597 1598 /* read MAC address */ 1599 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P1, &tmp); 1600 ic->ic_myaddr[0] = tmp & 0xff; 1601 ic->ic_myaddr[1] = tmp >> 8; 1602 ic->ic_myaddr[2] = tmp >> 16; 1603 ic->ic_myaddr[3] = tmp >> 24; 1604 (void)zyd_read32(sc, ZYD_EEPROM_MAC_ADDR_P2, &tmp); 1605 ic->ic_myaddr[4] = tmp & 0xff; 1606 ic->ic_myaddr[5] = tmp >> 8; 1607 1608 (void)zyd_read32(sc, ZYD_EEPROM_POD, &tmp); 1609 sc->rf_rev = tmp & 0x0f; 1610 sc->fix_cr47 = (tmp >> 8 ) & 0x01; 1611 sc->fix_cr157 = (tmp >> 13) & 0x01; 1612 sc->pa_rev = (tmp >> 16) & 0x0f; 1613 1614 /* read regulatory domain (currently unused) */ 1615 (void)zyd_read32(sc, ZYD_EEPROM_SUBID, &tmp); 1616 sc->regdomain = tmp >> 16; 1617 DPRINTF(("regulatory domain %x\n", sc->regdomain)); 1618 1619 /* read Tx power calibration tables */ 1620 for (i = 0; i < 7; i++) { 1621 (void)zyd_read16(sc, ZYD_EEPROM_PWR_CAL + i, &val); 1622 sc->pwr_cal[i * 2] = val >> 8; 1623 sc->pwr_cal[i * 2 + 1] = val & 0xff; 1624 1625 (void)zyd_read16(sc, ZYD_EEPROM_PWR_INT + i, &val); 1626 sc->pwr_int[i * 2] = val >> 8; 1627 sc->pwr_int[i * 2 + 1] = val & 0xff; 1628 1629 (void)zyd_read16(sc, ZYD_EEPROM_36M_CAL + i, &val); 1630 sc->ofdm36_cal[i * 2] = val >> 8; 1631 sc->ofdm36_cal[i * 2 + 1] = val & 0xff; 1632 1633 (void)zyd_read16(sc, ZYD_EEPROM_48M_CAL + i, &val); 1634 sc->ofdm48_cal[i * 2] = val >> 8; 1635 sc->ofdm48_cal[i * 2 + 1] = val & 0xff; 1636 1637 (void)zyd_read16(sc, ZYD_EEPROM_54M_CAL + i, &val); 1638 sc->ofdm54_cal[i * 2] = val >> 8; 1639 sc->ofdm54_cal[i * 2 + 1] = val & 0xff; 1640 } 1641 return 0; 1642 } 1643 1644 void 1645 zyd_set_multi(struct zyd_softc *sc) 1646 { 1647 struct arpcom *ac = &sc->sc_ic.ic_ac; 1648 struct ifnet *ifp = &ac->ac_if; 1649 struct ether_multi *enm; 1650 struct ether_multistep step; 1651 uint32_t lo, hi; 1652 uint8_t bit; 1653 1654 if (ac->ac_multirangecnt > 0) 1655 ifp->if_flags |= IFF_ALLMULTI; 1656 1657 if ((ifp->if_flags & (IFF_ALLMULTI | IFF_PROMISC)) != 0) { 1658 lo = hi = 0xffffffff; 1659 goto done; 1660 } 1661 lo = hi = 0; 1662 ETHER_FIRST_MULTI(step, ac, enm); 1663 while (enm != NULL) { 1664 bit = enm->enm_addrlo[5] >> 2; 1665 if (bit < 32) 1666 lo |= 1 << bit; 1667 else 1668 hi |= 1 << (bit - 32); 1669 ETHER_NEXT_MULTI(step, enm); 1670 } 1671 1672 done: 1673 hi |= 1U << 31; /* make sure the broadcast bit is set */ 1674 zyd_write32(sc, ZYD_MAC_GHTBL, lo); 1675 zyd_write32(sc, ZYD_MAC_GHTBH, hi); 1676 } 1677 1678 void 1679 zyd_set_macaddr(struct zyd_softc *sc, const uint8_t *addr) 1680 { 1681 uint32_t tmp; 1682 1683 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1684 (void)zyd_write32(sc, ZYD_MAC_MACADRL, tmp); 1685 1686 tmp = addr[5] << 8 | addr[4]; 1687 (void)zyd_write32(sc, ZYD_MAC_MACADRH, tmp); 1688 } 1689 1690 void 1691 zyd_set_bssid(struct zyd_softc *sc, const uint8_t *addr) 1692 { 1693 uint32_t tmp; 1694 1695 tmp = addr[3] << 24 | addr[2] << 16 | addr[1] << 8 | addr[0]; 1696 (void)zyd_write32(sc, ZYD_MAC_BSSADRL, tmp); 1697 1698 tmp = addr[5] << 8 | addr[4]; 1699 (void)zyd_write32(sc, ZYD_MAC_BSSADRH, tmp); 1700 } 1701 1702 int 1703 zyd_switch_radio(struct zyd_softc *sc, int on) 1704 { 1705 struct zyd_rf *rf = &sc->sc_rf; 1706 int error; 1707 1708 zyd_lock_phy(sc); 1709 error = (*rf->switch_radio)(rf, on); 1710 zyd_unlock_phy(sc); 1711 1712 return error; 1713 } 1714 1715 void 1716 zyd_set_led(struct zyd_softc *sc, int which, int on) 1717 { 1718 uint32_t tmp; 1719 1720 (void)zyd_read32(sc, ZYD_MAC_TX_PE_CONTROL, &tmp); 1721 tmp &= ~which; 1722 if (on) 1723 tmp |= which; 1724 (void)zyd_write32(sc, ZYD_MAC_TX_PE_CONTROL, tmp); 1725 } 1726 1727 int 1728 zyd_set_rxfilter(struct zyd_softc *sc) 1729 { 1730 uint32_t rxfilter; 1731 1732 switch (sc->sc_ic.ic_opmode) { 1733 case IEEE80211_M_STA: 1734 rxfilter = ZYD_FILTER_BSS; 1735 break; 1736 #ifndef IEEE80211_STA_ONLY 1737 case IEEE80211_M_IBSS: 1738 case IEEE80211_M_HOSTAP: 1739 rxfilter = ZYD_FILTER_HOSTAP; 1740 break; 1741 #endif 1742 case IEEE80211_M_MONITOR: 1743 rxfilter = ZYD_FILTER_MONITOR; 1744 break; 1745 default: 1746 /* should not get there */ 1747 return EINVAL; 1748 } 1749 return zyd_write32(sc, ZYD_MAC_RXFILTER, rxfilter); 1750 } 1751 1752 void 1753 zyd_set_chan(struct zyd_softc *sc, struct ieee80211_channel *c) 1754 { 1755 struct ieee80211com *ic = &sc->sc_ic; 1756 struct zyd_rf *rf = &sc->sc_rf; 1757 uint32_t tmp; 1758 u_int chan; 1759 1760 chan = ieee80211_chan2ieee(ic, c); 1761 if (chan == 0 || chan == IEEE80211_CHAN_ANY) 1762 return; 1763 1764 zyd_lock_phy(sc); 1765 1766 (*rf->set_channel)(rf, chan); 1767 1768 /* update Tx power */ 1769 (void)zyd_write16(sc, ZYD_CR31, sc->pwr_int[chan - 1]); 1770 1771 if (sc->mac_rev == ZYD_ZD1211B) { 1772 (void)zyd_write16(sc, ZYD_CR67, sc->ofdm36_cal[chan - 1]); 1773 (void)zyd_write16(sc, ZYD_CR66, sc->ofdm48_cal[chan - 1]); 1774 (void)zyd_write16(sc, ZYD_CR65, sc->ofdm54_cal[chan - 1]); 1775 1776 (void)zyd_write16(sc, ZYD_CR68, sc->pwr_cal[chan - 1]); 1777 1778 (void)zyd_write16(sc, ZYD_CR69, 0x28); 1779 (void)zyd_write16(sc, ZYD_CR69, 0x2a); 1780 } 1781 1782 if (sc->fix_cr47) { 1783 /* set CCK baseband gain from EEPROM */ 1784 if (zyd_read32(sc, ZYD_EEPROM_PHY_REG, &tmp) == 0) 1785 (void)zyd_write16(sc, ZYD_CR47, tmp & 0xff); 1786 } 1787 1788 (void)zyd_write32(sc, ZYD_CR_CONFIG_PHILIPS, 0); 1789 1790 zyd_unlock_phy(sc); 1791 } 1792 1793 int 1794 zyd_set_beacon_interval(struct zyd_softc *sc, int bintval) 1795 { 1796 /* XXX this is probably broken.. */ 1797 (void)zyd_write32(sc, ZYD_CR_ATIM_WND_PERIOD, bintval - 2); 1798 (void)zyd_write32(sc, ZYD_CR_PRE_TBTT, bintval - 1); 1799 (void)zyd_write32(sc, ZYD_CR_BCN_INTERVAL, bintval); 1800 1801 return 0; 1802 } 1803 1804 uint8_t 1805 zyd_plcp_signal(int rate) 1806 { 1807 switch (rate) { 1808 /* CCK rates (returned values are device-dependent) */ 1809 case 2: return 0x0; 1810 case 4: return 0x1; 1811 case 11: return 0x2; 1812 case 22: return 0x3; 1813 1814 /* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */ 1815 case 12: return 0xb; 1816 case 18: return 0xf; 1817 case 24: return 0xa; 1818 case 36: return 0xe; 1819 case 48: return 0x9; 1820 case 72: return 0xd; 1821 case 96: return 0x8; 1822 case 108: return 0xc; 1823 1824 /* unsupported rates (should not get there) */ 1825 default: return 0xff; 1826 } 1827 } 1828 1829 void 1830 zyd_intr(struct usbd_xfer *xfer, void *priv, usbd_status status) 1831 { 1832 struct zyd_softc *sc = (struct zyd_softc *)priv; 1833 const struct zyd_cmd *cmd; 1834 uint32_t len; 1835 1836 if (status != USBD_NORMAL_COMPLETION) { 1837 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 1838 return; 1839 1840 if (status == USBD_STALLED) { 1841 usbd_clear_endpoint_stall_async( 1842 sc->zyd_ep[ZYD_ENDPT_IIN]); 1843 } 1844 return; 1845 } 1846 1847 cmd = (const struct zyd_cmd *)sc->ibuf; 1848 1849 if (letoh16(cmd->code) == ZYD_NOTIF_RETRYSTATUS) { 1850 struct zyd_notif_retry *retry = 1851 (struct zyd_notif_retry *)cmd->data; 1852 struct ieee80211com *ic = &sc->sc_ic; 1853 struct ifnet *ifp = &ic->ic_if; 1854 struct ieee80211_node *ni; 1855 1856 DPRINTF(("retry intr: rate=0x%x addr=%s count=%d (0x%x)\n", 1857 letoh16(retry->rate), ether_sprintf(retry->macaddr), 1858 letoh16(retry->count) & 0xff, letoh16(retry->count))); 1859 1860 /* 1861 * Find the node to which the packet was sent and update its 1862 * retry statistics. In BSS mode, this node is the AP we're 1863 * associated to so no lookup is actually needed. 1864 */ 1865 if (ic->ic_opmode != IEEE80211_M_STA) { 1866 ni = ieee80211_find_node(ic, retry->macaddr); 1867 if (ni == NULL) 1868 return; /* just ignore */ 1869 } else 1870 ni = ic->ic_bss; 1871 1872 ((struct zyd_node *)ni)->amn.amn_retrycnt++; 1873 1874 if (letoh16(retry->count) & 0x100) 1875 ifp->if_oerrors++; /* too many retries */ 1876 1877 } else if (letoh16(cmd->code) == ZYD_NOTIF_IORD) { 1878 if (letoh16(*(uint16_t *)cmd->data) == ZYD_CR_INTERRUPT) 1879 return; /* HMAC interrupt */ 1880 1881 if (!sc->odone) { 1882 /* copy answer into sc->odata buffer */ 1883 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 1884 bcopy(cmd->data, sc->odata, sc->olen); 1885 sc->odone = 1; 1886 wakeup(sc); /* wakeup zyd_cmd_read() */ 1887 } 1888 1889 } else { 1890 printf("%s: unknown notification %x\n", sc->sc_dev.dv_xname, 1891 letoh16(cmd->code)); 1892 } 1893 } 1894 1895 void 1896 zyd_rx_data(struct zyd_softc *sc, const uint8_t *buf, uint16_t len) 1897 { 1898 struct ieee80211com *ic = &sc->sc_ic; 1899 struct ifnet *ifp = &ic->ic_if; 1900 struct ieee80211_node *ni; 1901 struct ieee80211_frame *wh; 1902 struct ieee80211_rxinfo rxi; 1903 const struct zyd_plcphdr *plcp; 1904 const struct zyd_rx_stat *stat; 1905 struct mbuf *m; 1906 int s; 1907 1908 if (len < ZYD_MIN_FRAGSZ) { 1909 DPRINTFN(2, ("frame too short (length=%d)\n", len)); 1910 ifp->if_ierrors++; 1911 return; 1912 } 1913 1914 plcp = (const struct zyd_plcphdr *)buf; 1915 stat = (const struct zyd_rx_stat *)(buf + len - sizeof (*stat)); 1916 1917 if (stat->flags & ZYD_RX_ERROR) { 1918 DPRINTF(("%s: RX status indicated error (%x)\n", 1919 sc->sc_dev.dv_xname, stat->flags)); 1920 ifp->if_ierrors++; 1921 return; 1922 } 1923 1924 /* compute actual frame length */ 1925 len -= (sizeof (*plcp) + sizeof (*stat) + IEEE80211_CRC_LEN); 1926 1927 if (len > MCLBYTES) { 1928 DPRINTFN(2, ("frame too large (length=%d)\n", len)); 1929 ifp->if_ierrors++; 1930 return; 1931 } 1932 1933 /* allocate a mbuf to store the frame */ 1934 MGETHDR(m, M_DONTWAIT, MT_DATA); 1935 if (m == NULL) { 1936 ifp->if_ierrors++; 1937 return; 1938 } 1939 if (len > MHLEN) { 1940 MCLGET(m, M_DONTWAIT); 1941 if (!(m->m_flags & M_EXT)) { 1942 ifp->if_ierrors++; 1943 m_freem(m); 1944 return; 1945 } 1946 } 1947 bcopy(plcp + 1, mtod(m, caddr_t), len); 1948 m->m_pkthdr.len = m->m_len = len; 1949 1950 #if NBPFILTER > 0 1951 if (sc->sc_drvbpf != NULL) { 1952 struct mbuf mb; 1953 struct zyd_rx_radiotap_header *tap = &sc->sc_rxtap; 1954 static const uint8_t rates[] = { 1955 /* reverse function of zyd_plcp_signal() */ 1956 2, 4, 11, 22, 0, 0, 0, 0, 1957 96, 48, 24, 12, 108, 72, 36, 18 1958 }; 1959 1960 tap->wr_flags = 0; 1961 tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 1962 tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 1963 tap->wr_rssi = stat->rssi; 1964 tap->wr_rate = rates[plcp->signal & 0xf]; 1965 1966 mb.m_data = (caddr_t)tap; 1967 mb.m_len = sc->sc_rxtap_len; 1968 mb.m_next = m; 1969 mb.m_nextpkt = NULL; 1970 mb.m_type = 0; 1971 mb.m_flags = 0; 1972 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_IN); 1973 } 1974 #endif 1975 1976 s = splnet(); 1977 wh = mtod(m, struct ieee80211_frame *); 1978 ni = ieee80211_find_rxnode(ic, wh); 1979 rxi.rxi_flags = 0; 1980 rxi.rxi_rssi = stat->rssi; 1981 rxi.rxi_tstamp = 0; /* unused */ 1982 ieee80211_input(ifp, m, ni, &rxi); 1983 1984 /* node is no longer needed */ 1985 ieee80211_release_node(ic, ni); 1986 1987 splx(s); 1988 } 1989 1990 void 1991 zyd_rxeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 1992 { 1993 struct zyd_rx_data *data = priv; 1994 struct zyd_softc *sc = data->sc; 1995 struct ieee80211com *ic = &sc->sc_ic; 1996 struct ifnet *ifp = &ic->ic_if; 1997 const struct zyd_rx_desc *desc; 1998 int len; 1999 2000 if (status != USBD_NORMAL_COMPLETION) { 2001 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2002 return; 2003 2004 if (status == USBD_STALLED) 2005 usbd_clear_endpoint_stall(sc->zyd_ep[ZYD_ENDPT_BIN]); 2006 2007 goto skip; 2008 } 2009 usbd_get_xfer_status(xfer, NULL, NULL, &len, NULL); 2010 2011 if (len < ZYD_MIN_RXBUFSZ) { 2012 DPRINTFN(2, ("xfer too short (length=%d)\n", len)); 2013 ifp->if_ierrors++; 2014 goto skip; 2015 } 2016 2017 desc = (const struct zyd_rx_desc *) 2018 (data->buf + len - sizeof (struct zyd_rx_desc)); 2019 2020 if (UGETW(desc->tag) == ZYD_TAG_MULTIFRAME) { 2021 const uint8_t *p = data->buf, *end = p + len; 2022 int i; 2023 2024 DPRINTFN(3, ("received multi-frame transfer\n")); 2025 2026 for (i = 0; i < ZYD_MAX_RXFRAMECNT; i++) { 2027 const uint16_t len = UGETW(desc->len[i]); 2028 2029 if (len == 0 || p + len >= end) 2030 break; 2031 2032 zyd_rx_data(sc, p, len); 2033 /* next frame is aligned on a 32-bit boundary */ 2034 p += (len + 3) & ~3; 2035 } 2036 } else { 2037 DPRINTFN(3, ("received single-frame transfer\n")); 2038 2039 zyd_rx_data(sc, data->buf, len); 2040 } 2041 2042 skip: /* setup a new transfer */ 2043 usbd_setup_xfer(xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, NULL, 2044 ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2045 USBD_NO_TIMEOUT, zyd_rxeof); 2046 (void)usbd_transfer(xfer); 2047 } 2048 2049 void 2050 zyd_txeof(struct usbd_xfer *xfer, void *priv, usbd_status status) 2051 { 2052 struct zyd_tx_data *data = priv; 2053 struct zyd_softc *sc = data->sc; 2054 struct ieee80211com *ic = &sc->sc_ic; 2055 struct ifnet *ifp = &ic->ic_if; 2056 int s; 2057 2058 if (status != USBD_NORMAL_COMPLETION) { 2059 if (status == USBD_NOT_STARTED || status == USBD_CANCELLED) 2060 return; 2061 2062 printf("%s: could not transmit buffer: %s\n", 2063 sc->sc_dev.dv_xname, usbd_errstr(status)); 2064 2065 if (status == USBD_STALLED) { 2066 usbd_clear_endpoint_stall_async( 2067 sc->zyd_ep[ZYD_ENDPT_BOUT]); 2068 } 2069 ifp->if_oerrors++; 2070 return; 2071 } 2072 2073 s = splnet(); 2074 2075 /* update rate control statistics */ 2076 ((struct zyd_node *)data->ni)->amn.amn_txcnt++; 2077 2078 ieee80211_release_node(ic, data->ni); 2079 data->ni = NULL; 2080 2081 sc->tx_queued--; 2082 ifp->if_opackets++; 2083 2084 sc->tx_timer = 0; 2085 ifq_clr_oactive(&ifp->if_snd); 2086 zyd_start(ifp); 2087 2088 splx(s); 2089 } 2090 2091 int 2092 zyd_tx(struct zyd_softc *sc, struct mbuf *m, struct ieee80211_node *ni) 2093 { 2094 struct ieee80211com *ic = &sc->sc_ic; 2095 struct ifnet *ifp = &ic->ic_if; 2096 struct zyd_tx_desc *desc; 2097 struct zyd_tx_data *data; 2098 struct ieee80211_frame *wh; 2099 struct ieee80211_key *k; 2100 int xferlen, totlen, rate; 2101 uint16_t pktlen; 2102 usbd_status error; 2103 2104 wh = mtod(m, struct ieee80211_frame *); 2105 2106 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) { 2107 k = ieee80211_get_txkey(ic, wh, ni); 2108 if ((m = ieee80211_encrypt(ic, m, k)) == NULL) 2109 return ENOBUFS; 2110 wh = mtod(m, struct ieee80211_frame *); 2111 } 2112 2113 /* pickup a rate */ 2114 if (IEEE80211_IS_MULTICAST(wh->i_addr1) || 2115 ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) == 2116 IEEE80211_FC0_TYPE_MGT)) { 2117 /* mgmt/multicast frames are sent at the lowest avail. rate */ 2118 rate = ni->ni_rates.rs_rates[0]; 2119 } else if (ic->ic_fixed_rate != -1) { 2120 rate = ic->ic_sup_rates[ic->ic_curmode]. 2121 rs_rates[ic->ic_fixed_rate]; 2122 } else 2123 rate = ni->ni_rates.rs_rates[ni->ni_txrate]; 2124 rate &= IEEE80211_RATE_VAL; 2125 if (rate == 0) /* XXX should not happen */ 2126 rate = 2; 2127 2128 data = &sc->tx_data[0]; 2129 desc = (struct zyd_tx_desc *)data->buf; 2130 2131 data->ni = ni; 2132 2133 xferlen = sizeof (struct zyd_tx_desc) + m->m_pkthdr.len; 2134 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN; 2135 2136 /* fill Tx descriptor */ 2137 desc->len = htole16(totlen); 2138 2139 desc->flags = ZYD_TX_FLAG_BACKOFF; 2140 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) { 2141 /* multicast frames are not sent at OFDM rates in 802.11b/g */ 2142 if (totlen > ic->ic_rtsthreshold) { 2143 desc->flags |= ZYD_TX_FLAG_RTS; 2144 } else if (ZYD_RATE_IS_OFDM(rate) && 2145 (ic->ic_flags & IEEE80211_F_USEPROT)) { 2146 if (ic->ic_protmode == IEEE80211_PROT_CTSONLY) 2147 desc->flags |= ZYD_TX_FLAG_CTS_TO_SELF; 2148 else if (ic->ic_protmode == IEEE80211_PROT_RTSCTS) 2149 desc->flags |= ZYD_TX_FLAG_RTS; 2150 } 2151 } else 2152 desc->flags |= ZYD_TX_FLAG_MULTICAST; 2153 2154 if ((wh->i_fc[0] & 2155 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) == 2156 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) 2157 desc->flags |= ZYD_TX_FLAG_TYPE(ZYD_TX_TYPE_PS_POLL); 2158 2159 desc->phy = zyd_plcp_signal(rate); 2160 if (ZYD_RATE_IS_OFDM(rate)) { 2161 desc->phy |= ZYD_TX_PHY_OFDM; 2162 if (ic->ic_curmode == IEEE80211_MODE_11A) 2163 desc->phy |= ZYD_TX_PHY_5GHZ; 2164 } else if (rate != 2 && (ic->ic_flags & IEEE80211_F_SHPREAMBLE)) 2165 desc->phy |= ZYD_TX_PHY_SHPREAMBLE; 2166 2167 /* actual transmit length (XXX why +10?) */ 2168 pktlen = sizeof (struct zyd_tx_desc) + 10; 2169 if (sc->mac_rev == ZYD_ZD1211) 2170 pktlen += totlen; 2171 desc->pktlen = htole16(pktlen); 2172 2173 desc->plcp_length = htole16((16 * totlen + rate - 1) / rate); 2174 desc->plcp_service = 0; 2175 if (rate == 22) { 2176 const int remainder = (16 * totlen) % 22; 2177 if (remainder != 0 && remainder < 7) 2178 desc->plcp_service |= ZYD_PLCP_LENGEXT; 2179 } 2180 2181 #if NBPFILTER > 0 2182 if (sc->sc_drvbpf != NULL) { 2183 struct mbuf mb; 2184 struct zyd_tx_radiotap_header *tap = &sc->sc_txtap; 2185 2186 tap->wt_flags = 0; 2187 tap->wt_rate = rate; 2188 tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq); 2189 tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags); 2190 2191 mb.m_data = (caddr_t)tap; 2192 mb.m_len = sc->sc_txtap_len; 2193 mb.m_next = m; 2194 mb.m_nextpkt = NULL; 2195 mb.m_type = 0; 2196 mb.m_flags = 0; 2197 bpf_mtap(sc->sc_drvbpf, &mb, BPF_DIRECTION_OUT); 2198 } 2199 #endif 2200 2201 m_copydata(m, 0, m->m_pkthdr.len, 2202 data->buf + sizeof (struct zyd_tx_desc)); 2203 2204 DPRINTFN(10, ("%s: sending data frame len=%u rate=%u xferlen=%u\n", 2205 sc->sc_dev.dv_xname, m->m_pkthdr.len, rate, xferlen)); 2206 2207 m_freem(m); /* mbuf no longer needed */ 2208 2209 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BOUT], data, 2210 data->buf, xferlen, USBD_FORCE_SHORT_XFER | USBD_NO_COPY, 2211 ZYD_TX_TIMEOUT, zyd_txeof); 2212 error = usbd_transfer(data->xfer); 2213 if (error != USBD_IN_PROGRESS && error != 0) { 2214 ifp->if_oerrors++; 2215 return EIO; 2216 } 2217 sc->tx_queued++; 2218 2219 return 0; 2220 } 2221 2222 void 2223 zyd_start(struct ifnet *ifp) 2224 { 2225 struct zyd_softc *sc = ifp->if_softc; 2226 struct ieee80211com *ic = &sc->sc_ic; 2227 struct ieee80211_node *ni; 2228 struct mbuf *m; 2229 2230 if (!(ifp->if_flags & IFF_RUNNING) || ifq_is_oactive(&ifp->if_snd)) 2231 return; 2232 2233 for (;;) { 2234 if (sc->tx_queued >= ZYD_TX_LIST_CNT) { 2235 ifq_set_oactive(&ifp->if_snd); 2236 break; 2237 } 2238 /* send pending management frames first */ 2239 m = mq_dequeue(&ic->ic_mgtq); 2240 if (m != NULL) { 2241 ni = m->m_pkthdr.ph_cookie; 2242 goto sendit; 2243 } 2244 if (ic->ic_state != IEEE80211_S_RUN) 2245 break; 2246 2247 /* encapsulate and send data frames */ 2248 IFQ_DEQUEUE(&ifp->if_snd, m); 2249 if (m == NULL) 2250 break; 2251 #if NBPFILTER > 0 2252 if (ifp->if_bpf != NULL) 2253 bpf_mtap(ifp->if_bpf, m, BPF_DIRECTION_OUT); 2254 #endif 2255 if ((m = ieee80211_encap(ifp, m, &ni)) == NULL) 2256 continue; 2257 sendit: 2258 #if NBPFILTER > 0 2259 if (ic->ic_rawbpf != NULL) 2260 bpf_mtap(ic->ic_rawbpf, m, BPF_DIRECTION_OUT); 2261 #endif 2262 if (zyd_tx(sc, m, ni) != 0) { 2263 ieee80211_release_node(ic, ni); 2264 ifp->if_oerrors++; 2265 continue; 2266 } 2267 2268 sc->tx_timer = 5; 2269 ifp->if_timer = 1; 2270 } 2271 } 2272 2273 void 2274 zyd_watchdog(struct ifnet *ifp) 2275 { 2276 struct zyd_softc *sc = ifp->if_softc; 2277 2278 ifp->if_timer = 0; 2279 2280 if (sc->tx_timer > 0) { 2281 if (--sc->tx_timer == 0) { 2282 printf("%s: device timeout\n", sc->sc_dev.dv_xname); 2283 /* zyd_init(ifp); XXX needs a process context ? */ 2284 ifp->if_oerrors++; 2285 return; 2286 } 2287 ifp->if_timer = 1; 2288 } 2289 2290 ieee80211_watchdog(ifp); 2291 } 2292 2293 int 2294 zyd_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data) 2295 { 2296 struct zyd_softc *sc = ifp->if_softc; 2297 struct ieee80211com *ic = &sc->sc_ic; 2298 struct ifreq *ifr; 2299 int s, error = 0; 2300 2301 s = splnet(); 2302 2303 switch (cmd) { 2304 case SIOCSIFADDR: 2305 ifp->if_flags |= IFF_UP; 2306 /* FALLTHROUGH */ 2307 case SIOCSIFFLAGS: 2308 if (ifp->if_flags & IFF_UP) { 2309 /* 2310 * If only the PROMISC or ALLMULTI flag changes, then 2311 * don't do a full re-init of the chip, just update 2312 * the Rx filter. 2313 */ 2314 if ((ifp->if_flags & IFF_RUNNING) && 2315 ((ifp->if_flags ^ sc->sc_if_flags) & 2316 (IFF_ALLMULTI | IFF_PROMISC)) != 0) { 2317 zyd_set_multi(sc); 2318 } else { 2319 if (!(ifp->if_flags & IFF_RUNNING)) 2320 zyd_init(ifp); 2321 } 2322 } else { 2323 if (ifp->if_flags & IFF_RUNNING) 2324 zyd_stop(ifp, 1); 2325 } 2326 sc->sc_if_flags = ifp->if_flags; 2327 break; 2328 2329 case SIOCADDMULTI: 2330 case SIOCDELMULTI: 2331 ifr = (struct ifreq *)data; 2332 error = (cmd == SIOCADDMULTI) ? 2333 ether_addmulti(ifr, &ic->ic_ac) : 2334 ether_delmulti(ifr, &ic->ic_ac); 2335 if (error == ENETRESET) { 2336 if (ifp->if_flags & IFF_RUNNING) 2337 zyd_set_multi(sc); 2338 error = 0; 2339 } 2340 break; 2341 2342 case SIOCS80211CHANNEL: 2343 /* 2344 * This allows for fast channel switching in monitor mode 2345 * (used by kismet). In IBSS mode, we must explicitly reset 2346 * the interface to generate a new beacon frame. 2347 */ 2348 error = ieee80211_ioctl(ifp, cmd, data); 2349 if (error == ENETRESET && 2350 ic->ic_opmode == IEEE80211_M_MONITOR) { 2351 zyd_set_chan(sc, ic->ic_ibss_chan); 2352 error = 0; 2353 } 2354 break; 2355 2356 default: 2357 error = ieee80211_ioctl(ifp, cmd, data); 2358 } 2359 2360 if (error == ENETRESET) { 2361 if ((ifp->if_flags & (IFF_RUNNING | IFF_UP)) == 2362 (IFF_RUNNING | IFF_UP)) 2363 zyd_init(ifp); 2364 error = 0; 2365 } 2366 2367 splx(s); 2368 2369 return error; 2370 } 2371 2372 int 2373 zyd_init(struct ifnet *ifp) 2374 { 2375 struct zyd_softc *sc = ifp->if_softc; 2376 struct ieee80211com *ic = &sc->sc_ic; 2377 int i, error; 2378 2379 zyd_stop(ifp, 0); 2380 2381 IEEE80211_ADDR_COPY(ic->ic_myaddr, LLADDR(ifp->if_sadl)); 2382 DPRINTF(("setting MAC address to %s\n", ether_sprintf(ic->ic_myaddr))); 2383 zyd_set_macaddr(sc, ic->ic_myaddr); 2384 2385 /* we'll do software WEP decryption for now */ 2386 DPRINTF(("setting encryption type\n")); 2387 error = zyd_write32(sc, ZYD_MAC_ENCRYPTION_TYPE, ZYD_ENC_SNIFFER); 2388 if (error != 0) 2389 return error; 2390 2391 /* promiscuous mode */ 2392 (void)zyd_write32(sc, ZYD_MAC_SNIFFER, 2393 (ic->ic_opmode == IEEE80211_M_MONITOR) ? 1 : 0); 2394 2395 (void)zyd_set_rxfilter(sc); 2396 2397 /* switch radio transmitter ON */ 2398 (void)zyd_switch_radio(sc, 1); 2399 2400 /* set basic rates */ 2401 if (ic->ic_curmode == IEEE80211_MODE_11B) 2402 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x0003); 2403 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2404 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x1500); 2405 else /* assumes 802.11b/g */ 2406 (void)zyd_write32(sc, ZYD_MAC_BAS_RATE, 0x000f); 2407 2408 /* set mandatory rates */ 2409 if (ic->ic_curmode == IEEE80211_MODE_11B) 2410 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x000f); 2411 else if (ic->ic_curmode == IEEE80211_MODE_11A) 2412 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x1500); 2413 else /* assumes 802.11b/g */ 2414 (void)zyd_write32(sc, ZYD_MAC_MAN_RATE, 0x150f); 2415 2416 /* set default BSS channel */ 2417 ic->ic_bss->ni_chan = ic->ic_ibss_chan; 2418 zyd_set_chan(sc, ic->ic_bss->ni_chan); 2419 2420 /* enable interrupts */ 2421 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, ZYD_HWINT_MASK); 2422 2423 /* 2424 * Allocate Tx and Rx xfer queues. 2425 */ 2426 if ((error = zyd_alloc_tx_list(sc)) != 0) { 2427 printf("%s: could not allocate Tx list\n", 2428 sc->sc_dev.dv_xname); 2429 goto fail; 2430 } 2431 if ((error = zyd_alloc_rx_list(sc)) != 0) { 2432 printf("%s: could not allocate Rx list\n", 2433 sc->sc_dev.dv_xname); 2434 goto fail; 2435 } 2436 2437 /* 2438 * Start up the receive pipe. 2439 */ 2440 for (i = 0; i < ZYD_RX_LIST_CNT; i++) { 2441 struct zyd_rx_data *data = &sc->rx_data[i]; 2442 2443 usbd_setup_xfer(data->xfer, sc->zyd_ep[ZYD_ENDPT_BIN], data, 2444 NULL, ZYX_MAX_RXBUFSZ, USBD_NO_COPY | USBD_SHORT_XFER_OK, 2445 USBD_NO_TIMEOUT, zyd_rxeof); 2446 error = usbd_transfer(data->xfer); 2447 if (error != USBD_IN_PROGRESS && error != 0) { 2448 printf("%s: could not queue Rx transfer\n", 2449 sc->sc_dev.dv_xname); 2450 goto fail; 2451 } 2452 } 2453 2454 ifq_clr_oactive(&ifp->if_snd); 2455 ifp->if_flags |= IFF_RUNNING; 2456 2457 if (ic->ic_opmode == IEEE80211_M_MONITOR) 2458 ieee80211_new_state(ic, IEEE80211_S_RUN, -1); 2459 else 2460 ieee80211_new_state(ic, IEEE80211_S_SCAN, -1); 2461 2462 return 0; 2463 2464 fail: zyd_stop(ifp, 1); 2465 return error; 2466 } 2467 2468 void 2469 zyd_stop(struct ifnet *ifp, int disable) 2470 { 2471 struct zyd_softc *sc = ifp->if_softc; 2472 struct ieee80211com *ic = &sc->sc_ic; 2473 2474 sc->tx_timer = 0; 2475 ifp->if_timer = 0; 2476 ifp->if_flags &= ~IFF_RUNNING; 2477 ifq_clr_oactive(&ifp->if_snd); 2478 2479 ieee80211_new_state(ic, IEEE80211_S_INIT, -1); /* free all nodes */ 2480 2481 /* switch radio transmitter OFF */ 2482 (void)zyd_switch_radio(sc, 0); 2483 2484 /* disable Rx */ 2485 (void)zyd_write32(sc, ZYD_MAC_RXFILTER, 0); 2486 2487 /* disable interrupts */ 2488 (void)zyd_write32(sc, ZYD_CR_INTERRUPT, 0); 2489 2490 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BIN]); 2491 usbd_abort_pipe(sc->zyd_ep[ZYD_ENDPT_BOUT]); 2492 2493 zyd_free_rx_list(sc); 2494 zyd_free_tx_list(sc); 2495 } 2496 2497 int 2498 zyd_loadfirmware(struct zyd_softc *sc, u_char *fw, size_t size) 2499 { 2500 usb_device_request_t req; 2501 uint16_t addr; 2502 uint8_t stat; 2503 2504 DPRINTF(("firmware size=%zd\n", size)); 2505 2506 req.bmRequestType = UT_WRITE_VENDOR_DEVICE; 2507 req.bRequest = ZYD_DOWNLOADREQ; 2508 USETW(req.wIndex, 0); 2509 2510 addr = ZYD_FIRMWARE_START_ADDR; 2511 while (size > 0) { 2512 const int mlen = min(size, 4096); 2513 2514 DPRINTF(("loading firmware block: len=%d, addr=0x%x\n", mlen, 2515 addr)); 2516 2517 USETW(req.wValue, addr); 2518 USETW(req.wLength, mlen); 2519 if (usbd_do_request(sc->sc_udev, &req, fw) != 0) 2520 return EIO; 2521 2522 addr += mlen / 2; 2523 fw += mlen; 2524 size -= mlen; 2525 } 2526 2527 /* check whether the upload succeeded */ 2528 req.bmRequestType = UT_READ_VENDOR_DEVICE; 2529 req.bRequest = ZYD_DOWNLOADSTS; 2530 USETW(req.wValue, 0); 2531 USETW(req.wIndex, 0); 2532 USETW(req.wLength, sizeof stat); 2533 if (usbd_do_request(sc->sc_udev, &req, &stat) != 0) 2534 return EIO; 2535 2536 return (stat & 0x80) ? EIO : 0; 2537 } 2538 2539 void 2540 zyd_iter_func(void *arg, struct ieee80211_node *ni) 2541 { 2542 struct zyd_softc *sc = arg; 2543 struct zyd_node *zn = (struct zyd_node *)ni; 2544 2545 ieee80211_amrr_choose(&sc->amrr, ni, &zn->amn); 2546 } 2547 2548 void 2549 zyd_amrr_timeout(void *arg) 2550 { 2551 struct zyd_softc *sc = arg; 2552 struct ieee80211com *ic = &sc->sc_ic; 2553 int s; 2554 2555 s = splnet(); 2556 if (ic->ic_opmode == IEEE80211_M_STA) 2557 zyd_iter_func(sc, ic->ic_bss); 2558 else 2559 ieee80211_iterate_nodes(ic, zyd_iter_func, sc); 2560 splx(s); 2561 2562 timeout_add_sec(&sc->amrr_to, 1); 2563 } 2564 2565 void 2566 zyd_newassoc(struct ieee80211com *ic, struct ieee80211_node *ni, int isnew) 2567 { 2568 struct zyd_softc *sc = ic->ic_softc; 2569 int i; 2570 2571 ieee80211_amrr_node_init(&sc->amrr, &((struct zyd_node *)ni)->amn); 2572 2573 /* set rate to some reasonable initial value */ 2574 for (i = ni->ni_rates.rs_nrates - 1; 2575 i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72; 2576 i--); 2577 ni->ni_txrate = i; 2578 } 2579